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Abstract

In the continuum, close connections exist between mean curvature flow, the Allen-Cahn
(AC) partial differential equation, and the Merriman-Bence-Osher (MBO) threshold dy-
namics scheme. Graph analogues of these processes have recently seen a rise in popularity
as relaxations of NP-complete combinatorial problems, which demands deeper theoretical
underpinnings of the graph processes. The aim of this paper is to introduce these graph
processes in the light of their continuum counterparts, provide some background, prove the
first results connecting them, illustrate these processes with examples and identify open
questions for future study.

We derive a graph curvature from the graph cut function, the natural graph counterpart
of total variation (perimeter). This derivation and the resulting curvature definition differ
from those in earlier literature, where the continuum mean curvature is simply discretized,
and bears many similarities to the continuum nonlocal curvature or nonlocal means formu-
lation. This new graph curvature is not only relevant for graph MBO dynamics, but also
appears in the variational formulation of a discrete time graph mean curvature flow.

We prove estimates showing that the dynamics are trivial for both MBO and AC evolu-
tions if the parameters (the time-step and diffuse interface scale, respectively) are sufficiently
small (a phenomenon known as “freezing” or “pinning”) and also that the dynamics for MBO
are nontrivial if the time step is large enough. These bounds are in terms of graph quantities
such as the spectrum of the graph Laplacian and the graph curvature. Adapting a Lyapunov
functional for the continuum MBO scheme to graphs, we prove that the graph MBO scheme
converges to a stationary state in a finite number of iterations. Variations on this scheme
have recently become popular in the literature as ways to minimize (continuum) nonlocal
total variation.

Keywords: spectral graph theory, Allen-Cahn equation, Ginzburg-Landau func-
tional, Merriman-Bence-Osher threshold dynamics, graph cut function, total vari-
ation, mean curvature flow, nonlocal mean curvature, gamma convergence, graph
coarea formula.
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1 Introduction

Motion by mean curvature and flows involving mean curvature in general appear in many im-
portant continuum models, including models coming from materials science [MS64, Tay92],
fluid dynamics [HS98], and combustion [XY11, Pet00]. All such models involve a front prop-
agating with a velocity depending on the mean curvature of the front. Recently, there has
been an increasing interest in using ideas from continuum PDEs (related to mean curva-
ture) in discrete applications such as image analysis, machine learning and data clustering
[BF12, vGB12, MKB12, GCMB+13, HLPB13].

This paper initiates a systematic study of the definition of mean curvature for vertex sets
of an arbitrary graph G = (V,E). We examine the effectiveness of the algorithms in the recent
papers mentioned above and on how they may be improved. The graphs considered are arbitrary
graphs and are not necessarily obtained as the discretization of a continuum problem, so our
perspective is only parallel to one that is purely motivated by numerical analysis. In particular,
we do not assume an embedding of the graph in a low dimensional space.

Of course, the various definitions of curvature in the (usual) continuum setting (see Ap-
pendix A for a brief review and some references) motivate and inform our approach to defining
the curvature of a vertex set S ⊂ V using the discrete total variation norm and the discrete
divergence of a “normal” edge flow. Since they are closely related to questions of mean cur-
vature, the Allen-Cahn equation and the MBO scheme for arbitrary graphs G = (V,E) arise
naturally in the present investigation. Theoretical and numerical examples are used to highlight
possible connections between all these concepts, leading to a number of open questions given in
Section 7.

Graphs Laplacians, Allen-Cahn, and MBO. Graph Laplacians are the central objects
of study in spectral graph theory [Chu97]. These graph operators share many properties with
their continuum counterparts. The Allen-Cahn equation on the graph V is defined in terms
of the graph Laplacian, ∆, and any (typically bistable quartic) potential, W . One considers a
phase field, u : V × R+ → R, solving the differential equation,

u̇ = −∆u− 1

ε
W ′(u).

This nonlinear equation has received greater attention recently, spurred by some of the appli-
cations mentioned above. The graph Allen-Cahn equation was introduced in the context of
data classification in [BF12] and, in a number of examples, was shown to be both accurate and
efficient. As is well known, the continuum Allen-Cahn equation is the L2 gradient flow associ-
ated to the Ginzburg-Landau functional. This is also true in the graph setting. In [vGB12] it
was shown that the graph Ginzburg-Landau functional Γ-converges to the graph cut objective
functional on graphs, if the characteristic length scale ε goes to zero. Moreover, a relationship
between the graph cut functional and the continuum total variation functional was given. At
the same time, the continuum Allen-Cahn solution is known to converge to mean curvature
flow, when ε→ 0 [BSS93]. Furthermore, the mean curvature is directly related to the first vari-
ation of the total variation functional. In this paper we therefore study the graph Allen-Cahn
equation and make connections between it and a graph cut derived ‘graph curvature’.

The third ingredient in this paper is the threshold dynamics or Merriman-Bence-Osher
(MBO) algorithm on graphs. Its continuum counterpart was introduced in [MBO92, MBO93]
and consists of iteratively solving the heat equation for a short time, τ , and thresholding the
result to an indicator function. It is known that, for short diffusion times τ , this approximates
mean curvature flow [Eva93, BG95]. In this paper we therefore also study the connections
between the graph MBO scheme, the graph AC equation, and graph curvature.
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In a recent series of papers [ELB08, TEL08, DELT10, DEL11, TEL11, DEL12a, EDL12,
DEL12c, DEL12b] Elmoataz et al. study partial differential equations and front propagation on
graphs, mainly from a numerical point of view. In these papers the 1-Laplacian on a graph is
used as curvature, which differs from our approach. We use the anisotropic graph total variation
instead of the isotropic total variation (see Section 2 for definitions), since [vGB12] suggests
that is the natural total variation on graphs.

A common obstacle, when transferring results and intuitions from the continuum to graphs,
is the (implicit) lower bound on the accessible length scales on a graph. We show in Theorem 5.3
and Theorem 4.2, that if ε or τ is too small, then the Allen-Cahn equation exhibits “freezing”
(or “pinning”), or the MBO scheme is stationary, respectively. Hence the interesting dynamics
happen at small but positive, ε or τ , rather than in the limits as ε → 0 or τ → 0. Related is
the lack of a chain rule for derivatives on graphs1, which can be traced back to the absence of
‘infinitesimal’ length scales on a graph. As a consequence, the level set approach, which has
proven very successful in describing continuum mean curvature flow, is not independent of the
level set function on a graph.

New results. The finite spectral radius of the Laplacian is used to derive explicit bounds
on the parameters for both threshold dynamics (MBO) and the graph Allen-Cahn equation
that guarantee “freezing” or “pinning” of the initial phase, a phenomenon that has been ob-
served in numerical simulations and is well known for discretizations of the continuum processes
[MBO92][MBO94, Section 4.4].

In the opposite direction, an argument based on the comparison principle is used to obtain
a lower bound for the MBO time step that guarantees that a specific node of the phase changes
in a single MBO iteration. This bound is given in terms of a new notion of mean curvature for
general graphs, and as such, it is a “local” quantity (as opposed to one coming from spectral
data). Such local bounds may be of use in developing adaptive time stepping schemes that
complement the (spectral) adaptive schemes, such as those developed for discretizations of the
continuum mean curvature flow [Ruu96, ZD09]. In this sense, introducing the graph mean
curvature and highlighting its connection with subjects in continuum PDE (MBO, Ginzburg-
Landau, and nonlocal mean curvature) and graph theory (graph cuts, connectivity) are the
main contributions of this work.

The results in Sections 4 and 5 and the numerical evidence and explicit examples in Section 6
suggest several open questions about the graph MBO scheme, the graph Allen-Cahn equation,
and graph mean curvature, which are discussed in Section 7. These are interesting questions
for future work.

Outline. In Section 2 the relevant graph based calculus is introduced, setting the notation for
the rest of the paper. In particular, the graph Laplacian and its basic properties are discussed.
Section 3 discusses curvature and mean curvature flow on a graph. Sections 4 and 5 discuss
the MBO scheme and Allen-Cahn equation on graphs, respectively, and sufficient conditions
are given on the parameters to guarantee freezing or pinning of the initial conditions. Section 6
explores the graph processes and concepts introduced in these previous three sections through
theoretical and computational examples. Finally, we conclude in Section 7, with a discussion
and a few open questions based on the new estimates and examples from previous sections. In
Appendix A, we make some remarks on the continuum mean curvature flow. In Appendix B,
we derive the graph co-area formula. Appendix C discusses some similarities between the graph
Laplacian, the graph 1-Laplacian, and the graph curvature.

1That is, if u ∈ V and f : V → V, then ∇f(u) 6= Lf∇u for any linear operator Lf .
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2 Setup

We work on a finite2, undirected graph G = (V,E) with vertex set3 V = {i}ni=1 and edge set
E ⊂ V 2. The graph is weighted; each edge (i, j) ∈ E, incident on nodes i and j, is assigned a
weight ωij > 0. Since the graph is undirected, (i, j) is identified with (j, i) and ωij = ωji. To
simplify notation we extend ωij to be zero for all (i, j) ∈ V 2 which do not correspond to an
edge. The degree of node i is di :=

∑
j∈V ωij . Denote the maximal and minimal degrees by

d+ := maxi∈V di and d− := mini∈V di. We assume that G has no isolated nodes, i.e., d− > 0.
For each i ∈ V we then have a non-empty set of neighbors Ni := {j ∈ V : ωij > 0}. We also
assume G has no self-loops, i .e., ωii = 0. In particular i 6∈ Ni.

Let V be the space of all functions V → R and E the space of all skew-symmetric4 functions
E → R. Again to simplify notation, we extend each ϕ ∈ E to a function ϕ : V 2 → R by setting
ϕij = 0 if (i, j) 6∈ E. As justified in earlier work [vGB12] we introduce the following inner
products and operators for parameters q ∈ [1/2, 1] and r ∈ [0, 1]:

〈u, v〉V :=
∑
i∈V

uivid
r
i , 〈ϕ, φ〉E :=

1

2

∑
i,j∈V

ϕijφijω
2q−1
ij , (ϕ · φ)i :=

1

2

∑
j∈V

ϕijφijω
2q−1
ij ,

(∇u)ij := ω1−q
ij (uj − ui), (divϕ)i :=

1

2dri

∑
j∈V

ωqij(ϕji − ϕij).

Note that in the sum in 〈ϕ, φ〉E the indices i and j both run over all nodes. The edges (i, j) and
(j, i) are counted separately, hence the correction factor 1

2 . Note that the powers 2q − 1 and
1− q in the E inner product and ‘dot product’ and in the gradient, are zero for the admissible
choices q = 1

2 and q = 1 respectively. In these cases we define ω0
ij = 0 whenever ωij = 0, so as

not to make the inner product, ‘dot product’, or gradient, nonlocal on the graph. The inner
products on V and E5 are analogous to a weighted L2 inner products in the continuum case,
while the ‘dot product’ inner product (ϕ · φ)i is analogous to a weighted dot product between
vector(field)s (without the integration of the L2 inner product). A direct computation shows
that div and ∇ are adjoints with respect to 〈·, ·〉V and 〈·, ·〉E , namely for u ∈ V and φ ∈ E we
have

〈∇u, φ〉E = 〈u,divφ〉V .

The characteristic function of a node set S ⊂ V is χS ∈ V, defined via (χS)i :=

{
1 if i ∈ S,
0 if i 6∈ S.

