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11. PROPERTIES OF THE REALS

Here we give some consequences of the construction of the reals. Among these are
the definition of some basic functions; namely, roots, exponentials and logs. We also
mention extensions of the field of reals to complex numbers and other, more esoteric,
structures. Throughout we assume that a complete ordered field pR, `, 0, ¨, 1, §q is given
and use N, resp., Q for the associated sets of naturals, resp., rationals in R.

11.1 Archimedean property and density of (ir)rationals.

As our first consequence of the completeness of the reals, we extend the Archimedean
property of the rationals to the reals. However, the proofs of these are very different.

Lemma 11.1 (Archimedean property of R) @x P R : x ° 0 ñ pDn P N : x ¨ n ° 1q

Proof. Let x ° 0 and suppose that x ¨ n § 1 for all n P N. This means that N is bounded
by x´1 and so suppNq exists by the least upper bound property. Then there is n P N

such that n ° suppNq ´ 1 because otherwise suppNq is not the least upper bound. But
then suppNq † n ` 1 which, since n ` 1 P N, shows that suppNq is not even an upper
bound, a contradiction. ⇤

The Archimedean property serves as a useful tool in proofs. For instance, it can be
used to prove that rationals are spread “densely” in R:

Lemma 11.2 (Density of rationals in R)

@x, y P R : x † y ñ pDa P Q : x † a ^ a † yq (11.1)

Proof. We will suppose that y ° 0 for otherwise we just replace y by ´x and x by ´y and
then apply a sign change at the very end. The Archimedean principle tells us that there
is n P N such that npy ´ xq ° 1. Since yn ° 0 the Archimedean principle also tells us
that A :“ tk P N : k • ynu is non-empty and so, by Lemma 9.7, m :“ infpAq exists and
obeys m P A. But the latter forces m ´ 1 † ny while the above shows

m ´ 1 • ny ´ 1 ° ny ´ npy ´ xq “ nx (11.2)

implying m ´ 1 ° nx. Since n ° 0, hereby we get x †
m´1

n † y as desired. ⇤
The same actually applies to irrationals, which are those reals that are not rational.

Lemma 11.3 (Density of irrationals in R)

@x, y P R : x † y ñ pDa P R r Q : x † a ^ a † yq (11.3)

We leave the proof of this statement to a homework exercise.
It should be noted that the notion of “being dense” will be given another meaning

once we discuss topological aspects of the reals. These considerations also drive Can-
tor’s 1872 proof of existence of the reals.

We note that non-Archimedean extensions of R exist that are ordered fields; e.g., the
so called hyperreal numbers or surreal numbers. The main feature of these is that, besides R,
they include infinitesimals (i.e., numbers those whose absolute value is smaller than any
positive number) and also infinities (which are numbers that are arbitrarily large). These
presence of infinitesimals makes these fields fail the least upper bound property (for
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otherwise they would be the same as R) which has its disadvantages. But we can then
talk about “infinitesimal increments” and other things that in R have to be dealt with
via approximations. A variant of analysis, called non-standard analysis, is based on these
fields instead of R.

11.2 Roots, powers and logs.

Our construction of the reals was designed to fix one set of issues we had with the
rationals; namely, the fact that non-empty bounded sets of rationals may not admit a
supremum. However, we also pointed out algebraic deficiencies of rationals such as the
absence of a rational solution to x2

“ 2. To see that this is fixed as well, we prove:

Theorem 11.4 (Arbitrary roots) For each real a • 0 and natural n • 2 there exists a unique
real x • 0 such that xn

“ a.

Proof. Fix a real a ° 0 (if a “ 0 then the claim is checked easily) and a natural n • 1 and
let A :“ ty • 0 : yn

§ au. Then 0 P A, so A ‰ H. Also the fact that 1 ` a • 1 gives
p1 ` aq

n
• 1 ` a ° a and so a simple argument by contradiction shows that 1 ` a bounds

all elements of A from above. Having shown that A is non-empty and admits an upper
bound,

x :“ suppAq (11.4)
is well defined. It remains to show that xn

“ a.
We first check (not by induction but by invoking the distributive law and elementary

manipulations with sums) that

@x, y P R @m P N : xm`1
´ ym`1

“ px ´ yq

mÿ

k“0

xkym´k (11.5)

Using that 0 § y † x gives ym´k
§ xm´k for all terms in the sum, this shows

@x, y P R @ P N : 0 § y ^ y § x ñ xn
´ yn

§ npx ´ yqxn (11.6)

where the case n “ 0 is added for convenience and checked directly from the definition
of n-th power. (We leave the details to homework.)

