HW#8: due Fri 3/10/2023 (6PM)

This exercise practices metric spaces; specifically, Cauchy and convergent sequence and subsequences and the notions from point set topology such as interior, closure and topological boundary. The last three problems deal with complete metric spaces. Problem #6 is laborious but it is important that you write a detailed solution as annotated.

Problem 1: Let $\{x_n\}_{n \in \mathbb{N}}$ be a sequence in a metric space (X, ϱ) . Prove that the following are equivalent:

- (1) $\{x_n\}_{n \in \mathbb{N}}$ is convergent,
- (2) there exists $z \in X$ such that every subsequence of $\{x_n\}_{n \in \mathbb{N}}$ contains a subsequence that converges to z.

Problem 2: Let (X, ϱ) be a metric space. Prove that for all sets $A, B \subseteq X$ the following holds:

$$A \subseteq B \quad \Rightarrow \quad \operatorname{int}(A) \subseteq \operatorname{int}(B) \quad \land \quad \overline{A} \subseteq \overline{B}$$

and

 $X \setminus \operatorname{int}(A) = \overline{X \setminus A} \quad \land \quad X \setminus \overline{A} = \operatorname{int}(X \setminus A)$

In particular,

$$\partial A = \overline{A} \cap \overline{X \smallsetminus A} = \partial(X \smallsetminus A)$$

The interior int(A), the closure \overline{A} and the boundary ∂A are defined as in class. (All of these can be proved using the topological axiomatization of open sets.)

Problem 3: Let \mathbb{R} be endowed with the Euclidean metric and note that both \mathbb{N} and \mathbb{Q} are subsets of \mathbb{R} (which makes relative notions possible). Do as follows:

- (1) Give an example of a set $A \subseteq \mathbb{Q}$ that is relatively open in \mathbb{Q} but not open in \mathbb{R} .
- (2) Prove that every subset $A \subseteq \mathbb{N}$ is relatively open and relatively closed.
- (3) Prove that all subsets of \mathbb{N} are closed in \mathbb{R} .
- (4) Prove that if $A \subseteq \mathbb{Q}$ is both relatively open and relatively closed, then it is a finite or countable union of disjoint intervals (in \mathbb{Q}) with irrational endpoints.

Problem 4: (RUDIN) PAGE 82, EX 21 (Each nested sequence of shrinking sets in a complete space has a point in common.) Then show, by way of a counterexample, that the restriction on diameters cannot be left out.

Problem 5: (RUDIN) PAGE 82, EX 22 (Baire's theorem: A sequence of open dense sets in a complete space has $\neq \emptyset$ intersection.)

Problem 6: (RUDIN) PAGE 82, EX 24 (Completion of a metric space)