This leads to the following associated norms, Laplacians, set measures, and total variation
functionals:

• Inner product norms, ‖u‖V :=
√
〈u, u〉V and ‖ϕ‖E :=

√
〈ϕ,ϕ〉E .

• Maximum norms6 , ‖u‖V,∞ := max{|ui| : i ∈ V } and ‖ϕ‖E,∞ := max{|ϕij | : i, j ∈ V }.
2In this paper, we are working with a fixed graph G with a finite number of nodes. In no sense are we

considering a sequence of graphs or taking a “continuum limit”.
3We will use the terms “vertex” and “node” interchangeably.
4The necessity of skew-symmetry may not be obvious at this point, but it is a common requirement for

consistency of certain concepts in discrete calculus, see e.g., [FT04, GO09, GP10, CMOP11].
5Note that 〈·, ·〉E is indeed an inner product on the space of (skew-symmetric) functions E → R, but not

for the space of functions V 2 → R, because for those functions the ‘inner product’ can be zero for nontrivial
functions.

6To justify these definitions and convince ourselves that there should be no ωij or di included in the maximum
norms we define ‖ϕ‖pE,p := 1

2

∑
i,j∈V ϕ

p
ijω

2q−1
ij . Adapting the proofs in the continuum case, e.g., [Ada75, Theorems

5



• The norm corresponding to the dot product |ϕ|i :=
√

(ϕ · ϕ)i. Note that |φ| ∈ V.

• The Dirichlet energy
1

2
‖∇u‖2E =

1

4

∑
i,j∈V

ωij(ui − uj)2.

• The graph Laplacian ∆ := div ◦ ∇ : V → V. So

(∆u)i := d−ri
∑
j∈V

ωij(ui − uj).

It is worth noting that the sign convention for the graph Laplacian is opposite to that
used for the continuum Laplacian in most of the PDE literature (in particular, the graph
Laplacian ∆ is a positive semidefinite operator).

When r = 0, ∆ is referred to as the unnormalized weighted graph Laplacian. When
r = 1, ∆ is referred to as the asymmetric normalized graph Laplacian or random walk
graph Laplacian. Another Laplacian, often encountered in the spectral graph theory
literature, is the symmetric normalized graph Laplacian. This one falls outside the scope
of the current setup and will not be considered in this paper. For general references on
the graph Laplacian, consult [Moh91, Chu97, vL07, BLS07].

• For S ⊂ V , the set measures

vol S =
∑
i∈S

dri = ‖χS‖2V ,

|S| = number of vertices in S.

Note that |S| is just a special case of vol S, for r = 0 (recall we assume d− > 0).

• The isotropic and anisotropic total variation TV: V → R and TVq
a : V → R respectively:

TV(u) := max{〈divϕ, u〉V : ϕ ∈ E , max
i∈V
|ϕ|i ≤ 1}

=
∑
i∈V
|∇u|i =

√
2

2

∑
i∈V

√∑
j∈V

ωij(ui − uj)2

TVq
a(u) := max{〈divϕ, u〉V : ϕ ∈ E , ‖ϕ‖E,∞ ≤ 1}

= 〈∇u, sgn(∇u)〉E =
1

2

∑
i,j∈V

ωqij |ui − uj |.

Here, the signum function is understood to act element-wise on the elements of ∇u. We
note that the maximum in the definition of TV is achieved by taking

ϕij = ϕTVij :=

{
(∇u)ij
|∇u|i |∇u|i 6= 0

0 |∇u|i = 0.

2.3 and 2.8], to the graph situation we can prove a Hölder inequality ‖ϕφ‖E,1 ≤ ‖ϕ‖E,p‖φ‖E,p′ for 1 < p, p′ <∞

such that 1
p

+ 1
p′ = 1, an embedding theorem of the form ‖ϕ‖E,p ≤

(
1

2

∑
i,j∈V

ω2q−1
ij

) 1
p
− 1

s

‖ϕ‖E,s for 1 ≤ p ≤ s ≤ ∞,

and the limit lim
p→∞

‖ϕ‖E,p = ‖ϕ‖E,∞. A similar result holds for the norms on V.

6



The maximum in the definition of TVq
a is achieved by

ϕ = ϕa := sgn(∇u). (1)

Note that the values ϕTV and ϕa take on the set {∇u = 0} are irrelevant for achieving
the maximum, hence these functions are not uniquely determined. The quantity div ∇u|∇u|
is often referred to as the 1-Laplacian of u.

The anisotropic total variation of the indicator function7 for the set S ⊂ V , denoted χS , is
given by

TVq
a(χS) =

∑
i∈S,j∈Sc

ωqij . (2)

Thus, the total variation of a set S is equivalent to the graph cut between S and Sc := V \ S
which is used in graph theory and spectral clustering [SM00]. For future reference it is useful
to note that

TV1
a(χS) = 〈∇χS ,∇χS〉E = 〈χS ,∆χS〉V . (3)

Lemma 2.1. The norms ‖ · ‖V and ‖ · ‖V,∞ are equivalent, with optimal constants given by

d
r
2
−‖u‖V,∞ ≤ ‖u‖V ≤

√
vol V ‖u‖V,∞.

Proof. We compute ‖u‖2V =
∑

i∈V d
r
iu

2
i ≤ maxi∈V u

2
i

∑
i∈V d

r
i = (vol V ) ‖u‖2V,∞, which is

saturated if u = χV . Also, ‖u‖2V =
∑

i∈V d
r
iu

2
i ≥ dr−maxi∈V u

2
i = dr−‖u‖2V,∞. If j ∈ V is such

that dj = d−, this bound is attained for u = χ{j}.

Next we recall the definitions of node set boundaries and (signed) graph distance.

Definition 2.2. For j ∈ Ni, we define dGij := ωq−1
ij , and we set dG(i, i) := 0. A path on V is a

sequence γ = {i1, i2, ..., im} for some m ∈ N such that ik+1 ∈ Nik for each k ∈ {1, . . . ,m − 1}.
Given a path γ = {i1, ..., im}, its length is defined as

|γ| :=
m−1∑
i=1

dGikik+1
.

Then, the graph distance between arbitrary i, j ∈ V is given by

dGij := min
γ
|γ|

where the minimum is taken over all paths γ with i1 = i, iN = j. In other words, dGij is the
minimal distance to go from node i to node j, traveling only via existing edges, where each edge
represents a distance ωq−1

ij . For a given set S ⊂ V , we define the graph distance to S at each
node as the minimal graph distance to a node in S:

dSi := min
j∈S

dGij .

As argued in, for example, [MOS12, Section 3.1, Example 2], dS is the solution u ∈ V to the
equation {

minj∈Ni(∇u)ij + 1 = 0 if i ∈ V \ S,
ui = 0 if i ∈ S.

(4)

7For χV , the indicator function of the full node set, we also write the constant function 1.
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Definition 2.3. The boundary of S ⊂ V is8

∂S := {i ∈ S : ∃j ∈ V s.t. (∇χS)ij < 0}.

Note that ∂S ⊂ S. Alternative definitions appear in the literature in which ∂S ⊂ Sc.

2.1 Basic spectral properties of the graph Laplacian, ∆

In this section, we collect a number of spectral properties of the graph Laplacian ∆: V →
V. Further discussion and details for the special cases r = 0 and r = 1 can be found in
[Moh91, Chu97, vL07, BLS07], from which our presentation follows.

Note that ∆: V → V is a self-adjoint operator in the V norm. For u ∈ V \ {0}, the Rayleigh
quotient R : V → R is defined as

R(u) :=
〈u,∆u〉V
‖u‖V

=
‖∇u‖2E
‖u‖2V

.

The eigenvalues of the graph Laplacian, ∆, are then defined via the variational formulation,

λk = min
Fk⊂V

subspace of dim k

max
u∈Fk\{0}

R(u). (5)

The minimum in (5), is attained when Fk is spanned by the first k eigenfunctions, i.e., the
eigenfunctions corresponding to the k smallest eigenvalues, counting multiplicities. In particular,
there are n non-negative real eigenvalues (counted with multiplicity), denoted {λk}nk=1. If we

denote the span of the first k − 1 eigenfunctions by F̂k−1 = span({ui}k−1
i=1 ), then (5) can be

rewritten

λk = min
u∈V\{0}
u⊥V F̂k−1

R(u). (6)

where u ⊥V F̂k−1 indicates that u is orthogonal (in the sense of 〈·, ·〉V) to ui, for i ∈ {1, . . . , k−1}.
Taking variations of the Rayleigh quotient with respect to u, we find that (λk, uk) satisfies (6)
if and only if u ⊥V F̂k−1 and, for all v ∈ V,

〈∆uk, v〉V = λk〈uk, v〉V . (7)

Finally, unwinding the definitions, we find that (7) is equivalent to the matrix eigenvalue problem

Lx = λx where L = D−r[D −A], x ∈ Rn, (8)

where Aij = ωij and Dii = di is a diagonal matrix9. Recall that the spectral radius ρ of ∆ is
defined as the maximum of the absolute values of the eigenvalues of ∆,

ρ(∆) := max
1≤i≤n

λi = λn = sup
u∈V\{0}

R(u).

8Similarly, by changing the “strictly less than” inequalities into “strictly larger than” inequalities the boundary
∂(Sc) of the set Sc is defined. The reduced boundary of S can be defined as the following subset of ∂S (compare
with the continuum case in [AFP00, Definition 3.54]):

∂∗S := {i ∈ S : ∃!j ∈ V : (∇χS)ij < 0},

and again similarly for ∂∗Sc.
9Note that here we use the fact that there are no isolated vertices, i.e., di > 0 for all i ∈ V .
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Lemma 2.4 (Spectral properties of the graph Laplacian, ∆). The following properties are
satisfied:

(a) The smallest eigenvalue is λ1 = 0. The multiplicity of λ1 = 0 is the number of connected
components of the graph and the associated eigenspace is spanned by set of indicator vectors
for each connected component. If there is only one connected component, λ1 is simple and
the first (unnormalized) eigenfunction is u1 = 1 = χV .

(b) The operator norm of ∆, ‖∆‖V := supu6=0
‖∆u‖V
‖u‖V , and the spectral radius are equal, ‖∆‖V =

ρ(∆). This implies that, for all u ∈ V,

‖∆u‖V ≤ ρ(∆) ‖u‖V .

(c) The trace satisfies tr ∆ =
∑n

k=1 λk =
∑

i∈V d
1−r
i . Consequently,

λ2 ≤
1

n− 1

∑
i∈V

d1−r
i ≤

n d1−r
+

n− 1
and λn ≥

1

n− 1

∑
i∈V

d1−r
i ≥

n d1−r
−

n− 1
(9)

(d) If G is not a complete graph then

λ2 ≤ min
(i,j)/∈E

did
2r
j + d2r

i dj

drid
2r
j + d2r

i d
r
j

.

(e) The second eigenvalue satisfies

λ2 ≤ min
S⊂V

(vol V )TV 1
a (χS)

(vol S)(vol Sc)
≤ 2 min

S⊂V

TV 1
a (χS)

min(vol S, vol Sc)
.

(f) The spectral radius of ∆ satisfies ρ ≤ 2 d1−r
+ .

Proof. (a) These properties follow directly from (6).
(b) Noting that ∆ is a self-adjoint operator, a proof can be found in, for example, [RS79,

Thm. VI.6].
(c) Because the trace of the operator ∆ is equal to the trace of its matrix representation,

we have tr ∆ = tr L =
∑n

k=1 λk. Since we assume there are no self-loops in the graph,
tr D−rA = 0, hence tr L = tr D1−r. Equation (9) follows from the fact that λ1 = 0 and the
maximum (minimum) of a set is greater (less) than or equal to the mean of the set.

