HW\#7: due Thr 3/2/2023

This exercise practices metric spaces and metric space convergence, as well as terms from metricspace topology: open and closed sets, interior and closure, etc. There are 7 problems total.

Problem 1: For $k \geqslant 1$ and $x=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}$ and $y=\left(y_{1}, \ldots, y_{k}\right) \in \mathbb{R}^{k}$ define

$$
\varrho_{\infty}(x, y):=\max _{i=1, \ldots, k}\left|x_{i}-y_{i}\right|
$$

Do as follows:
(1) Prove that ϱ_{∞} is a metric on \mathbb{R}^{k}.
(2) Prove that if $\left\{x^{(n)}\right\}_{n \in \mathbb{N}}$ is a sequence in $\left(\mathbb{R}^{k}, \varrho_{\infty}\right)$ and $x_{i}^{(n)}$ is the i th coordinate of $x^{(n)}$, then

$$
\left.\left\{x^{(n)}\right\}_{n \in \mathbb{N}} \text { converges } \Leftrightarrow \forall i=1, \ldots, k: \quad \lim _{n \rightarrow \infty} x_{i}^{(n)} \text { exists (in } \mathbb{R}\right)
$$

Problem 2: Given a metric space (X, ϱ), recall that $B(x, r):=\{y \in X: \varrho(x, y)<r\}$ is the open ball of radius r centered at x. Define $B^{\prime}(x, r):=\{y \in X: \varrho(x, y) \leqslant r\}$ be the closed ball of radius r centered at x. Prove that

$$
X \backslash B^{\prime}(x, r) \text { is open }
$$

and so $B^{\prime}(x, r)$ is closed (justifying its name). Then give an example of a metric space and an open/closed ball such that the closure of $B(x, r)$ is not $B^{\prime}(x, r)$, i.e.,

$$
\overline{B(x, r)} \neq B^{\prime}(x, r)
$$

Problem 3: An ultrametic on X is a metric ϱ on X such that

$$
\forall x, y, z \in X: \quad \varrho(x, y) \leqslant \max \{\varrho(x, z), \varrho(y, z)\} .
$$

Prove that, in this metric, every open ball $B(x, r):=\{y \in X: \varrho(x, y)<r\}$ is closed and every closed ball $B^{\prime}(x, r):=\{y \in X: \varrho(x, y) \leqslant r\}$ is open. Determine the topological boundary $\partial B(x, r)$ of $B(x, r)$.
To give an example of such a setting, let $X:=\{0,1\}^{\mathbb{N}}$ be the set of all zero-one valued sequences. Prove that then $\varrho: X \times X \rightarrow \mathbb{R}$ defined for $\sigma, \sigma^{\prime} \in X$ with $\sigma \neq \sigma^{\prime}$ by

$$
\varrho\left(\sigma, \sigma^{\prime}\right):=2^{-\inf \left\{k \in \mathbb{N}: \sigma(k) \neq \sigma^{\prime}(k)\right\}}
$$

(and by $\varrho(\sigma, \sigma):=0$) is an ultrametric.

Problem 4: Let (X, ϱ) be a metric space. Prove that for any two X-valued sequences $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{y_{n}\right\}_{n \in \mathbb{N}}$,

$$
\left\{x_{n}\right\}_{n \in \mathbb{N}},\left\{y_{n}\right\}_{n \in \mathbb{N}} \text { Cauchy } \Rightarrow \lim _{n \rightarrow \infty} \varrho\left(x_{n}, y_{n}\right) \text { exists in } \mathbb{R}
$$

Here the limit on the right is with respect to the Euclidean distance on \mathbb{R}.

Problem 5: (RUDIN) PAGE 43, EX 9

Problem 6: (RUDIN) PAGE 45, EX 22

Problem 7: (RUDIN) PAGE 45, EX 29

