HW#7: due Thr 3/2/2023

This exercise practices metric spaces and metric space convergence, as well as terms from metricspace topology: open and closed sets, interior and closure, etc. There are 7 problems total.

Problem 1: For
$$k \ge 1$$
 and $x = (x_1, \dots, x_k) \in \mathbb{R}^k$ and $y = (y_1, \dots, y_k) \in \mathbb{R}^k$ define
 $\varrho_{\infty}(x, y) := \max_{i=1,\dots,k} |x_i - y_i|$

Do as follows:

- (1) Prove that ρ_{∞} is a metric on \mathbb{R}^k .
- (2) Prove that if $\{x^{(n)}\}_{n \in \mathbb{N}}$ is a sequence in $(\mathbb{R}^k, \varrho_{\infty})$ and $x_i^{(n)}$ is the *i*th coordinate of $x^{(n)}$, then

$$\{x^{(n)}\}_{n\in\mathbb{N}}$$
 converges $\Leftrightarrow \forall i = 1, \dots, k: \lim_{n \to \infty} x_i^{(n)}$ exists (in \mathbb{R})

Problem 2: Given a metric space (X, ϱ) , recall that $B(x, r) := \{y \in X : \varrho(x, y) < r\}$ is the open ball of radius *r* centered at *x*. Define $B'(x, r) := \{y \in X : \varrho(x, y) \le r\}$ be the *closed ball* of radius *r* centered at *x*. Prove that

$$X \smallsetminus B'(x, r)$$
 is open

and so B'(x, r) is closed (justifying its name). Then give an example of a metric space and an open/closed ball such that the closure of B(x, r) is not B'(x, r), i.e.,

$$\overline{B(x,r)} \neq B'(x,r)$$

Problem 3: An ultrametic on *X* is a metric *q* on *X* such that

 $\forall x, y, z \in X: \qquad \varrho(x, y) \leq \max\{\varrho(x, z), \varrho(y, z)\}.$

Prove that, in this metric, every open ball $B(x,r) := \{y \in X : \varrho(x,y) < r\}$ is closed and every closed ball $B'(x,r) := \{y \in X : \varrho(x,y) \le r\}$ is open. Determine the topological boundary $\partial B(x,r)$ of B(x,r).

To give an example of such a setting, let $X := \{0,1\}^{\mathbb{N}}$ be the set of all zero-one valued sequences. Prove that then $\varrho \colon X \times X \to \mathbb{R}$ defined for $\sigma, \sigma' \in X$ with $\sigma \neq \sigma'$ by

$$\varrho(\sigma,\sigma') := 2^{-\inf\{k \in \mathbb{N} \colon \sigma(k) \neq \sigma'(k)\}}$$

(and by $\rho(\sigma, \sigma) := 0$) is an ultrametric.

Problem 4: Let (X, ϱ) be a metric space. Prove that for any two X-valued sequences $\{x_n\}_{n \in \mathbb{N}}$ and $\{y_n\}_{n \in \mathbb{N}}$,

$$\{x_n\}_{n\in\mathbb{N}}, \{y_n\}_{n\in\mathbb{N}}$$
 Cauchy $\Rightarrow \lim_{n\to\infty} \varrho(x_n, y_n)$ exists in \mathbb{R}

Here the limit on the right is with respect to the Euclidean distance on \mathbb{R} .

Problem 5: (RUDIN) PAGE 43, EX 9

Problem 6: (RUDIN) PAGE 45, EX 22

Problem 7: (RUDIN) PAGE 45, EX 29