HW\#4: due Wed 2/8/2023

This exercise offers more practice of ordered fields, supremum and infimum, and then gives one problem on cardinality. Problems 3 and 6 have natural counterparts for subsets of \mathbb{R}.

Problem 1: Let F be a non-empty set and let $E:=\mathcal{P}(F)$. In earlier HW we showed that the subset relation \subseteq defines a (partial) order on E. Prove that every set $A \subseteq E$ (empty or not) admits $\sup (A)$ and $\inf (A)$ by showing:

$$
\forall A \subseteq E: \quad A \neq \varnothing \Rightarrow(\sup (A)=\bigcup A \wedge \inf (A)=\bigcap A)
$$

Prove also that $\sup (\varnothing)=\varnothing$ and $\inf (\varnothing)=F$.

Problem 2: Let \mathbb{N} be naturals and abbreviate $\mathbb{N}^{\prime}:=\mathbb{N} \backslash\{0\}$. For $m, n \in \mathbb{N}^{\prime}$ define $m \mid n:=(\exists k \in \mathbb{N}: n=m \cdot k)$. Prove that this is a partial order and then show that
(1) $\forall A \subseteq \mathbb{N}^{\prime}: A \neq \varnothing \Rightarrow \inf (A)$ exists
(2) $\forall A \subseteq \mathbb{N}^{\prime}: A \neq \varnothing \wedge A$ bounded $\Rightarrow \sup (A)$ exists

Hint: The infimum is actually the greatest common divisor and the supremum is the least common multiple of all numbers in A.

Problem 3: Prove that for all $A \subseteq \mathbb{N}$:

$$
A \text { is Dedekind infinite } \Leftrightarrow A \text { is unbounded }
$$

Recall that a set is Dedekind infinite if it supports an injection into but not onto itself.

Problem 4: Prove that for any non-empty $A, B \subseteq \mathbb{Q}$ admitting suprema, we have

$$
A \subseteq B \Rightarrow \sup (A) \leqslant \sup (B)
$$

Then show that under these conditions also $A \cup B$ admits a supremum and show

$$
\sup (A \cup B)=\max \{\sup (A), \sup (B)\}
$$

Here max $\{a, b\}$ equals a if $b \leqslant a$ and equals b otherwise.
Problem 5: Given two sets $A, B \subseteq \mathbb{Q}$, denote

$$
A+B:=\{a+b: a \in A \wedge b \in B\}
$$

Assuming that both A and B are non-empty and admit suprema, prove that so does the set $A+B$ and show

$$
\sup (A+B)=\sup (A)+\sup (B)
$$

Problem 6: (RUDIN) PAGE 22, EX 5

Problem 7: (Rudin) PAGE 22, EX 8

