
HW#3: due Wed 2/1/2023
This exercise revisits some facts about naturals left unproven in class. Then we practice the
constructions of integers and rationals from a system of naturals and prove some interesting
facts about ordered fields.

Problem 1: Let pN, 0, Sq be a system of naturals and recall that mn is, for each m, n P N,
the n-th power of m defined recursively so that

m0 “ 1 ^ @n P N : mSpnq “ m ¨mn

Prove that, for each m ‰ 0, we have:
(1) @r, s P N : mr`s “ mr ¨ms,
(2) @r, s P N : m r¨s “ pmrqs.

Addition and multiplication are as defined in class. It is fine to use the properties of
these without proof.

Problem 2: For the same setting as in the previous problem, prove that each non-
empty A Ď N contains a smallest element, i.e.,

@A P PpNqr tHu Dn P A @m P A : n ď m

In particular, the Axiom of Choice holds for collections of non-empty subsets of N.
Hint: Noting that 0 lies “below” all elements of N, and thus “below” all elements

of A, construct the largest natural with the latter property.

Problem 3: Given a system of naturals pN, 0, Sq, the integers Z can be identified with
the set of equivalence classes rpm, nqs of pairs of naturals (i.e., elements of NˆN) under
the equivalence relation

pm, nq `„ pm1, n1q :“ m` n1 “ n`m1

Now define the relation ĺ on Z by

rpm, nqs ĺ rpm1, n1qs :“ m` n1 ď m1 ` n

where ď on the right is the ordering relation in N. Prove that ĺ is well defined in the
sense of being independent on the representative pm, nq and pm1, n1q. Then show that ĺ

is a total order on Z.

Problem 4: A natural way to think of the rationals is as the set Q of equivalence classes
rpp, qqs of pairs of integers from Zˆ pZ r t0uq under the equivalence relation

pp, qq ¨„ pp1, q1q :“ p ¨ q1 “ p1 ¨ q.

We then define addition on Q by

rpp, qqs ` rpp1, q1qs :“
“

pp ¨ q1 ` q ¨ p1, q ¨ q1q
‰

Prove that this is well defined in the sense that the right-hand side is independent of the
choice of the representatives pp, qq and pp1, q1q. Properties of addition and multiplication
on Z can be used without apology.
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Problem 5: Let pF,`, 0, ¨, 1,ďq be an ordered field. Prove the following facts:
(1) @a, b P F : 0 ď b ô a ď a` b
(2) @a, b P F : a ď b ñ ´b ď ´a
(3) @a, b P F : p0 ă a ^ a ď bq ñ b´1 ď a´1

Make sure to use only the operations postulated in the definition of an ordered field.

Problem 6: Let pF,`, 0, ¨, 1,ďq be an ordered field. For each a P F define

|a| :“

#

a if 0 ď a
´a if a ă 0

Prove the following:
(1) @a P F : 0 ď |a|
(2) @a P F : ´ |a| ď a ď |a|
(3) @a, b P F : |a` b| ď |a| ` |b|
(4) @a, b P F : |a ¨ b| “ |a| ¨ |b|

Then use induction to generalize (3) to the form

@n P NF @a0, . . . , an P F :
ˇ

ˇ

ˇ

n
ÿ

i“0

ai

ˇ

ˇ

ˇ
ď

n
ÿ

i“0

|ai|

Give a formal definition of the (intuitive) symbol
řn

i“0 ai as well. Note: The inequality in
(3) is called the triangle inequality.

Problem 7: Do the following rationality tests:

(1) Prove that the iterated radical expression 3
a

5´
?

3 is not a rational number.
(2) Determine whether

a

3` 2
?

2´
?

2 is rational or not.
(3) Find all rational roots of the equation x8 ´ 4x5 ` 13x3 ´ 7x` 1 “ 0.