Now we finish the proof of the claim. First, since x is the supremum of A, for each m P

N there exists y P A such that y § x § y `
1

m`1 . (Indeed, otherwise x ´
1

m`1 is also an
upper bound on A.) But this implies x ´ y §

1
m`1 and so

xn
§ yn

` npx ´ yqxn
§ a ` n

1
m ` 1

xn´1 (11.7)

The Archimedean property now rules out that xn
° a and so xn

§ a. In order to show
equality, suppose xn

† a. Then use the Archimedean property to find ` P N such that
p` ` 1qpa ´ xn

q ° np2 ` aq
n´1 and set y :“ x `

1
``1 . Since x § 1 ` a, we then have

y § 1 ` a `
1

``1 § 2 ` a. Then (11.6) gives

yn
• xn

` npy ´ xqyn´1
§ xn

`
np2 ` aq

n´1

` ` 1
† xn

` pa ´ xn
q “ a (11.8)

and so y P A. But x † y so this contradicts that x is the supremum of A. Hence we get
xn

“ a as claimed.
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The uniqueness of the solution to xn
“ a comes from the fact that if y is another real,

then x † y implies xn
† yn while y † x implies yn

† xn. ⇤
We will henceforth use notations

n
?

a or a1{n (11.9)

for the unique non-negative solution of xn
“ a for a • 0.

Recall that integer powers are defined from natural powers via a´n :“ pa´1
q

n when-
ever a ° 0 and n P N. The natural roots then allow us to define symbols of the form
pap

q
1{q and pa1{q

q
p for any p, q P Z with q ‰ 0. It turns out that these quantities only

depend on the value of p{q. This leads to:

Theorem 11.5 (Exponential) Given a ° 0 and p, q, p1, q1
P Z such that q, q1

‰ 0, we have

pap
q

1{q
“ pa1{q

q
p (11.10)

and
pap

q
1{q

“ pap1
q

1{q1
(11.11)

Denoting by ap{q the common value of these quantities, for each x P R we then set

ax :“

#
suptaz

P R : z P Q ^ z § xu, if a ° 1,
inftaz

P R : z P Q ^ z § xu, if a † 1,
(11.12)

and put 1x :“ 1. We then have

@a ° 0 @x, y P R : ax`y
“ ax

¨ ay
^ ax¨y

“ pax
q

y
“ pay

q
x (11.13)

Also, @a ° 0 @x P R : ax
° 0.

We call the function x fiÑ ax the exponential of x of base a. The proof of this theorem is
relegated to a homework exercise. Once the exponential is defined, we can then prove:

Theorem 11.6 (Logarithm) For each a ° 0 with a ‰ 1 and x ° 0 there exists a unique y P R

such that ay
“ x.

A proof of this theorem also comes in a homework exercise. We call the unique y with
the above property the logarithm base a of x with the notation logapxq. We thus have

@a ° 0@x ° 0 : alogapxq
“ x (11.14)

The properties in (11.13) then readily give:

Lemma 11.7 Let a ° 0 be such that a ‰ 1. Then

@x, y ° 0 : logapx ¨ yq “ logapxq ` logapyq (11.15)

and
@x ° 0@y P R : logapxy

q “ y logapxq (11.16)

We leave this exercise to a homework exercise as well. We also note that both the ex-
ponential and logarithm functions can and will be constructed (and thus defined) using
methods of calculus. These definitions will naturally coincide with those above.
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11.3 Beyond the reals.

As we noted after the proof of Theorem 10.17, the fact that there is only one system of
reals modulo order-preserving isomorphism implies that there is only one real analysis
one can build out of Zermelo’s axioms. Still, the reader might wonder whether other
natural fields exist that are of significance for analysis. A very important extension is
that to complex numbers discovered by G. Cardano in his solution of the cubics. Formally,
the complex numbers are defined as a vector space over R with basis t1, iu, i.e.,

C :“ tx ` iy : x, y P Ru (11.17)

with multiplication extended to the imaginary number i via

i ¨ i “ ´1, (11.18)

form a field.
The field of complex numbers is an extension of R with the property that all poly-

nomials, even those with coefficients in C, have a root in C and thus factor completely.
This means that C is algebraically closed. A deficiency of C over R is that (as you have
been asked to show in homework) it does not admit an ordering that would make it an
ordered field (in the sense of Definition 7.2).

It should be noted that no finite field is algebraically closed. This is because the poly-
nomial

Ppxq :“ 1 `

nπ

i“0

px ´ ziq, (11.19)

where z0, . . . , zn are the elements of the field, is never zero. The reals are not algebraically
closed either (as x2

` 1 “ 0 has no real roots) nor is its subfield of real algebraic numbers,
!

x P R :
`
Dn P N Da0, . . . , an P Q : an ‰ 0 ^ anxn

` ¨ ¨ ¨ ` a1x ` a0 “ 0
˘)

. (11.20)

(That this is a field requires showing that the sum and product of algebraic numbers
is algebraic.) However, the field of complex algebraic numbers (defined the same way
as above with just x P C instead) is algebraically closed. Still, for reasons mentioned
numerous times above, the field of complex algebraic numbers is too small for analysis.
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