HW\#5: due Thr 2/16/2023
This exercise practices the reals and facts about cardinality.

Problem 1: Let $(F,+, 0, \cdot, 1, \leqslant)$ be a complete ordered field, \mathbb{N}_{F} the naturals of F and

$$
\mathbf{Q}_{F}:=\left\{r^{-1} \cdot(m-n): m, n, r \in \mathbb{N}_{F} \wedge r \neq 0\right\}
$$

the rationals of F. This permits us to define the concept of a (Dedekind) cut in F, so we may set $\mathbb{R}_{F}:=\left\{A \subseteq \mathbb{Q}_{F}:\right.$ cut $\}$. Prove

$$
\forall A \in \mathbb{R}_{F}: \sup (A) \text { exists } \wedge A=\left\{a \in \mathbb{Q}_{F}: a<\sup (A)\right\}
$$

Then prove that sup: $\mathbb{R}_{F} \rightarrow F$ is a bijection.
Problem 2: Prove that the irrationals are dense in \mathbb{R}; that is, prove

$$
\forall x, y \in \mathbb{R}: x<y \Rightarrow(\exists z \in \mathbb{R} \backslash \mathbb{Q}: x<z \wedge z<y)
$$

Problem 3: Prove that

$$
\forall x, y \in \mathbb{R} \forall m \in \mathbb{N}: x^{m+1}-y^{m+1}=(x-y) \sum_{k=0}^{m} x^{k} y^{m-k}
$$

and then use it to show that

$$
\forall x, y \in \mathbb{R} \forall n \in \mathbb{N} \backslash\{0\}: 0<y \wedge y \leqslant x \Rightarrow n(x-y) y^{n-1} \leqslant x^{n}-y^{n} \leqslant n(x-y) x^{n-1}
$$

Here $a \leqslant z \leqslant b$ means $a \leqslant z \wedge z \leqslant b$.

Problem 4: (RUDIN) PAGE 22, EX 6 (Construction of exponential function)

Problem 5: (RUDIN) PAGE 22, EX 7 (Construction of logarithm)
Problem 6: (RUDIN) PAGE 22, EX 9 (Lexicographic ordering of C) Make sure to answer the last question as well.

Problem 7: Recall that the cardinality $|A|$ of a finite set A is the unique $n \in \mathbb{N}$ such that A is in a bijective correspondence with $[0, n):=\{k \in \mathbb{N}: k<n\}$. Prove that for any finite sets A and B :
(1) $B \subseteq A \Rightarrow|B| \leqslant|A|$
(2) $|A \cup B| \leqslant|A|+|B|$
(3) $|A \times B|=|A| \cdot|B|$

Problem 8: Construct explicit bijections between the stated intervals in \mathbb{R} :
(1) $f:[0,1) \rightarrow(0,1)$
(2) $g:[0,1] \rightarrow(0,1)$
(3) $h:[0,1] \rightarrow \mathbb{R}$

Hint: In (1) and (2), decompose the intervals into unions of half-open intervals.

