HW#3: due Wed 2/1/2023

This exercise revisits some facts about naturals left unproven in class. Then we practice the constructions of integers and rationals from a system of naturals and prove some interesting facts about ordered fields.

Problem 1: Let $(\mathbb{N}, 0, S)$ be a system of naturals and recall that m^n is, for each $m, n \in \mathbb{N}$, the *n*-th power of *m* defined recursively so that

$$m^0 = 1 \land \forall n \in \mathbb{N} \colon m^{S(n)} = m \cdot m^n$$

Prove that, for each $m \neq 0$, we have:

(1)
$$\forall r, s \in \mathbb{N} : m^{r+s} = m^r \cdot m^s$$
,

(2) $\forall r, s \in \mathbb{N} : m^{r \cdot s} = (m^r)^s$.

Addition and multiplication are as defined in class. It is fine to use the properties of these without proof.

Problem 2: For the same setting as in the previous problem, prove that each nonempty $A \subseteq \mathbb{N}$ contains a smallest element, i.e.,

$$\forall A \in \mathcal{P}(\mathbb{N}) \smallsetminus \{\emptyset\} \exists n \in A \ \forall m \in A \colon n \leq m$$

In particular, the Axiom of Choice holds for collections of non-empty subsets of \mathbb{N} .

Hint: Noting that 0 lies "below" all elements of \mathbb{N} , and thus "below" all elements of *A*, construct the largest natural with the latter property.

Problem 3: Given a system of naturals (\mathbb{N} , 0, *S*), the integers \mathbb{Z} can be identified with the set of equivalence classes [(m, n)] of pairs of naturals (i.e., elements of $\mathbb{N} \times \mathbb{N}$) under the equivalence relation

$$(m,n) \stackrel{+}{\sim} (m',n') := m+n' = n+m'$$

Now define the relation \leq on \mathbb{Z} by

$$[(m,n)] \le [(m',n')] \quad := \quad m+n' \le m'+n$$

where \leq on the right is the ordering relation in \mathbb{N} . Prove that \leq is well defined in the sense of being independent on the representative (m, n) and (m', n'). Then show that \leq is a total order on \mathbb{Z} .

Problem 4: A natural way to think of the rationals is as the set \mathbb{Q} of equivalence classes [(p,q)] of pairs of integers from $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ under the equivalence relation

$$(p,q) \stackrel{\cdot}{\sim} (p',q') := p \cdot q' = p' \cdot q.$$

We then define addition on Q by

$$[(p,q)] + [(p',q')] := [(p \cdot q' + q \cdot p', q \cdot q')]$$

Prove that this is well defined in the sense that the right-hand side is independent of the choice of the representatives (p,q) and (p',q'). Properties of addition and multiplication on \mathbb{Z} can be used without apology.

Problem 5: Let $(F, +, 0, \cdot, 1, \leq)$ be an ordered field. Prove the following facts:

- (1) $\forall a, b \in F : 0 \leq b \Leftrightarrow a \leq a + b$
- (2) $\forall a, b \in F: a \leq b \Rightarrow -b \leq -a$
- (3) $\forall a, b \in F \colon (0 < a \land a \leq b) \Rightarrow b^{-1} \leq a^{-1}$

Make sure to use only the operations postulated in the definition of an ordered field.

Problem 6: Let $(F, +, 0, \cdot, 1, \leq)$ be an ordered field. For each $a \in F$ define

$$|a| := \begin{cases} a & \text{if } 0 \leq a \\ -a & \text{if } a < 0 \end{cases}$$

Prove the following:

- (1) $\forall a \in F : 0 \leq |a|$
- (2) $\forall a \in F : -|a| \leq a \leq |a|$
- (3) $\forall a, b \in F \colon |a+b| \leq |a|+|b|$
- (4) $\forall a, b \in F: |a \cdot b| = |a| \cdot |b|$

Then use induction to generalize (3) to the form

$$\forall n \in \mathbb{N}_F \, \forall a_0, \dots, a_n \in F: \quad \left| \sum_{i=0}^n a_i \right| \leq \sum_{i=0}^n |a_i|$$

Give a formal definition of the (intuitive) symbol $\sum_{i=0}^{n} a_i$ as well. *Note*: The inequality in (3) is called the *triangle inequality*.

Problem 7: Do the following rationality tests:

- (1) Prove that the iterated radical expression $\sqrt[3]{5-\sqrt{3}}$ is not a rational number.
- (2) Determine whether $\sqrt{3+2\sqrt{2}} \sqrt{2}$ is rational or not.
- (3) Find all rational roots of the equation $x^8 4x^5 + 13x^3 7x + 1 = 0$.

2