Problem 1: Given a sequence \(\{a_n\}_{n \in \mathbb{N}} \) of reals let \(A \) be the set of all \(x \in \mathbb{R} \) for which there is a subsequence \(\{a_{n_k}\}_{k \in \mathbb{N}} \) with \(\lim_{k \to \infty} a_{n_k} = x \). (We called this the set of accumulation points or subsequential limits of \(\{a_n\}_{n \in \mathbb{N}} \).) Prove that
\[
\forall x \in \mathbb{R}: x \in A \iff \left(\forall k \in \mathbb{N}: A_k := \{n \in \mathbb{N}: |a_n - x| < \frac{1}{k+1}\} \text{ is unbounded} \right)
\]

Problem 2: Let \(\{a_n\}_{n \in \mathbb{N}} \) be a bounded sequence with
\[
b := \liminf_{n \to \infty} a_n < c := \limsup_{n \to \infty} a_n
\]
Let \(A \) be the set of accumulation points of \(\{a_n\}_{n \in \mathbb{N}} \). Do as follows:
1. Prove that \(b, c \in A \),
2. Assuming that also \(\lim_{n \to \infty} (a_{n+1} - a_n) = 0 \)
 prove that \(A = [b, c] \).

Problem 3: Ex 10.6, PAGE 65

Problem 4: Ex 11.2, PAGE 76

Problem 5: Ex 11.4, PAGE 76

Problem 6: Ex 11.8, PAGE 77

Problem 7: Ex 14.2, PAGE 104

Problem 8: Ex 14.6, PAGE 104

Problem 9: Ex 14.8, PAGE 104

Problem 10: Ex 14.12, PAGE 105