(d) If G is not a complete graph, then there exists an (a, b) /∈ E. We define the test function
v ∈ V,

vi =


drb i = a

−dra i = b

0 otherwise.

Note that 〈v, 1〉V = 0. The desired upper bound then follows from (6).
(e) For S ∈ V , define the test function v ∈ V,

vi =

{
vol Sc i ∈ S
−vol S i ∈ Sc.

9



Then 〈v, 1〉V = 0 and ‖v‖2V = (vol Sc)(vol S)vol V . Using (2), we compute ‖∇v‖2E = (vol V )2TV1
a(χS).

The first inequality then follows from (6). For the second inequality,

(vol V )TV 1
a (χS)

(vol S)(vol Sc)
=
TV 1

a (χS)

vol S
+
TV 1

a (χS)

vol Sc
≤ 2

TV 1
a (χS)

min(vol S, vol Sc)
.

(f) Using the identity (a− b)2 ≤ 2(a2 + b2), we compute

ρ(∆) = sup
u∈V\{0}

R(u) = sup
u∈V\{0}

1

2

∑
ij wij(ui − uj)2∑

i d
r
iu

2
i

≤ sup
u∈V\{0}

∑
ij wij(u

2
i + u2

j )∑
i d
r
iu

2
i

= sup
u∈V\{0}

2

∑
i diu

2
i∑

i d
r
iu

2
i

If j ∈ V is such that dj = d+, then the supremum is attained by the vector u = χ{j} and the
result follows.

The following lemma states properties of the diffusion operator e−∆t : V → V.

Lemma 2.5 (Diffusion on a graph). Let u(t) := e−∆tu0 for t ≥ 0 denote the evolution of u0 ∈ V
by the diffusion operator. The following properties hold.

(a) The mass,

M(u) := 〈u, χV 〉V =
∑
i∈V

uid
r
i , (10)

is conserved, i.e., M(u(t)) = M(u0) for all t ≥ 0.

(b) d
dt‖u‖

2
V = −2‖∇u‖2E ≤ 0. In particular, ‖e−∆tu0‖V ≤ ‖u0‖V .

(c) Let the mass, M , be defined as in (10), λ2 be the second eigenvalue of the graph Laplacian,

and ε > 0. Assume the graph is connected. If τ > 1
λ2

log
(
ε−1 d

− r
2
− ‖u0 − (vol V )−1M‖V

)
,

then
‖u(t)− (vol V )−1M‖V,∞ ≤ ε, for all t > τ.

(d) (Comparison Principle) If, for all j ∈ V , (u0)j ≤ (v0)j, then (e−t∆u0)j ≤ (e−t∆v0)j, for
all j ∈ V and t ≥ 0. In particular, ‖e−t∆u0‖V,∞ ≤ ‖u0‖V,∞.

If V is connected, the strong comparison principle holds: If, for all j ∈ V , (u0)j ≤ (v0)j,
and for some j0 ∈ V , (u0)j0 < (v0)j0, then, for all k ∈ V and t > 0, (e−t∆u0)k <
(e−t∆v0)k.

Proof. (a) We compute d
dtM(u) = 〈u̇, χV 〉V = −〈∆u, χV 〉V = −〈∇u,∇χV 〉E = 0.

(b) We compute 1
2
d
dt‖u‖

2
V = 〈u, u̇〉V = −〈u,∆u〉V = −〈∇u,∇u〉E = −‖∇u‖2E .

(c) If {(λj , vj)}nj=1 denote the eigenpairs of the graph Laplacian with V-normalized eigen-
vectors, then the spectral decomposition of u is given by

u(t) =
n∑
j=1

e−λjt 〈u0, vj〉V vj . (11)

10



Recalling from Lemma 2.4 that λ1 = 0 and v1 = (vol V )−
1
2χV and using (11), we compute

‖u− (vol V )−1M‖V = ‖
∑
j>1

e−λjt〈u0, vj〉V vj‖V ≤ e−λ2t‖u0 − (vol V )−1M‖V .

But by Lemma 2.1, this implies

‖u− (vol V )−1M‖V,∞ ≤ d
− r

2
− e−λ2t‖u0 − (vol V )−1M‖V .

The result now follows, since by Lemma 2.4, λ2 > 0 for a connected graph.
(d) If u0 ≡ v0, then u(t) ≡ v(t), for all t > 0, by the uniqueness theorem for ordinary

differential equations. In this case there is nothing more to prove. Moreover, by repeating the
argument on each connected component we may assume without loss of generality that the
entire graph is connected.

Let u0, v0 be such that, for all j ∈ V , we have (u0)j ≤ (v0)j , and for some j0 ∈ V ,
(u0)j0 < (v0)j0 . We will show that in this case uj(t) < vj(t), for every j ∈ V and all t > 0,
which proves the strong comparison principle and in particular the comparison principle.

Arguing by contradiction, suppose that vj(t) ≥ uj(t) for some t and some j. Let t0 be the
last time v(t) lies everywhere above u(t), that is

t0 := sup{ t ≥ 0 : ∀ s ∈ (0, t) we have ∀j uj(s) ≤ vj(s)}.

By our assumption we have that 0 ≤ t0 < ∞. Then, from the definition of t0 there is some
k ∈ V such that uk(t0) = vk(t0) and u̇k(t0) ≥ v̇k(t0). Moreover, again due to the definition of
t0, uj(t0) ≤ vj(t0), for all j ∈ V . This shows that if ui(t0) < vi(t0) for some neighbor i of k,
then (−∆u(t0))k > (−∆v(t0))k and

0 = u̇k(t0) + (∆u(t0))k < v̇k(t0) + (∆v(t0))k = 0,

which is a contradiction. We conclude that u(t0) = v(t0) at all neighbors of k, and by iterating
the above argument we get in fact that u(t0) = v(t0) at all nodes of V , since we are dealing with
the case where V is connected. By the uniqueness theorem for ordinary differential equations
we conclude that u0 = v0 at all nodes, which gives a contradiction, and the strong comparison
principle is proved.

Remark 2.6. The dependence of the convergence of u(t) to the steady state (vol V )−1MχV
on the second Laplacian eigenvalue, λ2, in Lemma 2.5(c), is related to the rate of convergence of
a Markov process on a graph to the uniform distribution [SBXD04]. Due to this property, λ−1

2 is
sometimes referred to as the mixing-time for a graph. The second eigenvalue λ2 is also referred
to as the algebraic connectivity or Fiedler value for a graph [Fie73], and plays an important role
in many applications. The robustness of a network to node/edge failures is highly dependent on
the algebraic connectivity of the graph. In the “chip-firing game” of Björner, Lovász, and Shor,
the algebraic connectivity dictates the length of a terminating game [BLS91]. The algebraic
connectivity is also related to the informativeness of a least-squares ranking on a graph [OBO13].
Consequently, algebraic connectivity is a measure of performance for the convergence rate in
sensor networks, data fusion, load balancing, and consensus problems [OSFM07].

2.2 Relation between graph Laplacians and balanced graph cuts

In spectral graph theory there are some well known connections between the various graph
Laplacians and different normalizations of the graph cut TV1

a(χS) =
∑

i∈S,j∈Sc ωij from (2). For

11



example, when r = 0 (and hence vol S = |S|), the quantity
TV 1

a (χS)

min(vol S, vol Sc)
in Lemma 2.4(d)

is the Cheeger cut and its minimum over S ⊂ V is the Cheeger constant, e.g., [SM00, SB10].
Let S1, . . . , Sk be a partition of all the nodes V , for a given integer k and define the balanced
graph cut

Cr(S1, . . . , Sk) :=

k∑
i=1

TV1
a(χSi)

vol Si
.

We use the subscript r to remind us that vol Si depends on r. For r = 0 this quantity is
known in the literature as the ratio cut10, for r = 1 as the normalized cut [SM00, vL07]. These
quantities are introduced, because minimization of the graph cut, without a balancing term
in the denominator, often leads to a partition with many singleton sets, which is typically
unwanted in the application at hand. Minimization of this balanced cut over all partitions of
V is an NP-complete problem [WW93, SM00], but a relaxation of this problem can be defined
using the graph Laplacian. For example, in [vL07, Section 5] it is shown that

Cr(S1, . . . , Sk) = Tr(HTLH),

where H is an n by k matrix with elements

hij :=

{(
vol Sj

)− 1
2 if i ∈ Sj ,

0 else.
(12)

Note that H is orthonormal in the V inner product, i.e., HTDrH = I, where I is the k by k
identity matrix. Hence the minimization of Cr over all partitions, is equivalent to minimizing
Tr(HTLH) over all n by k V-orthonormal matrices of the form as in (12). The relaxation of
this NP-complete minimization problem is now formulated by dropping the condition (12) and
minimizing over all n by k V-orthonormal matrices. The problem then becomes an eigenvalue
problem and the first k eigenvectors of L are expected to be approximations to the indicator
functions of the optimal partition S1, . . . , Sk. There is often no guarantee of the quality of this
approximation though [ST96, GM98, KVV00, KVV04, ST07, vL07].

In order to turn the approximations of the indicator functions into true indicator functions
a method like thresholding or k-means clustering is often used [NJW02]. For partitioning the
nodes into two subsets (k = 2), the potential term in the Allen-Cahn equation (discussed
in Section 5) can be interpreted as a nonlinear extension of the graph Laplacian eigenvalue
problem which forces the approximate solutions to be close to indicator functions. In this light,
it is interesting that the graph Ginzburg-Landau functional (with possibly a mass constraint),
of which the Allen-Cahn equation is a gradient flow, Γ-converges to the graph cut functional
[vGB12].

3 Curvature and mean curvature flow on graphs

3.1 Graph curvature

In the continuum case, the mean curvature is given by (minus) the divergence of the normal
vector field on the boundary of the set (see Appendix A.2 and (46)). This normal vector field
achieves the supremum in the definition of total variation of a characteristic function (under
sufficient smoothness conditions). Hence, we define the normal of a vertex set by using ϕa from
(1) which achieves the supremum of the anisotropic total variation.

10Confusingly, the ratio cut is sometimes also called average cut, and the Cheeger cut
TV1

a(χS)

min(|S|,|Sc|) is sometimes
called ratio cut.
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Definition 3.1. The normal of the vertex set S ⊂ V is

νSij := sgn
(
(∇χS)ij

)
=


1 if ωij > 0, i ∈ Sc, and j ∈ S,
−1 if ωij > 0, j ∈ Sc, and i ∈ S,
0 else.

(13)

As in the continuum case, we define the curvature of a set as the divergence of the normal.

Definition 3.2. The curvature of the vertex set S ⊂ V at node i ∈ V is

(κq,rS )i := (div νS)i = d−ri

{∑
j∈Sc ω

q
ij if i ∈ S,

−
∑

j∈S ω
q
ij if i ∈ Sc.

(14)

Recall from (1), that νSij is not uniquely determined on {(i, j) ∈ E : (∇χS)ij = 0} (i.e., away
from the boundary ∂S ∪ ∂(Sc), in the sense of Definition 2.3) and hence the value 0 in (13)
is a choice corresponding to the extension of the normal field away from the boundary. This
ambiguity is irrelevant when div νS is coupled to the characteristic function χS via the V-inner
product, as in

TVq
a(χS) = 〈κq,rS , χS〉V , (15)

but care should be taken when trying to interpret the normal or the curvature outside this
setting.

