HW\#3: due Wed 2/1/2023

This exercise revisits some facts about naturals left unproven in class. Then we practice the constructions of integers and rationals from a system of naturals and prove some interesting facts about ordered fields.

Problem 1: Let $(\mathbb{N}, 0, S)$ be a system of naturals and recall that m^{n} is, for each $m, n \in \mathbb{N}$, the n-th power of m defined recursively so that

$$
m^{0}=1 \wedge \forall n \in \mathbb{N}: m^{S(n)}=m \cdot m^{n}
$$

Prove that, for each $m \neq 0$, we have:
(1) $\forall r, s \in \mathbb{N}: m^{r+s}=m^{r} \cdot m^{s}$,
(2) $\forall r, s \in \mathbb{N}: m^{r \cdot s}=\left(m^{r}\right)^{s}$.

Addition and multiplication are as defined in class. It is fine to use the properties of these without proof.

Problem 2: For the same setting as in the previous problem, prove that each nonempty $A \subseteq \mathbb{N}$ contains a smallest element, i.e.,

$$
\forall A \in \mathcal{P}(\mathbb{N}) \backslash\{\varnothing\} \exists n \in A \forall m \in A: n \leqslant m
$$

In particular, the Axiom of Choice holds for collections of non-empty subsets of \mathbb{N}.
Hint: Noting that 0 lies "below" all elements of \mathbb{N}, and thus "below" all elements of A, construct the largest natural with the latter property.

Problem 3: Given a system of naturals $(\mathbb{N}, 0, S)$, the integers \mathbb{Z} can be identified with the set of equivalence classes $[(m, n)]$ of pairs of naturals (i.e., elements of $\mathbb{N} \times \mathbb{N}$) under the equivalence relation

$$
(m, n) \pm\left(m^{\prime}, n^{\prime}\right):=m+n^{\prime}=n+m^{\prime}
$$

Now define the relation \leq on \mathbb{Z} by

$$
[(m, n)] \leq\left[\left(m^{\prime}, n^{\prime}\right)\right] \quad:=m+n^{\prime} \leqslant m^{\prime}+n
$$

where \leqslant on the right is the ordering relation in \mathbb{N}. Prove that \leq is well defined in the sense of being independent on the representative (m, n) and $\left(m^{\prime}, n^{\prime}\right)$. Then show that \leq is a total order on \mathbb{Z}.

Problem 4: A natural way to think of the rationals is as the set \mathbb{Q} of equivalence classes $[(p, q)]$ of pairs of integers from $\mathbb{Z} \times(\mathbb{Z} \backslash\{0\})$ under the equivalence relation

$$
(p, q) \dot{\sim}\left(p^{\prime}, q^{\prime}\right):=p \cdot q^{\prime}=p^{\prime} \cdot q
$$

We then define addition on Q by

$$
[(p, q)]+\left[\left(p^{\prime}, q^{\prime}\right)\right]:=\left[\left(p \cdot q^{\prime}+q \cdot p^{\prime}, q \cdot q^{\prime}\right)\right]
$$

Prove that this is well defined in the sense that the right-hand side is independent of the choice of the representatives (p, q) and $\left(p^{\prime}, q^{\prime}\right)$. Properties of addition and multiplication on \mathbb{Z} can be used without apology.

Problem 5: Let $(F,+, 0, \cdot, 1, \leqslant)$ be an ordered field. Prove the following facts:
(1) $\forall a, b \in F: 0 \leqslant b \Leftrightarrow a \leqslant a+b$
(2) $\forall a, b \in F: a \leqslant b \Rightarrow-b \leqslant-a$
(3) $\forall a, b \in F:(0<a \wedge a \leqslant b) \Rightarrow b^{-1} \leqslant a^{-1}$

Make sure to use only the operations postulated in the definition of an ordered field.

Problem 6: Let $(F,+, 0, \cdot, 1, \leqslant)$ be an ordered field. For each $a \in F$ define

$$
|a|:= \begin{cases}a & \text { if } 0 \leqslant a \\ -a & \text { if } a<0\end{cases}
$$

Prove the following:
(1) $\forall a \in F: 0 \leqslant|a|$
(2) $\forall a \in F:-|a| \leqslant a \leqslant|a|$
(3) $\forall a, b \in F:|a+b| \leqslant|a|+|b|$
(4) $\forall a, b \in F:|a \cdot b|=|a| \cdot|b|$

Then use induction to generalize (3) to the form

$$
\forall n \in \mathbb{N}_{F} \forall a_{0}, \ldots, a_{n} \in F: \quad\left|\sum_{i=0}^{n} a_{i}\right| \leqslant \sum_{i=0}^{n}\left|a_{i}\right|
$$

Give a formal definition of the (intuitive) symbol $\sum_{i=0}^{n} a_{i}$ as well. Note: The inequality in (3) is called the triangle inequality.

Problem 7: Do the following rationality tests:
(1) Prove that the iterated radical expression $\sqrt[3]{5-\sqrt{3}}$ is not a rational number.
(2) Determine whether $\sqrt{3+2 \sqrt{2}}-\sqrt{2}$ is rational or not.
(3) Find all rational roots of the equation $x^{8}-4 x^{5}+13 x^{3}-7 x+1=0$.

