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12. CARDINALITY AND COUNTABILITY

With the reals in place, we are in a position to start discussing actual real analysis. How-
ever, there is still one additional foundational topic that we will need repeatedly in what
follows and that is the notion of the “size” of a set. In set theory, this goes under the
name cardinality.

12.1 Finite and infinite sets.

One way to interpret the loose notion of the “size” of a set is as the number of its ele-
ments. In daily life this is something that would be decided by counting which amounts
to labeling of the elements of the set by naturals. To make this mathematically precise,
we need to introduce the concept of the set of “first n naturals”

r0, nq :“ tk P N : k † nu (12.1)

where k † n :“ k § n ^ k ‰ n for § defined as m § n :“ Dk P N : n “ m ` k. With this,
we first divide all sets into two basic categories:

Definition 12.1 A set A is said to be

‚ finite if there exist n P N and a bijection f : r0, nq Ñ A, and

‚ infinite if it is not finite.

Since r0, 0q “ H, a bijective map f : r0, 0q Ñ H exists trivially and H is thus finite.
Concerning non-empty finite sets, recall a lemma from homework:

Lemma 12.2 Let m, n P N and let f : r0, nq Ñ r0, mq be a function. Then
(1) f injective ñ n § m
(2) f surjective ñ m § n
(3) f bijective ñ m “ n

Noting that the inverse of a bijection as well as the composition of two bijections are
bijections, part (3) shows that for each set A there is at most one n P N for which a
bijection f : r0, nq Ñ A exists. It is thus meaningful to give:

Definition 12.3 Let A be a finite set. The unique n P N for which there is a bijection

f : r0, nq Ñ A is called the cardinality of A with notation |A| (or sometimes #A).

We leave to the reader to verify that the concept of finite set is closed under finite
unions and subset relation:

Lemma 12.4 For any sets A and B, we have:
(1) A finite ^ B Ñ A ñ B finite
(2) A finite ^ B finite ô A Y B finite
(3) A finite ^ B finite ô A ˆ B finite

These also translate into inequalities for cardinality:

Lemma 12.5 For any finite sets A and B:

B Ñ A ñ |B| § |A| (12.2)
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and
|A Y B| § |A| ` |B| (12.3)

and
|A ˆ B| “ |A| ¨ |B| (12.4)

Thus, intuitively, union translates into addition and Cartesian product into multiplica-
tion. The inequality in (12.3) arises from possible overcounting. Indeed, equality holds
when (and only when) A and B are disjoint.

As to the second eventuality in Definition 12.1, we note that earlier (specifically, in
Definition 3.12) we put forward the notion of a set A being Dedekind infinite to denote
the situation that there exists an injection f : A Ñ A with Ranp f q ‰ A. This builds
on Galileo’s paradox that points out an apparent contradiction between the fact that only
some naturals are squares and so there seems to be more naturals than squares and the
existence of the map f : N Ñ N defined by f pnq :“ n2 that puts all squares with all
naturals in one-to-one correspondence.

The notion of being Dedekind infinite is attractive for its intrinsic nature; indeed, it
does not require anything else than the set itself. Since the existence of an injection
f : A Ñ A with Ranp f q ‰ A rules out (with the help of part (1) of Lemma 12.2) that A is
finite, we have

A Dedekind infinite ñ A infinite (12.5)

The converse seems intuitive as well; indeed, keep listing elements of A to produce a
sequence txn : n P Nu these elements. Then define f pxnq :“ xn`1 for n P N and f pxq :“ x
for x not a member of the sequence txn : n P Nu to get an injection of A into itself which
misses a point — namely, the point x0.

Unfortunately, this is where a precise argument runs into a problem: the need to re-
peatedly choose an element from a set cannot be formalized without the use of Axiom of
Choice. This is not a mere technicality; indeed, there are models of set theory with Zer-
melo’s axioms but without Axiom of Choice in which the converse to (12.5) fails. For this
reason we abandon all use of the notion of Dedekind-infinite sets and stick henceforth
with the notions put foward in Definition 12.1.