Note that for q = 1 and S ⊂ V , |(κ1,r
S )i| ≤ d1−r

i for all i ∈ V . Also, 〈κq,rS , χV 〉V =
〈ν, grad χV 〉V = 0. The curvature, κq,rS , has the property that it vanishes away from the
boundary ∂S∪∂(Sc). In particular, we see that the above mentioned ambiguity is also irrelevant
for pairings with χSc since

〈κq,rS , χSc〉V = 〈κq,rS , χV 〉V − 〈κq,rS , χS〉V = −TVq
a(χS). (16)

Let S, Ŝ ⊂ V be two node sets, then (15) implies

TVq
a(χŜ)− TVq

a(χS) = 〈κq,r
Ŝ
, χŜ〉V − 〈κ

q,r
S , χS〉V

= 〈κq,r
Ŝ

+ κq,rS , χŜ − χS〉V + 〈κq,r
Ŝ
, χS〉V − 〈κq,rS , χŜ〉V .

For the last two terms, we compute

〈κq,r
Ŝ
, χS〉V − 〈κq,rS , χŜ〉V =

 ∑
i∈S∩Ŝ

∑
j∈Ŝc
−
∑
i∈S\Ŝ

∑
j∈Ŝ

−
∑
i∈Ŝ∩S

∑
j∈Sc

+
∑
i∈Ŝ\S

∑
j∈S

ωqij
=

− ∑
i∈S\Ŝ

∑
j∈Ŝ

+
∑
i∈S

∑
j∈Ŝ

−
∑
i∈S

∑
j∈Ŝ∩S

−
∑
i∈Ŝ∩S

∑
j∈Sc
−
∑
j∈Ŝc

ωqij
=
∑
i∈Ŝ∩S

∑
j∈Ŝ

−
∑
j∈S
−
∑
j∈Sc

+
∑
j∈Ŝc

ωqij =
∑
i∈Ŝ∩S

∑
j∈V
−
∑
j∈V

ωqij = 0,

and thus
TVq

a(χŜ)− TVq
a(χS) = 〈κq,r

Ŝ
+ κq,rS , χŜ − χS〉V . (17)
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In particular, if Ŝ = S \ {n} for a node n ∈ S, then

TVq
a(χS\{n})− TVq

a(χS) = −〈κq,rS\{n} + κq,rS , χ{n}〉V =
∑
i∈S

ωqin − ω
q
nn −

∑
j∈Sc

ωqnj

=

∑
j∈S
−
∑
j∈Sc

ωqnj .

Because we assume there are no self-loops, in the final equality ωnn = 0. A similar computation
shows for n ∈ Sc

TVq
a(χS∪{n})− TVq

a(χS) =

∑
j∈Sc
−
∑
j∈S

ωqnj − ω
q
nn =

∑
j∈Sc
−
∑
j∈S

ωqnj .

The preceding discussion implies the following: if Ω ⊂ V is such that S minimizes TVq
a(χS)

among all sets S′ ⊂ V such that S∆S′ ⊂ Ω, then we have that
(∑

j∈S −
∑

j∈Sc
)
ωqnj ≤ 0 if n ∈ Sc ∩ Ω,(∑

j∈S −
∑

j∈Sc
)
ωqnj ≥ 0 if n ∈ S ∩ Ω,

(18)

(compare with the nonlocal mean curvature, (23)). Here, Ω is a set where S and S′ are forced
to agree (similar to enforcing a boundary condition in the continuum case). The two inequality
conditions in (18) are opposite for the two sides of the interface between S and Sc. This strength-
ens the heuristic idea that the ‘real’ interface, where there would be an equality condition, is
lost due to the lower bound on the accessible length scales on a graph.

Remark 3.3. It is interesting to make some connections between the graph total variation
TVa and graph curvature κ1,r

S on the one hand, and the local clustering coefficient [WS98] on
the other. Assume G is unweighted (and undirected, as per usual in this paper), then the
clustering coefficient Ci of node i, is the number of triangles node i is part of, divided by the
number of possible triangles in the neighborhood of i, i.e., Ci = 2|Ti|

di(di−1) , where

Ti := {{i, j, k} : (i, j), (i, k), (k, i) ∈ E}.

(A version for weighted graphs was introduced in [BBPSV04, Formula 5].) Using (2) and (16),
we can rewrite, for r = 1,

Ci =
1

di(di − 1)

∑
j,h∈Ni

ωjh =
1

di(di − 1)

∑
j∈V

∑
h∈Ni

ωjh −
∑
j∈N ci

∑
h∈Ni

ωjh


=

1

di(di − 1)

∑
h∈Ni

dh − TVa(χNi)

 =
1

di(di − 1)
(vol Ni − TVa(χNi))

=
1

di(di − 1)
〈χNi , χNi + κ1,1

N ci
〉V .

As for the continuum case, we can arrive at the graph curvature, κq,rS , in several ways. We
discuss some of them below. However, the analogy with the continuum curvature becomes
even more apparent if instead of the standard mean curvature, we consider the nonlocal mean
curvature (see Section 3.2).

14



If we (formally) compute the first variation of the continuum TV(u) over all functions
u ∈ BV of bounded variation (and not restricting ourselves to characteristic functions only), we
find div ∇u|∇u| , the curvature of the level sets of u. In (28) and Appendix C we follow a similar

procedure on the graph and again find divϕa, with ϕa from (1).

Similarly, in the continuum case, an alternative definition of the mean curvature is div
(
∇χS
|∇χS |

)
which is a Radon measure defined on the boundary. However, |∇χS | = 1 on the boundary of S,
so that the mean curvature is simply ∆χS . As long as S is a rectifiable set, this computation
can be made rigorous in the context of BV functions (see [EG92, Chapter 5]). Computing the
analogous quantity on a graph, we find

(∆χS)i = d−ri


∑
j∈Sc

ωij if i ∈ S,

−
∑
j∈S

ωij if i ∈ Sc. (19)

This is equal to κ1,r
S (compare with (3)). The choice q = 1 is a natural one, because it corresponds

to the Γ-limit of the graph Ginzburg-Landau functional (GLε) [vGB12], whose definition is given
in Section 5.

In the continuum case the mean curvature κ(x) at the point x ∈ ∂S in the boundary of a
set S ∈ Rd satisfies the property that, if S is smooth enough, then for any given ball Bδ(x) of
radius δ and center x ∈ ∂S,

|Bδ(x) ∩ S| − 1
2 |Bδ(x)| = κδ2|Bδ(x)|+ o(δ2|Bδ(x)|).

Note that if S were a half space, then the expression on the right is zero for all δ, since ∂S
would separate each Bδ(x) in sets of equal volume. Thus κ measures how much ∂S deviates
from cutting Bδ(x) in sets of equal volume. The analogous computation on a graph, replacing
the ball by the set Ni := Ni ∪ {i} of neighbors of node i together with node {i}, gives, for
S ⊂ V ,

vol (Ni ∩ S)− 1
2vol Ni =

∑
j∈Ni∩S

drj − 1
2

∑
j∈Ni

drj = 1
2

 ∑
j∈Ni∩S

−
∑

j∈Ni∩Sc

 drj .

Note that if r = 0 and G is an unweighted graph, such that ωij ∈ {0, 1}, then

vol (Ni ∩ S)− 1
2vol Ni = 1

2

 ∑
j∈Ni∩S

−
∑

j∈Ni∩Sc

ωqij = 1
2

∑
j∈S
−
∑
j∈Sc

ωqij ,

in whose right hand side we recognize (18). In the last equality we used that ωij = 0, if j 6∈ Ni.
The equality in (19) has an interesting consequence on the level of Γ-convergence of function-

als. For more information about the theory of Γ-convergence, we refer to [DM93, Bra02]. The
first result of Γ-convergence for the Ginzburg-Landau functional goes back to work of Modica
and Mortola [MM77, Mod87].

Theorem 3.4. Let g ∈ C(Rn), ε > 0, W̃ ∈ C2(R) a nonnegative double well potential with
wells at 0 and 1, and consider the functionals fε, f0 : V → R, defined by

fε(u) :=
∑
i∈V

g
(
(∆u)i

)
+

1

ε

∑
i∈V

W̃ (ui),

f0(u) :=

{∑
i∈V g

(
(κ1,r
S )i

)
if u = χS for some S ⊂ V,

+∞ else.
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Then fε
Γ→ f0 as ε→ 0 (using any of the equivalent metrics on Rn).

Furthermore, if the double well potential W̃ satisfies a coercivity condition —i.e., there exists
a c > 0 such that for large |u|, W̃ (u) ≤ c(u2 − 1)— then compactness holds, in the following
sense: Let {εn}∞n=1 ⊂ R+ be such that εn → 0 as n → ∞, and let {un}∞n=1 be a sequence such
that there exists a C > 0 such that for all n ∈ N fεn(un) < C. Then there exists a subsequence
{un′}∞n?=1 ⊂ {un}∞n=1 and a u∞ of the form u∞ = χS, for some S ⊂ V , such that un′ → u∞ as
n→∞.

Proof. The key point in the proof of the Γ-convergence is to note that fε is a continuous
perturbation of the functional wε : V → R,

wε(u) :=
1

ε

∑
i∈V

W̃ (ui).

By [vGB12, Lemma 3.3]11 wε
Γ→ w0 as ε→ 0, where

w0(u) :=

{
0 if u = χS for some S ⊂ V,
+∞ else.

By a well known property of Γ-convergence [DM93, Proposition 6.21], the Γ-limit is preserved
under continuous perturbations. Then using the fact, shown above in (19), that ∆u = κ1,r

S if
u = χS , completes the proof of Γ-convergence.

The compactness result is a direct adaptation of the proof of [vGB12, Theorem 3.2] to the
current functionals fε.

Remark 3.5. Note that in Theorem 3.4 above, we can also use the double well potential W
with wells at ±1, instead of W̃ . In that case, the limit functional w0 in the proof takes finite
values only for functions of the form u = χS − χSc , for some S ⊂ V . Because ∆(χS + χSc) =
∆χV = 0, we have ∆(χS − χSc) = 2κ1,r

S and hence the limit functional f0 takes the form

f0(u) :=

{∑
i∈V g

(
2(κ1,r

S )i
)

if u = χS for some S ⊂ V,
+∞ else.

We end this subsection with another similarity between the graph based objects we in-
troduced and their continuum counterparts. The gradient of the graph distance d∂S , from
Definition 2.2, agrees with the normal ν, from (13), on the boundary of S induced by the graph
distance, in the sense of the following lemma. This again corresponds to what we expect based
on the continuum case. We define the signed distance to ∂S as

sd∂S := (χScn − χSn)d∂S . (20)

Lemma 3.6. Let S ⊂ V . Define the exterior boundary of S induced by the graph distance d∂S

as
∂extS := {i ∈ Sc : ∃j ∈ ∂S such that d∂Si = ωq−1

ij }.

Let i ∈ ∂extS, then there is a j ∈ ∂S such that (∇sd∂S)ij = −νij.
Similarly, let the interior boundary of S induced by the graph distance be

∂intS := {i ∈ S : ∃j ∈ ∂S such that d∂Si = ωq−1
ij }.

If i ∈ ∂intS, then there is a j ∈ ∂S such that (∇sd∂S)ij = νij.

11Note that in the statement and proof of Lemma 3.3 in [vGB12], it says gε twice where wε is meant.
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Proof. First we note that, for i ∈ ∂extS ⊂ Sc, we have sd∂Si = d∂Si . Because d∂S satisfies
equation (13) (with S replaced by ∂S), we have

min
k∈Ni

(∇d∂S)ik = min
k∈Ni

ω1−q
ik (d∂Sk − d∂Si ) = −1.

