HW#4: due Wed 2/8/2023

This exercise offers more practice of ordered fields, supremum and infimum, and then gives one problem on cardinality. Problems 3 and 6 have natural counterparts for subsets of \mathbb{R} .

Problem 1: Let *F* be a non-empty set and let $E := \mathcal{P}(F)$. In earlier HW we showed that the subset relation \subseteq defines a (partial) order on *E*. Prove that every set $A \subseteq E$ (empty or not) admits sup(*A*) and inf(*A*) by showing:

 $\forall A \subseteq E \colon A \neq \emptyset \Rightarrow \left(\sup(A) = \bigcup A \land \inf(A) = \bigcap A \right)$

Prove also that $\sup(\emptyset) = \emptyset$ and $\inf(\emptyset) = F$.

Problem 2: Let \mathbb{N} be naturals and abbreviate $\mathbb{N}' := \mathbb{N} \setminus \{0\}$. For $m, n \in \mathbb{N}'$ define $m|n := (\exists k \in \mathbb{N} : n = m \cdot k)$. Prove that this is a partial order and then show that

(1) $\forall A \subseteq \mathbb{N}' \colon A \neq \emptyset \Rightarrow \inf(A)$ exists

(2) $\forall A \subseteq \mathbb{N}' \colon A \neq \emptyset \land A \text{ bounded} \Rightarrow \sup(A) \text{ exists}$

Hint: The infimum is actually the greatest common divisor and the supremum is the least common multiple of all numbers in *A*.

Problem 3: Prove that for all $A \subseteq \mathbb{N}$:

A is Dedekind infinite \Leftrightarrow A is unbounded

Recall that a set is Dedekind infinite if it supports an injection into but not onto itself.

Problem 4: Prove that for any non-empty $A, B \subseteq \mathbb{Q}$ admitting suprema, we have $A \subseteq B \Rightarrow \sup(A) \leq \sup(B)$

Then show that under these conditions also $A \cup B$ admits a supremum and show

 $\sup(A \cup B) = \max\{\sup(A), \sup(B)\}\$

Here $\max{a, b}$ equals *a* if $b \le a$ and equals *b* otherwise.

Problem 5: Given two sets $A, B \subseteq \mathbb{Q}$, denote

$$A + B := \{a + b \colon a \in A \land b \in B\}$$

Assuming that both *A* and *B* are non-empty and admit suprema, prove that so does the set A + B and show

 $\sup(A+B) = \sup(A) + \sup(B)$

Problem 6: (RUDIN) PAGE 22, EX 5

Problem 7: (RUDIN) PAGE 22, EX 8