12.2 Countable sets.

Having elucidated how to interpret the “size” of finite sets, let us move to refining the
notion of infinite sets. In analogy with Definition 12.1, here we put:

Definition 12.6 An infinite set A is said to be

‚ countable if there exists a bijection f : N Ñ A, and

‚ uncountable if it is not countable.

Informally, a set is countable if it can be enumerated into a sequence. While this notion
is defined for infinite sets above, it is commonly extended to include finite sets as well.
This is not true about the book, which talks about being at most countable in this case. In
other texts, the term denumerable is used to denote “infinite and countable.”

We will focus on countable sets first and derive some basic facts about them. Our first
observation is that, just as for finite sets, countability is inherited by the subsets:
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Lemma 12.7 Let A be a countable set. Then

@B Ñ A : B infinite ñ B countable (12.6)

In particular, every subset of a countable set is either finite or countable.

Proof. Since A is in a bijective correspondence with N, it suffices to prove this for A :“ N

and B Ñ N. Informally, we will use the ordering of N to enumerate all elements of B
into a sequence. The formal construction requires some work.

Define, recursively,

B0 :“ B ^ @k P N : Bk`1 :“

#
Bk r tinfpBkqu if Bk ‰ H,
H if Bk “ H,

(12.7)

where we recalled that, as shown in Lemma 9.7, each non-empty set of naturals has an
infimum which is then contained therein. Then prove

B infinite ñ @k P N : Bk infinite (12.8)

by induction: The case k “ 0 is checked from B0 “ B. For the induction step assuming
that Bk is infinite for some k P N. Then Bk ‰ H and so Bk “ Bk`1 Y tinfpBkqu. If Bk`1
were finite, then so would Bk by Lemma 12.4, and so Bk`1 is infinite as well.

We then also similarly claim

@k P N : infpBkq ` 1 § infpBk`1q ^ k § infpBkq (12.9)

The first part is proved directly from infpBkq R Bk`1. The second part is proved by
induction; indeed, 0 § infpB0q trivially and, if k § infpBkq then the first part gives k ` 1 §

infpBkq ` 1 § infpBk`1q, proving the induction step.
With the above in hand, we define

@k P N : f pkq :“ infpBkq (12.10)

This is defined for all k P N by (12.8). Also f is injective because the first part of (12.9)
gives @k, ` P N : k † ` ñ infpBkq † infpB`q. To see that f is surjective, let n P B and set

kpnq :“ inftk P N : n R Bku. (12.11)

where the set on the right is non-empty (and the infimum is thus well defined) because
n R Bn`1 by the fact that infpBn`1q • n ` 1 by (12.9). Now observe that kpnq ° 0 be-
cause n P B0 “ B and so kpnq ´ 1 P N. In addition, n R Bkpnq bu n P Bkpnq´1 for otherwise
kpnq is not the infimum. Hence

n P Bkpnq´1 r Bkpnq “
 

infpBkpnq´1qu (12.12)

proving that n “ infpBkpnq´1q “ f pkpnq ´ 1q. Hence n P Ranp f q and f is surjective. ⇤
The statement and proof can be summed up as follows. First put forward a very

useful notion:

Definition 12.8 (Sequence) Let A be a set. An A-valued sequence txnunPN (or a se-

quence taking values in A) is a function f : N Ñ A with Domp f q “ N and such that

@n P N : xn “ f pnq. We reserve the notation txn : n P Nu for Ranp f q.

The above proof then shows:
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Corollary 12.9 Let A be an infinite countable set. For each infinite B Ñ A there exists a
sequence txnunPN such that B “ txn : n P Nu. (We say that B is exhausted by txnunPN.)

Another observation that we will find useful is as follows:

Corollary 12.10 For any set B:

B finite or countable ô D f : B Ñ N : injection. (12.13)

Proof. The direction ñ follows directly from Definitions 12.1 and 12.6. For  we just
need to address the case of B infinite. Here the injection f puts B into bijective corre-
spondence with f pBq “ Ranp f q which, being a subset of N, is countable by Lemma 12.7.
Thus B is countable as well. ⇤

We will now proceed to note that, similarly as for finite sets, countability is preserved
by certain natural operations on sets. We begin by the Cartesian product:

Lemma 12.11 Let A and B be countable sets. Then so is A ˆ B.