Note that ∂extS ⊂ ∂(Sc). Hence, i ∈ ∂(Sc) and thus there is a k ∈ Nj such that k ∈ ∂S and
therefore d∂Sk = 0. Because d∂S is nonnegative and i ∈ ∂extS, we deduce

1 = max
k∈Ni

ω1−q
ik d∂Si = max

k∈Ni
ω1−q
ik ωq−1

ij .

Thus the maximum is achieved for k = j, and hence so is the minimum in (13), which shows
that

(∇d∂S)ij = −1 = −νij .

The proof for i ∈ ∂intS follows from similar arguments, noting that sd∂Si = −d∂S .

Note that ∂extS ⊂ ∂(Sc), but equality does not necessarily hold. If a shortest path from
i ∈ ∂(Sc) to ∂S does not equal {i, j}, for some j ∈ ∂S, then i 6∈ ∂extS. This situation does
not occur if the graph distances are consistent, in the following sense: if, for all i, j, k ∈ V ,
ωq−1
ij ≤ ωq−1

ik + ωq−1
kj . In that case, ∂extS = ∂(Sc).

3.2 Relation with the continuum nonlocal mean curvature

There is a clear analogy between the expressions in (18) and the (continuum) nonlocal mean
curvature [CS10, CRS10], as well as between TVq

a and continuum nonlocal energy functionals.
Consider an interaction kernel K : Rn × Rn → [0,+∞) with K(x, y) = K(y, x) and

sup
x∈Rn

∫
Rn

min{1, |x− y|2}K(x, y) dy < +∞.

This kernel K can be thought of as the energy given by a long-range interaction between a
particle placed at x with a particle at y. It defines a functional on subsets S ⊂ Rn, sometimes
called “nonlocal perimeter” or “nonlocal energy” and it is given by

JK(S) = LK(S, Sc),

where for any pair A,B ⊂ Rn we write

LK(A,B) =

∫
A

∫
B
K(x, y) dxdy. (21)

Compare this with the graph case, if, for A,B ⊂ V , we write

LG(A,B) =
∑
i∈A

∑
j∈B

ωqij . (22)

In terms of this bilinear functional, the anisotropic total variation, defined in (2), can be rewrit-
ten

TVq
a(χS) = LG(S, Sc).

We see that (21) is nothing but the continuum version of (22), and one may rightfully interpret
the weight matrix ωqij as an interaction kernel between pairs of nodes in G and LG(S, Sc) as
measuring the total “interction energy” between S and Sc.
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Now suppose that S ⊂ Rn minimizes JK(S) in some domain Ω, meaning that if S′ is such
that S∆S′ ⊂⊂ Ω then JK(S) ≤ JK(S′). In this case one can see that the following two
conditions must hold {

L(A,S)− L(A,Sc \A) ≤ 0, ∀ A ⊂ Sc ∩ Ω,
L(A,S \A)− L(A,Sc) ≥ 0, ∀ A ⊂ S ∩ Ω.

(23)

If, arguing heuristically, we let A shrink down to any x ∈ (∂S) ∩ Ω, we find that∫
Rn

(χS(y)− χSc(y))K(x, y) dx = 0.

The integral on the left, which is well defined in the principal value sense12 when x ∈ ∂S and
∂S is smooth enough (C2 suffices), is known as the nonlocal mean curvature of S at x with
respect to K, or just nonlocal mean curvature of S at x, when K is clear from the context. As
with JK and TVq

a, we see that

κnonlocal(x) :=

∫
Rn

(χS(y)− χSc(y))K(x, y) dy

is exactly a continuum analogue of the quantity
(∑

j∈S −
∑

j∈Sc
)
ωqnj in (18), moreover, the in-

equalities in (23) are a continuum analogue of those in (18). Note however, that
(∑

j∈S −
∑

j∈Sc
)
ωqnj

is defined for all of n ∈ V , whereas κnonlocal(x) above is only defined when x ∈ ∂S and ∂S is
smooth enough.

Known regularity results deal mostly with the case Ks(x, y) := cn,s|x− y|−n−s for s ∈ (0, 1)
[CRS10, CG10]. It is worth noting that JKs is a fractional Sobolev norm of the characteristic
function of S

JKs(S) = 1
2‖χS‖

2
Ḣs/2 ,

where ‖.‖Ḣs/2 is defined in terms of the Fourier transform of f by

‖f‖Ḣs/2 = ‖ |ξ|sf̂(ξ) ‖L2(Rn).

Moreover, as s → 1− the quantity above gives the perimeter of S, and the corresponding
nonlocal mean curvature converges pointwise to the standard mean curvature. In [CS10] it is
shown that if we consider the MBO scheme, where instead of the heat equation we use the
fractional heat equation, then in the limit we get a set St evolving over time with a normal
velocity at x ∈ ∂St given by

V (x) = cn,s

∫
Rn

χS(y)− χSc(y)

|x− y|n+s
dy. (24)

3.3 Mean curvature flow

In this section, we define a mean curvature flow on graphs and connect it with the curvature
κq,rS in (14). It is not clear what is the most natural notion for the evolution of a phase in a
graph. Do we want to consider a sequence of subsets {Sn}n∈N, or a continuous family {St}t>0

which, although piecewise constant in t, may change in arbitrarily small time intervals? How we
connect solutions of the graph mean curvature flow to solutions of the graph (MBOτ ) scheme

12Note that K(x, y) could have a very strong singularity at x = y making the integral diverge, if taken as a
Lebesgue integral. The boundedness of the principal value of this singular integral tells us that ∂S must have
some smoothness near x.
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from Section 4, or to solutions of the graph Allen-Cahn equation (ACEε) from Section 5, will
depend on the answer to this question. For now, we shall be content with considering a phase
evolution comprised of a discrete sequence of sets Sn = S(nðt), n ∈ N, that correspond to the
state of the system at discrete time steps.

Our construction follows the well-known variational formulations for classical mean cur-
vature flow [ATW93, LS95]. Appendix A.2 has a brief overview of mean curvature and the
associated flow in the continuum case. An obstacle one encounters when trying to emulate the
continuum level set method to express mean curvature flow on graphs is, that, due to the lack
of a discrete chain rule, the resulting equation is not independent on the choice of level set
function.

Recall the notions of graph distance and boundary of a node set from Section 2.

Definition 3.7. The mean curvature flow, Sn = S(nðt), with discrete time step ðt for an initial
set S0 ⊂ V , is defined

Sn+1 ∈ arg min
Ŝ⊂V
F(Ŝ, Sn), (MCFðt)

where

F(Ŝ, Sn) := TVq
a(χŜ)− TVq

a(χSn) +
1

ðt
〈χŜ − χSn , (χŜ − χSn)dΣn〉V (25)

and

Σn := ∂Sn ∪ ∂(Scn) = {i ∈ V : ∃ (i, j) ∈ E such that (i ∈ Sn ∧ j ∈ Scn) ∨ (i ∈ Scn ∧ j ∈ Sn)}.

Note that, for a given graph G, minimizers of F may not be unique. In this case different
mean curvature flows can be defined, depending on the choice of Sn+1. An example of this
non-uniqueness on the 4-regular graph is given in Section 6.5.

We choose to use the distance to Σn, instead of the distance to either ∂Sn or ∂(Scn), so that
the mean curvature flow is not a priori (independent of curvature) biased to either adding nodes
to or removing nodes from S.

Since nodes in Σn can be added or removed from S without increasing the last term of
(25), every stationary state χS of (MCFðt) is a minimal surface in the sense that TVq

a(χS) ≤
TVq

a(χ{S∪{n}) for n ∈ ∂(Sc) and TVq
a(χS) ≤ TVq

a(χ{S\{n}) for n ∈ ∂S (in the case where the
minimizer of F is unique, the inequalities are strict). In particular, the sequence defined by
(MCFðt) is not “frozen” for ðt arbitrarily small.

Remark 3.8. In the last term of F(Ŝ, Sn), we use a symmetrized distance to the boundary,
〈χŜ − χSn , (χŜ − χSn)dΣn〉V . Other choices are possible here, including ‖χScdS − χSdS

c‖2. For
this alternative choice, (MCFðt) exhibits “freezing”.

We can rewrite the last term in F(Ŝ, Sn) in terms of the signed graph distance

sdΣn := (χScn − χSn)dΣn ,

(compare with (20)), which takes nonnegative values in Scn and nonpositive values in Sn. We
state the precise result in the following lemma.

Lemma 3.9. argmin
Ŝ⊂V

F(Ŝ, Sn) = argmin
Ŝ⊂V

F ′(Ŝ, Sn), where

F ′(Ŝ, Sn) := TVq
a(χŜ)− TVq

a(χSn) +
1

ðt
〈χŜ , sd

Σn〉V (26)

= 〈κq,r
Ŝ

+ κq,rSn , χŜ − χSn〉V +
1

ðt
〈χŜ , sd

Σn〉V .
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Proof. The rewriting of TVq
a(χŜ)− TVq

a(χSn) in terms of the curvatures, follows directly from
(17). For the distance term, we compute

〈(χŜ − χSn)2, dΣn〉V = 〈χŜ(1− 2χSn) + χSn , d
Σn〉V

= 〈χŜ , (χScn − χŜ)dΣn〉V + 〈χSn , dΣn〉V ,

where in the last line we used that 1 − χSn = χScn . The proof is completed by noting that the

last term above does not depend on Ŝ.

Theorem 3.10. Let u ∈ V be a minimizer of the convex functional

F (u) := TVq
a(u) +

1

ðt
〈u, sdΣn〉V , (27)

then, for a.e. s ∈ R, the superlevel set

E(s) := {i ∈ V : ui > s}

is a minimizer Ŝ of F(·, Sn) from (25).

Proof. In Lemma B.1 in Appendix B we show that

TVq
a(u) =

1

2

∑
i,j∈V

ωqij |ui − uj | =
1

2

∫
R

∑
i,j∈V

ωqij

∣∣∣(χE(s)

)
i
−
(
χE(s)

)
j

∣∣∣ ds
Writing ui =

∫
R
(
χE(s)

)
i
ds, as in (48), we also see that

〈u, sdΣn〉V =

∫
R
〈χE(s), sd

Σn〉V ds.

This gives

F (u) =

∫
R

[
TVq

a(χE(s)) +
1

ðt
〈χE(s), sd

Σn〉V
]
ds =

∫
R

[
F ′(E(s), Sn)− TVq

a(Sn)
]
ds,

where F ′ is as in (26). Hence, if u minimizes F , then a.e. superlevel set E(s) minimizes F ′(·, Sn).
Lemma 3.9 now completes the proof.

Remark 3.11. The function TVq
a(u) is a convex function, thus, taking ∂TVq

a(u) as the (possibly
multivalued) subdifferential of TVq

a(u) [ET76], any minimizer of

u 7→ TVq
a(u) + 〈u, g〉V ,

for g ∈ V, will solve the differential inclusion

∂TVq
a(u) 3 −g.

From the form definition of TVq
a we see that its subdifferential is only multivalued for u’s such

that ∇u vanishes at some node, at all other u, TVq
a is pointwise differentiable. In particular, if

u, v ∈ V and ∇u is never zero, we may differentiate13

d

dt |t=0
TVq

a(u+ tv) =
d

dt |t=0

1
2

∑
i,j

ωqij |ui − uj + t(vi − vj)|

 ,

= 1
2

∑
ij

ωqijsgn(ui − uj)(vi − vj),

= 〈sgn(∇u),∇v〉. (28)

13For further discussion and a generalization of this computation, see Appendix C.
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Since div is the adjoint of ∇, it follows that, for all v ∈ V,

d

dt
(TVq

a(u+ tv) + 〈u+ tv, g〉V) = 〈div (sgn(∇u)) + g, v〉V .

