HW#5: due Thr 2/16/2023

This exercise practices the reals and facts about cardinality.

Problem 1: Let $(F, +, 0, \cdot, 1, \leq)$ be a complete ordered field, \mathbb{N}_F the naturals of F and $\mathbb{O}_F := \{r^{-1} \cdot (m-n) \colon m, n, r \in \mathbb{N}_F \land r \neq 0\}$

the rationals of *F*. This permits us to define the concept of a (Dedekind) cut in *F*, so we may set $\mathbb{R}_F := \{A \subseteq \mathbb{Q}_F : \text{cut}\}$. Prove

 $\forall A \in \mathbb{R}_F$: $\sup(A)$ exists $\land A = \{a \in \mathbb{Q}_F : a < \sup(A)\}$

Then prove that sup: $\mathbb{R}_F \to F$ is a bijection.

Problem 2: Prove that the irrationals are dense in \mathbb{R} ; that is, prove

$$\forall x, y \in \mathbb{R} \colon x < y \Rightarrow \left(\exists z \in \mathbb{R} \setminus \mathbb{Q} \colon x < z \land z < y \right)$$

Problem 3: Prove that

$$\forall x, y \in \mathbb{R} \ \forall m \in \mathbb{N} \colon \ x^{m+1} - y^{m+1} = (x - y) \sum_{k=0}^{m} x^k y^{m-k}$$

and then use it to show that

 $\forall x, y \in \mathbb{R} \ \forall n \in \mathbb{N} \setminus \{0\} \colon 0 < y \land y \leq x \implies n(x-y)y^{n-1} \leq x^n - y^n \leq n(x-y)x^{n-1}$ Here $a \leq z \leq b$ means $a \leq z \land z \leq b$.

Problem 4: (RUDIN) PAGE 22, EX 6 (Construction of exponential function)

Problem 5: (RUDIN) PAGE 22, EX 7 (Construction of logarithm)

Problem 6: (RUDIN) PAGE 22, EX 9 (Lexicographic ordering of C) Make sure to answer the last question as well.

Problem 7: Recall that the cardinality |A| of a finite set A is the unique $n \in \mathbb{N}$ such that A is in a bijective correspondence with $[0, n) := \{k \in \mathbb{N} : k < n\}$. Prove that for any finite sets A and B:

(1) $B \subseteq A \Rightarrow |B| \leq |A|$ (2) $|A \cup B| \leq |A| + |B|$ (3) $|A \times B| = |A| \cdot |B|$

Problem 8: Construct explicit bijections between the stated intervals in **R**:

- (1) $f: [0,1) \to (0,1)$
- (2) $g: [0,1] \to (0,1)$
- (3) $h: [0,1] \to \mathbb{R}$

Hint: In (1) and (2), decompose the intervals into unions of half-open intervals.