Proof. Let f : A Ñ N and g : A Ñ N be injections ensured by A and B being countable.
Then hpa, bq :“ p f paq, gpbqq defines an injection h : A ˆ B Ñ N ˆ N. (We leave checking
that h is an injection to the reader.) It thus suffice so show that there is an injection
f : N ˆ N Ñ N. This is provided by

fpm, nq :“
1
2

pm ` nqpm ` n ` 1q ` m, (12.14)

where the first term on the right is a natural by the fact that the product of two con-
secutive naturals is even. Indeed, this map labels the elements of N ˆ N consecutively
according to the following ordering on N ˆ N:

pm, nq § p rm, ñq :“ m ` n † rm ` ñ _

´
m ` n “ rm ` ñ ^ m § rm

¯
(12.15)

We leave it to the reader to check that this is a partial (in fact, total) order.
To see that f is an injection, it suffices to show that it is strictly monotone. Indeed, if

k :“ m ` n † k̃ :“ rm ` ñ, then k ` 1 § k̃ and so

fpm, nq “
1
2

kpk ` 1q ` m §
1
2

kpk ` 1q ` k “
1
2

kpk ` 3q

§
1
2

pk̃ ´ 1qpk̃ ` 2q “
1
2

k̃pk̃ ` 1q ´ 1 †
1
2

k̃pk̃ ` 1q ` rm “ fp rm, ñq

(12.16)

If m ` n “ rm ` ñ and m † rm, then fpm, nq † fp rm, ñq directly from the definition. ⇤

Corollary 12.12 The set Q of all rationals is infinite and countable.

Proof. Since N is infinite by Lemma 12.2, N Ñ Q and Lemma 12.4 force that Q is infinite
as well. For the second part we write each rational a in the unique form p

q , where q is
minimal positive; i.e., q :“ inftq1

P N : q1
° 0 ^ pDp1

P Z : aq1
“ p1

qu, and p :“ aq.
(Lemma 9.7 makes this well defined and ensures that p P Z.) Then set

f paq :“

#
p2p, qq if p • 0,
p1 ´ 2p, qq if p † 0.

(12.17)
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As f paq determine p and q uniquely, this defines an injection f : Q Ñ N ˆ N. Since
Lemma 12.11 ensures that N ˆ N is countable, so is Q. ⇤

A similar reasoning shows:

Corollary 12.13 (AC) Let tAn : n P Nu be sets such that @n P N : An is finite or countable.
Then

î
nPN An is finite or countable.

Proof. Corollary 12.10 along with the Axiom of Choice ensures existence of a collection
t fn : n P Nu of functions with fn : An Ñ N an injection. (Note that a choice is made here
which is why the Axiom of Choice needs to be invoked.) For each a P

î
nPN An, set

npaq :“ inftk P N : a P Aku, (12.18)

which exists by Lemma 9.7 and the fact that a P
î

nPN An implies Dk P N : a P Ak. Then
define a function h :

î
nPN An Ñ N ˆ N by

hpaq :“
`
npaq, fnpaqpaq

˘
. (12.19)

Note that if npaq “ npbq and fnpaqpaq “ fnpbqpbq, then the fact that fnpaq “ fnpbq is an
injection forces a “ b. It follows that h is an injection of

î
nPN An into N ˆ N and soî

nPN An is countable by Lemma 12.11. ⇤
In short, a countable union of countable sets is countable. Since An’s are allowed to

be empty, this includes finite unions as well. The need for Axiom of Choice is often
circumvented by the sets An having some a priori structure.

One particular consequence of the argument in Corollary 12.13 (without needing the
Axiom of Choice) is worth highlighting for future reference:

Lemma 12.14 The set of algebraic numbers defined in (11.20) is countable.

We leave a simple proof of this fact to a homework exercise. This statement appears
to be first proved by Dedekind who communicated the proof in a letter to Cantor (the
existence of which Cantor withheld in his main article on this topic).
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