Therefore, the Euler-Lagrange equation for minimizers of F from (27), is

div sgn(∇u) +
1

ðt
sdΣn = 0,

provided ∇u is never zero. Whenever (∇u)ij = 0 for some i, j, the above equation is replaced by
a differential inclusion in terms of the subdifferential of the absolute value function. Concretely,
since the subdifferential of the absolute value function at 0 is the interval [−1, 1], there exists
φ ∈ V such that |φi| ≤ 1 for every node i ∈ V , and

divφ+
1

ðt
sdΣn = 0.

Fast computational methods for the solution of (MCFðt) based on max flow/min cut algo-
rithms are developed in [CD09]. These methods exploit the homogeneity and submodularity of
the total variational functional, TVq

a.

4 Threshold dynamics on graphs

In this section we study the threshold dynamics or Merriman-Bence-Osher algorithm on a graph
G. For a short overview of the continuum case we refer to Section A.3 in Appendix A.

4.1 The graph MBO algorithm

The MBO scheme on a graph, describing the evolution of a node subset S ⊂ V , is given as
follows.

Algorithm (MBOτ): The Merriman-Bence-Osher algorithm on a graph.

Data: An initial node subset S0 ⊂ V , a time step τ > 0, and the number of time steps
N > 0.

Output: A sequence of node sets {Sk}Nk=1, which is the (MBOτ ) evolution of S0.
for k = 1 to N , do

Diffusion step. Let v = e−∆τχSk−1
denote the solution at time τ of the initial value

problem
v̇ = −∆v, v(0) = χSk−1

. (29)

Here χS denotes the characteristic function of the set S.

Threshold step. Define the set Sk ⊂ V to be

Sk = {i ∈ V : vi ≥
1

2
}.

By the comparison principle, Lemma 2.5(d), we note that the solution to (29) satisfies
v(t) ∈ [0, 1]n for all t ∈ [0, τ ].
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Remark 4.1. In the thresholding step of the (MBOτ ) scheme, we have arbitrarily chosen to
include the level set {i ∈ V : vi = 1

2} in the new set Sk, i.e., the value at nodes i for which
vi = 1

2 is set to 1.

An alternative description of the algorithm is as follows. Let uk be the indicator of the set
Sk as defined by the (MBOτ ) algorithm. If we define the thresholding function P : R→ {0, 1},
which acts by thresholding

P (x) :=

{
1 if x ≥ 1

2

0 if x < 1
2

,

then the iterates can be succinctly written uk = (Pe−∆τ )ku0.
Several papers use the MBO algorithm on a graph to approximate motion by mean curvature.

For example, in [MKB12, GCMB+13, HLPB13], the MBO algorithm on graphs was implemented
and used to study data clustering, community detection, segmentation, object recognition,
and inpainting. This is accomplished by simply reinterpreting the Laplacian in (47), or in
appropriate extensions of (47), as the graph Laplacian.

4.2 The “step-size” τ in the (MBOτ) algorithm

As discussed at the end of Section A.3, in a finite difference discretization of the continuum
MBO algorithm, the time step τ must be chosen carefully to avoid trivial dynamics. For τ too
small, there is not enough diffusion to change the value of u at neighboring grid points beyond
the threshold value. In this case, the solution is stationary under an (MBOτ ) iteration and
we say that the solution is frozen or pinned. For τ too large there is so much diffusion that
a stationary state is reached after one iteration in the MBO scheme. It is not surprising that
these finite difference effects also appear for the MBO algorithm on graphs. From the form
of the heat solution operator, e∆τ , we expect that τ should be roughly chosen in the interval
(λ−1
n , λ−1

2 ). Theorems 4.2 and 4.3 strengthen this intuition.
The following theorem gives a lower bound on the choice of τ to avoid freezing in the (MBOτ )

algorithm on general graphs.

Theorem 4.2. Let ρ be the spectral radius of the graph Laplacian, ∆. Then the (MBOτ )
iterations on the graph with initial set S are stationary if either of the two conditions are
satisfied:

τ < τρ(S) := ρ−1 log

(
1 +

1

2
d
r
2
− (vol S)−

1
2

)
(30)

or

τ ≤ τκ(S) :=
1

2‖∆χS‖V,∞
. (31)

In particular, since vol S > d
r
2
−, if τ < log 3

2 ·ρ
−1 ≈ 0.4 ·ρ−1, then (30) implies the MBO iterates

are pinned for any initial S ⊂ V .

Proof. To prove (30), let χS be the characteristic function on a set S ⊂ V . For a node to be
added or removed from S by one iteration of (MBOτ ), it is necessary that ‖e−τ∆χS−χS‖V,∞ ≥
1
2 . For the linear operator A : V → V, let ‖A‖V be the operator norm induced by ‖ · ‖V , i.e.,

‖A‖V = max
u∈V\{0}

‖Au‖V
‖u‖V
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(see also Lemma 2.4(b)). Using Lemma 2.1, we compute

‖e−τ∆χS − χS‖V,∞ ≤ d
− r

2
− ‖e−τ∆χS − χS‖V ≤ d

− r
2
− ‖e−τ∆ − Id‖V

√
vol S.

Using the triangle inequality and the submultiplicative property of ‖ · ‖V (see, e.g., [HJ90]), we
compute

‖e−τ∆ − Id‖V ≤
∞∑
k=1

1

k!
(τ‖∆‖V)k = eρτ − 1.

Thus, if τ < ρ−1 log
(

1 + 1
2 d

r
2
− (vol S)−

1
2

)
, all nodes are stationary under an (MBOτ ) iteration.

To prove (31), we write the solution to the heat equation at time τ ,

u(τ) = e−τ∆χS = χS −
∫ τ

0
∆u(t)dt.

This implies

‖u(τ)− χS‖V,∞ =

∥∥∥∥∫ τ

0
∆u(t)dt

∥∥∥∥
V,∞
≤
∫ τ

0

∥∥e−t∆∆χS
∥∥
V,∞ dt ≤ τ ‖∆χS‖V,∞ .

Here, we used the comparison principle, Lemma 2.5(d). Thus, if τ ≤ 1
2‖∆χS‖V,∞ , then ‖u(τ) −

χS‖V,∞ ≤ 1
2 , implying the (MBOτ ) solution is stationary.

The following corollary of Lemma 2.5(c) shows that an upper bound on τ is necessary to
avoid trivial dynamics.

Theorem 4.3. Let the graph be connected. Consider the (MBOτ ) algorithm with initial condi-
tion χS, for a node set S ⊂ V . Assume RS := volS

volV 6=
1
2 . If

τ > τt :=
1

λ2
log

(
(volS)

1
2 (volSc)

1
2

(volV )
1
2 |RS − 1

2 | d
r
2
−

)
, (32)

where the mass M(u0) is defined in (10), then

Pe−τ∆u0 =

{
χV RS >

1
2 ,

0 RS <
1
2 .

Proof. In Lemma 2.5(c), set ε = |(vol V )−1M(u0) − 1
2 | = |RS −

1
2 |. This implies that ‖u(τ) −

RS‖V,∞ ≤ |RS − 1
2 |, as desired. With ε = |RS − 1

2 |, the condition on τ in Lemma 2.5(c) is

τ > 1
λ2

log
(
|RS − 1

2 |
−1 d

− r
2
− ‖u0 −RS‖V

)
. For u0 = χS , ‖u0 −RS‖2V = volS volSc

volV .

This corollary shows that, if τ is chosen too large, one iteration of (MBOτ ) leads to a trivial
state u = χV or u = 0, which is stationary under the algorithm (MBOτ ).

The following theorem gives a condition for which there is a gap between the lower and
upper bound for τ .

Theorem 4.4. Consider the (MBOτ ) iterations on a graph with n ≥ 2. Let τp and τt be defined

as in (30) and (32). If λ2
λn

< log
√

2

log 3
2

≈ 0.85, then τp < τt.
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Proof. Since
∣∣RS − 1

2

∣∣ ≤ 1
2 , dr− ≤ volS, and (volS) (volSc) > dr−(volV − dr−) we have

τp = λ−1
2 log

(
1 +

1

2
d
r
2
− (vol S)−

1
2

)
≥ λ−1

2 log

(
2

√
1−

dr−
volV

)
≥ λ−1

2 log
√

2.

Since dr− ≤ volS, we have

τt = λ−1
n log

(
1 +

1

2

√
dr−

volS

)
≤ λ−1

n log
3

2
.

The result follows.

Theorem 4.4 further reenforces our intuition that τ should be chosen in the interval (λ−1
n , λ−1

2 ).
If, for a particular graph, this interval is very small, then Theorems 4.2 and 4.3 cannot provide
an interval for which the (MBOτ ) iterations has a chance of being non-stationary after the first
iteration. Note however that the interval [τp, τt] given by these theorems, is not necessarily a
sharp interval for interesting dynamics.

4.3 A Lyapunov functional for the graph (MBOτ) algorithm

In this section we introduce a functional which is decreasing on iterations of the (MBOτ )
algorithm. The analogous functional for the continuum setting was recently found in [EO13].
The functional is then used to show that the (MBOτ ) algorithm with any initial condition
converges to a stationary state in a finite number of iterations.

Let τ > 0 and consider the functional J : V → R defined by

J(u) = 〈1− u, e−τ∆u〉V . (33)

Note that by, Lemma 2.5(a), J(u) = M(u)− 〈u, e−τ∆u〉V , where M is the mass from (10).

Lemma 4.5. The functional J defined in (33) has the following elementary properties.

1. J is a strictly concave functional on V.

2. J is Fréchet differentiable with derivative in the direction v given by

Lu(v) :=
〈δJ
δu

∣∣∣∣
u

, v
〉
V
, where

δJ

δu

∣∣∣∣
u

= 1− 2e−τ∆u.

Proof. We compute, for all v 6= 0,

d2

dα2
J(u+ αv) = −2〈v, e−τ∆v〉V < 0.

Taking the first variation of J(u) = 〈1− u, e−τ∆u〉V , we find that〈δJ
δu
, δu
〉
V

:=
〈

1− u, e−τ∆δu
〉
V
−
〈
δu, e−τ∆u

〉
V

=
〈

1− 2e−τ∆u, δv
〉
V
,

as desired.
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Define the convex set K := {φ ∈ V : ∀j ∈ V φj ∈ [0, 1]}. Is it instructive to consider the
optimization problem,

min
u∈K

J(u). (34)

Since the objective function in (34) is concave and the admissible set is a compact and convex
set, it follows that the solution to (34) is attained by a vertex function u ∈ B := {v ∈ V : ∀j ∈
V vj ∈ {0, 1}}. Here B is the set of binary vertex functions, taking the value 0 or 1 on each
vertex. The sequential linear programming approach to solving the system (34) is to consider
a sequence of vertex functions {uk}∞k=0 which satisfies

uk+1 = arg min
v∈K

Luk(v), u0 = χS , for a node set S ⊂ V. (35)

The optimization problem in (35) may not have a unique solution, so the iterates are not well-
defined. The following proposition shows that the iterations of the (MBOτ ) algorithm define a
unique sequence satisfying (35). Note that the optimization problem in (35) is the minimization
of a linear objective function over a compact and convex set, implying that for any sequence
{uk}∞k=0 satisfying (35), uk ∈ B for all k ≥ 0.

