HW#6: due Thr 2/23/2023

This assignment practices cardinality, countability, uncountability, etc. A few problems on metric spaces and metric space convergence are added to get started on the subject.

Problem 1: Prove that there exists an injection $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$. Conclude that all Euclidean spaces are of cardinality of the continuum (meaning: are equinumerous to \mathbb{R}). *Hint:* Observe that Dedekind cuts give an injection of $\mathbb{R} \to \mathcal{P}(\mathbb{Q})$.

Problem 2: Prove that the set $\{0,1\}^{\mathbb{R}}$ of functions $\mathbb{R} \to \{0,1\}$ cannot be labeled by the reals. More precisely, prove that there is no surjection $f \colon \mathbb{R} \to \{0,1\}^{\mathbb{R}}$. *Hint:* Use the Cantor diagonal argument.

Problem 3: (RUDIN) PAGE 43, EX 2-3 (Existence of non-algebraic reals.)

Problem 4: (RUDIN) PAGE 44, EX 11 (Various metrics and non-metrics on **R**)

Problem 5: Define a sequence $\{a_n\}_{n \in \mathbb{N}}$ recursively as

$$a_0 := 1 \land \forall n \in \mathbb{N} \colon a_{n+1} := \frac{1}{1+a_n}$$

Prove the following:

- (1) $\{a_{2n}\}_{n \in \mathbb{N}}$ is decrasing
- (2) $\{a_{2n+1}\}_{n \in \mathbb{N}}$ is increasing
- (3) $\forall m, n \in \mathbb{N} : a_{2m+1} \leq a_{2n}$
- (4) $L := \inf_{n \in \mathbb{N}} a_{2n} = \sup_{n \in \mathbb{N}} a_{2n+1}$
- (5) $\lim_{n\to\infty} a_n$ exists and equals *L*.
- (6) Compute *L* and show that $L \notin \mathbb{Q}$.

The point of this exercise is, beyond practice of limits and monotonicity, that a sequence of rationals can be Cauchy yet not convergent in Q.

Problem 6: For any $x, y \in \mathbb{R}$ let $d(x, y) := \left|\frac{y}{1+|y|} - \frac{x}{1+|x|}\right|$. Do the following:

(1) Prove that *d* is a metric on \mathbb{R} .

(2) Letting $x_n := n$, prove that $\{x_n\}_{n \in \mathbb{N}}$ is Cauchy with no limit in \mathbb{R} .

(Note that $\{x_n\}_{n \in \mathbb{N}}$ is NOT Cauchy under the Euclidean metric.)

Problem 7: (RUDIN) PAGE 78, EX 2

Problem 8: (RUDIN) PAGE 82, EX 20

Problem 9: Prove the following fact about real numbers

 $\forall x, y \in \mathbb{R}: x, y > 0 \land x < 1 \Rightarrow \exists n \in \mathbb{N}: x^n < y$

This is useful when proving convergence of exponentially decaying sequences.