Proposition 4.6. The iterations defined by the (MBOτ ) algorithm satisfy (35). The functional
J , defined in (33), is non-increasing on the iterates {uk}∞k=1, i.e., J(uk+1) ≤ J(uk), with equality
only obtained if uk+1 = uk. Consequently, the (MBOτ ) algorithm with any initial condition
converges to a stationary state in a finite number of iterations.

Proof. At each iteration k, the objective functional Luk is linear and thus the minimum is
attained by a function

uk+1 =

{
1 if 1− 2e−τ∆uk ≤ 0,

0 if 1− 2e−τ∆uk > 0
= χ{e−τ∆uk≥ 1

2
}.

These are precisely the (MBOτ ) iterations. By the strict concavity of J and linearity of Luk ,
for uk+1 6= uk,

J(uk+1)− J(uk) < Luk(uk+1 − uk) = Luk(uk+1)− Luk(uk).

Since uk ∈ K, Luk(uk+1) ≤ Luk(uk) which implies J(uk+1) < J(uk). The convergence of the
algorithm in a finite number of iterations then follows from the fact that B contains only a finite
number of points, the vertices of the unit n-cube.

Proposition 4.6 shows that J is a Lyapunov function for the (MBOτ ) iterates. From the
proof of Proposition 4.6, we also note that the non-uniqueness of the iterates in (35) corresponds
to the choice in the (MBOτ ) algorithm of thresholding vertices {j ∈ V : e−τ∆uk = 1

2} to either
0 or 1 (see Remark 4.1).

Remark 4.7. The framework of [EO13] easily allows for the extension of the MBO algorithm
to more phases, however we do not pursue these ideas here.

4.4 A local guarantee for a ‘nonfrozen’ (MBOτ) iteration

We begin by observing that the constant τκ in Theorem 4.2 depends on the maximum curvature
κ1,r
S of the indicator set in the graph, ‖∆χS‖V,∞. In this section, we prove a theorem which

gives a condition on τ in terms of the local curvature (κ1,r
S )i at a node i, which guarantees that

the value of u on that node will change in one iteration of the graph (MBOτ ) scheme.
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We first introduce some notation which is needed to state the theorem. Recall that the set
of neighbors of a node i ∈ V is Ni = {j ∈ V : ωij > 0}. Let 1 ∈ V be an arbitrary node in the
graph G and let S ⊂ V . We define the sets

S1 :=

{
N1 ∩ Sc if 1 ∈ S,
N1 ∩ S if 1 6∈ S,

and S1 := S1 ∪ {1}.

The set S1 contains neighbors of node 1 which are also in either the boundary ∂(Sc) or ∂S
(depending on whether or not 1 ∈ S). For u ∈ V, define ∆′ as

(∆′u)i :=

{
d−ri

∑
j∈S1

ωij(ui − uj) if i ∈ S1,

0 if i 6∈ S1.

We see that ∆′ on S1 is similar to the Laplacian on the subgraph induced by S1, with the
important distinction that, for each i ∈ V , the degree di is the degree of i in the full graph G,
not the degree in the subgraph induced by S1. In [Chu97, Section 8.4], ∆′ is referred to as the
Laplacian with Dirichlet conditions on ∂(S1

c
). If v ∈ V1 := {v ∈ V : v = 0 on S1

c}, then

(∆′v)i =

{
(∆v)i if i ∈ S1,

0 if i 6∈ S1.

Note in particular that, if v ∈ V1, then e−t∆
′
v ∈ V1 for all t ≥ 0.

Theorem 4.8. Let 1 ∈ V be an arbitrary node and S ⊂ V be such that |(κ1,r
S )1|2 > ‖(∆′)2χS1‖V,∞.

If τ ∈ (τ1, τ2), where

τ1,2 :=
1

‖(∆′)2χS1‖V,∞

(
|(κ1,r

S )1| ±
√
|(κ1,r

S )1|2 − ‖(∆′)2χS1‖V,∞
)
> 0, (36)

then
|(Pe−τ∆χS)1 − (χS)1| = 1.

That is, the phase at node 1 changes after one (MBOτ ) iteration.

It is important to note that both |(κ1,r
S )1|2 and ‖(∆′)2χS1‖V,∞ are local quantities, in the

sense that they only depend on the structure of G at node 1 and its neighbors. This is in contrast
with Theorem 4.2, which depends on the spectrum of the Laplacian on G. The existence of a
lower bound τ1 on τ is unsurprising in the light of this earlier freezing result. The necessity for
an upper bound τ2 can be understood from our wish to only use local quantities in this theorem.

Proof of Theorem 4.8. First we assume that 1 6∈ S, so S1 = N1 ∩ S. By the comparison
principle in Lemma 2.5(d), χS1 ≤ χS on V implies (e−τ∆χS1)1 ≤ (e−τ∆χS)1. In particular,
since (χS1)1 = (χS)1 = 0, we have

(e−∆τχS − χS)1 ≥ (e−τ∆χS1 − χS1)1.

Let v satisfy the heat equation with Dirichlet boundary data,{
v̇ = −(∆′v)i,
v(0) = χS1 .

As noted above the theorem, v(t) ∈ V1 for all t ≥ 0.
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It is easily checked that v is subcaloric, i.e., v̇i ≤ −(∆v)i for all i ∈ V , and v(0) ≤ χS . In
addition, the Laplacian satisfies −(∆u)i ≤ −(∆ũ)i if ui = ũi and uj ≤ ũj , for j 6= i. Hence, by
the theory of differential inequalities (see for example [Sza65, Theorem 8.1(3)]),

vi(t) ≤
(
e−t∆v(0)

)
i

=
(
e−t∆χS1

)
i
, for all i ∈ V.

In particular,(
e−τ∆χS1 − χS1

)
1
≥ v1(τ)− v1(0) =

(
e−τ∆′χS1 − χS1

)
1

= −τ
(
∆′χS1

)
1

+ τ2r(τ),

where

|r(τ)| ≤ 1

2
sup
t∈[0,τ ]

(
e−t∆

′
(∆′)2χS1

)
1
≤ 1

2
‖(∆′)2χS1‖V,∞.

Note that − (∆′χS1)1 = −(κ1,r
S )1 = |(κ1,r

S )1|, where the last equality follows because 1 6∈ S.
We conclude that

(e−τ∆χS − χS)1 ≥
(
e−τ∆χS1 − χS1

)
1
≥ |(κ1,r

S )1|τ −
1

2
‖(∆′)2χS1‖V,∞τ2,

hence

(e−τ∆χS − χS)1 ≥
1

2
⇔ τ ∈ [τ1, τ2],

which proves the result for the case in which 1 6∈ S.
To prove the desired statement if 1 ∈ S, we note that

(e−τ∆ − 1)(χS + χSc) = 0,

So the condition (e−τ∆χS − χS)1 < −1
2 is equivalent to (e−τ∆χSc − χSc)1 >

1
2 . Recall that,

in this case, S1 = N1 ∩ Sc, and the same derivation as above holds14, since 1 6∈ Sc, with the
exception that the admissible range of τ becomes the open interval (τ1, τ2). This is because, by
our definition of the (MBOτ ) algorithm, the thresholding operator thresholds the 1

2 -level set to
1.

In the remainder of this section we determine some conditions under which the requirement
|(κ1,r

S )1|2 > ‖(∆′)2χS1‖V,∞ in Theorem 4.8 is satisfied. To this end, define the reduced degrees,
for i ∈ V , as

d′i :=
∑
j∈S1

ωij . (37)

Lemma 4.9. |(κ1,r
S )1|2 > ‖(∆′)2χS1‖V,∞ if and only if

d−2r
1 (d′1)2 > max

i∈S1

d−ri

∣∣∣∣∣∣−d1−r
i d′i −

∑
j∈S1

d1−r
j ωij +

∑
k∈S1

d−rk d′kωik

∣∣∣∣∣∣ . (38)

Proof. Consider the |V| × |V| matrix corresponding to ∆′. After possibly relabeling the nodes,

it can be written as

(
L′ 0
0 0

)
, where L′ is the |S1| × |S1| matrix with entries

L′ij = d−ri

{
−di if i = j,

ωij if i 6= j.

14In particular, carefully note that now − (∆′χS1)1 = (κ1,r
S )1 = |(κ1,r

S )1| holds.
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Then

(L′2)ij =
∑
k∈S1

(L′)ik(L
′)kj = (L′)ii(L

′)ij + (L′)ij(L
′)jj +

∑
k∈S1\{i,j}

(L′)ik(L
′)kj

= d−ri

−(d1−r
i + d1−r

j )ωij +
∑

k∈S1\{i,j}

d−rk ωikωjk

 .
Thus

(
(∆′)2χS1

)
i

= 0 if i 6∈ S1, and, for i ∈ S1, we have

(
(∆′)2χS1

)
i

= d−ri
∑
j∈S1

−(d1−r
i + d1−r

j )ωij +
∑

k∈S1\{i,j}

d−rk ωikωjk


= d−ri

∑
j∈S1

−(d1−r
i + d1−r

j )ωij +
∑
k∈S1

d−rk ωikωjk


= d−ri

−d1−r
i d′i −

∑
j∈S1

d1−r
j ωij +

∑
k∈S1

d−rk d′kωik

 ,
where, for the second equality, we used that ωii = ωjj = 0.

From (14) and the definition of S1, we find

|(κ1,r
S )1|2 = d−2r

1

∑
j,k∈S1

ω1jω1k = d−2r
1 d′21 .

Corollary 4.10. Let r = 1 and d′1 > 0. If there exists an 0 ≤ ε < 1, such that, for all i ∈ S1,

d′i
di
≤ εd

′
1

d1
and

ωi1
di

< (1− ε2)
d′1
d1
, (39)

then condition (38) is satisfied, and there exist 0 < τ1 < τ2 as in Theorem 4.8.
If the first condition in (39) is satisfied with 0 ≤ ε < 1

2

(√
5− 1

)
≈ 0.618, then the second

condition in (39) can be replaced by the condition that, for all i ∈ S1, ωi1 ≤ d′i.

Note, by (14) and (37), that the conditions in (39) can be rewritten as

(κ1,1
S1

)i − 1 ≥ ε(κ1,1
S1

)1 and (κ1,1
{1})i > (1− ε2)(κ1,1

S1
)1,

for all i ∈ S1.

Proof of Corollory 4.10. For r = 1, we compute, for i ∈ S1,

d−ri

∣∣∣∣∣∣−d1−r
i d′i −

∑
j∈S1

d1−r
j ωij +

∑
k∈S1

d−rk d′kωik

∣∣∣∣∣∣ =

∣∣∣∣∣∣d
′
i

di
− d′i
di

+
∑
k∈S1

d′k
dk

ωik
di

∣∣∣∣∣∣ =
∑
k∈S1

d′k
dk

ωik
di
,

hence condition (38) becomes

(
d′1
d1

)2

> max
i∈S1

∑
k∈S1

d′k
dk

ωik
di

. If the first condition in (39) is satisfied,

we have ∑
k∈S1

d′k
dk

ωik
di

=
d′1
d1

ωi1
di

+
∑
k∈S1

d′k
dk

ωik
di
≤ d′1
d1

ωi1
di

+ ε
d′1
d1

d′i
di

=
d′1
d1

[
ωi1
di

+ ε
d′i
di

]
.
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Since d′1 > 0, condition (38) reduces to max
i∈S1

[
ωi1
di

+ ε
d′i
di

]
<
d′1
d1
. If the maximum is achieved at

i = 1, then
ωi1
di

+ ε
d′i
di

= ε
d′1
d1

<
d′1
d1

. If, on the other hand, the maximum is achieved at some

i ∈ S1, then
ωi1
di

+ ε
d′i
di
≤ ωi1

di
+ ε2d

′
1

d1
<
d′1
d1

. Here, we first used the first condition from (39),

and then the second. Combined with Theorem 4.8 and Lemma 4.9, this proves the first claim.

Now assume, instead of the second condition in (39), that ωi1 ≤ d′i for all i ∈ S1. Then
ωi1
di
≤ d′i

di
≤ ε

d′1
d1

. Hence, if 0 < ε < 1 − ε2, the second condition in (39) is satisfied. This

requirement is met, if 0 < ε < 1
2

(√
5− 1

)
.

It is worthwhile to understand the conditions in the corollary. Adding the two conditions

in (39) gives
d′i+ωi1
di
≤ (1 + ε − ε2)

d′1
d1

. The ratio
d′i+ωi1
di

is a measure of the relative strength of

connection of node i within the set S1 compared to all its connections in G. Similarly
d′1
d1

is the

relative strength of connection of node 1 within S1 (or, equivalently, within S1), compared to all
its connections in G. The conditions in (39) thus require node 1 to be a node with comparatively
large relative connection strength within S1, compared to the other nodes in S1. This will allow
enough mass to diffuse to or away from node 1 (depending on whether or not 1 ∈ S), for it to
pass the threshold value 1

2 , without too much of the locally available mass diffusing to other
nodes.

Some examples in Section 6 further examines the conditions in (38) and (39).

Remark 4.11. One can interpret the condition |(κ1,r
S )1|2 > ‖(∆′)2χS1‖V,∞ from Theorem 4.8,

in terms of the spectral radius of ∆′ (similar to [Chu97, Equation (8.7)]). We compute

ρ(∆′) = sup
u∈V\{0}

〈u,∆′u〉V
‖u‖V

=
1

2
sup

u∈V\{0}

∑
i,j∈S1

ωij(vi − vj)2∑
i∈S1

dri v
2
i

≤ sup
u∈V\{0}

∑
i,j∈S1

ωij(v
2
i + v2

j )∑
i∈S1

dri v
2
i

= 2 sup
u∈V\{0}

∑
i,j∈S1

ωijv
2
i∑

i∈S1
dri v

2
i

= 2 sup
u∈V\{0}

∑
i∈S1

d̄iv
2
i∑

i∈S1
dri v

2
i

≤ 2(d̄−)−rd̄+,

where
d̄i :=

∑
j∈S1

ωij , d̄+ := max
i∈S1

d̄i, d̄− := min
i∈S1

d̄i.

Because
(
(∆′)2χS1

)
i

= 0 if i 6∈ S1, it is straightforward to adapt the proof of Lemma 2.1, to

find (d̄−)
r
2 ‖(∆′)2χS1‖V,∞ ≤ ‖(∆′)2χS1‖V .

Combining these results, the condition |(κ1,r
S )1|2 > ‖(∆′)2χS1‖V,∞ is satisfied if d−2r

1 (d′1)2 >

4(d̄−)−
r
2 (d̄−)−2r(d̄+)2

√
vol S1, or, equivalently, if

1

4

(
d′1
d̄+

)2( d̄−
d1

)2r

> (d̄−)−
r
2

√
vol S1.

Using vol S1 =
∑

i∈S1
dri ≥ |S1|dr−, we can deduce the stronger sufficient condition

1

4

(
d′1
d̄+

)2( d̄−
d1

)2r

>

(
dr−
d̄−

)− r
2

|S1|.
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5 Allen-Cahn equation on graphs

In this section, we investigate the Allen-Cahn equation on graphs. A short overview of the
continuum Allen-Cahn equation can be found in Section A.1 in Appendix A.

We propose the following Allen-Cahn equation (ACE) on graphs, for all i ∈ V :{
u̇i = −(∆u)i − 1

εd
−r
i W ′(ui) for t > 0,

ui = (u0)i at t = 0,
(ACEε)

for a given initial condition u0 ∈ V and ε > 0. Here W ∈ C2(R) is a double well potential. For
definiteness we set W to be the standard double well potential W (u) = (u+ 1)2(u− 1)2, hence
W ′(u) = 4u(u2 − 1) and W has two stable minima at the wells at u = ±1 and an unstable
local maximum at u = 0. Recall that the sign convention for the Laplacian is opposite to the
one used in the continuum literature. Note that for ε sufficiently small, this system has 3n

equilibria, of which 2n are stable.
The (MBOτ ) algorithm is closely related to time-splitting methods applied to the Allen-

Cahn evolution (ACEε). The diffusion step is precisely the time evolution with respect to the
first term of (ACEε) and the thresholding step is the asymptotic behavior of evolution with
respect to the second term of (ACEε).

The case V = Zd with weights ωij = ω(‖i − j‖) was considered in [BC99], where it is
seen as an approximation to the Ising model, and stationary solutions and traveling waves
are constructed for ε small enough. The authors note that, when ωij corresponds to nearest-
neighbors, this equation is known as the discrete Nagumo equation, which is a simplified model
of neural networks. In this context, [HPS11] considered the Nagumo equation in Z1 and derived
the existence of traveling waves. In general, we are not aware of any previous works where
(ACEε) is considered for an arbitrary weighted graph (V,E, ωij). It would be interesting to see
whether the analysis in [BC99] can can be extended to use (ACEε) to study phase transitions
in general graphs, a topic of interest in other areas of mathematics [Lyo00].

Just as in the continuum case, we arrive at (ACEε) as the gradient flow given by the graph
Ginzburg-Landau functional, GLε(u) : V → R,

GLε(u) :=
1

2
‖∇u‖2E +

1

ε
〈D−rW ◦ u, 1〉V , (GLε)

where (D−rW ◦ u)i = d−ri W (ui), and whose first variation is given by

d

dt
GLε(u+ tv)

∣∣∣∣
t=0

= 〈∆u, v〉V +
1

ε
〈D−rW ′(u), v〉V .

The factor d−ri in the potential term is needed to cancel the factor dri in the V-inner product.
Equation (ACEε) is then the V-gradient flow associated with (GLε).

Recall that the Laplacian ∆ also depends on r. In fact, the equation in (ACEε) can be
rewritten as

dri u̇i = −
∑
j∈V

ωij(ui − uj)−
1

ε
W ′(ui),

showing that the factor dri can be interpreted as a node-dependent time rescaling.
By standard ODE arguments and the smoothness of the right hand side of (ACEε), for each

ε > 0 a unique C1 solution to (ACEε) exists for all t > 0.
This continuum case (see Appendix A.1) suggests an approach for finding a valid notion of

mean curvature (and its flow) for graphs: Take initial data u(0) = χS − χSc , for some node
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set S ⊂ V , and consider the corresponding solution uε(t) to (ACEε), for all times t > 0. The
question is whether the limit

ūi(t) := lim
ε→0+

uεi (t)

exists. Even if it does, it is unlikely that ū is of the form χS(t)−χS(t)c , which can be interpreted
as a binary indicator function for some evolving set S(t), for all times t > 0, but there may be
an approximate phase separation: ūi(t) ∈ [−1−δ,−1+δ]∪ [1−δ, 1+δ], for some small δ > 0. Is
there a way to characterize the evolution of the “interface” between the two level sets of ūi(t)?

However, a little analysis shows the above approach is rather näıve. Indeed, unlike in the
continuum case, the graph Laplacian of the indicator function of a set S ⊂ V is always a well-
defined bounded function (in any norm). Thus, for small ε the potential term in the equation
will dominate the dynamics, and pinning or freezing will occur, as proven in Theorem 5.3. This
is the dynamics in which the sign of the value of u on each node is fixed by the sign of the initial
value, and u at each node just settles into the corresponding well of W .

As discussed at the start of Section 3.3, the question how to connect the sequence of sets
evolving by graph mean curvature to the super (or sub) level sets {i ∈ V : uεi (t) > 0} for
solutions of (ACEε), is still open. See also Question 7.4.

Remark 5.1. Note that in the (MBOτ ) algorithm, the values of u are reinitialized in every
iteration to 0 or 1. Our choice of the double well potential W in (ACEε) has two equilibria
corresponding to the level sets for ±1. Correspondingly, the unstable equilibrium for (MBOτ )
corresponds to the 1/2 level set, while for (ACEε) it corresponds to the 0 level set. This agrees
with the now standard notations for Allen-Cahn and MBO.

Below, we show that for all ε below a finite ε0 > 0 the functions uεi (t) do not change sign as
t varies, so that pinning occurs. Recall that a set which contains the forward orbit of each of its
elements is called positively invariant, and that the number of nodes in the graph G is |V | = n.

Lemma 5.2. Consider the set S := {u ∈ V : ‖u‖2V ≤
17
4 nd

−r
+ } and let u(t) be the solution to

(ACEε) for a given ε > 0. Then t 7→ ‖u(t)‖2V is decreasing at each t such that u(t) ∈ Sc. As a
consequence, the set S is positively invariant and every trajectory of (ACEε) enters S in finite
time.

Proof. Define the set A(t) := {i ∈ V : u2
i (t) ≤ 2}. We compute

d
dt‖u(t)‖2V = 2 〈u(t), u̇(t)〉V

= −2‖∇u(t)‖2E − 8
ε

∑
i∈V

ui(t)
2(ui(t)

2 − 1)

= −2‖∇u(t)‖2E − 8
ε

∑
i∈Ac(t)

ui(t)
2(ui(t)

2 − 1) + 8
ε

∑
i∈A(t)

ui(t)
2(1− ui(t)2)

< −8
ε

 ∑
i∈Ac(t)

ui(t)
2 − |A(t)|

4

 .

The last inequality follows, since ui(t)
2−1 > 1 for i ∈ Ac(t), and max{x2(1−x2) : x2 ≤ 2} = 1

4 .
Note that ‖u(t)‖2V ≤ dr+

∑
i∈V ui(t)

2. Thus, if u(t) ∈ Sc, then
∑

i∈V ui(t)
2 > 17

4 n, and hence∑
i∈Ac(t)

ui(t)
2 =

∑
i∈V

ui(t)
2 −

∑
i∈A(t)

ui(t)
2 > 17

4 n− 4|A(t)|.

Therefore,

d
dt‖u(t)‖2V < −8

ε

(
17
4 n− 4|A(t)| − 1

4 |A(t)|
)
< 0,
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where we have used that |A(t)| ≤ n. This shows ‖u(t)‖2V is decreasing in the region Sc, as
desired. The other statements in the lemma now follow.

Theorem 5.3. Assume |ui(0)| > 0 for all i ∈ V . There exist an ερ and an εκ (depending on
the spectral radius of ∆ via (41), and on supt≥0 ‖∆u(t)‖V,∞ < ∞ via (42), respectively), such
that, if either ε ≤ ερ or ε ≤ εκ, then the solution u(t) to (ACEε) is such that sign(ui(t)) is
constant in time, for all i ∈ V .

Proof. By Lemma 5.2, ‖u(t)‖2V ≤
17
4 nd

−r
+ for t large enough. Hence, by continuity of u(t), there

is a C (depending on the initial condition) such that, for all t ≥ 0,

‖u(t)‖V ≤ C.

Thus, if ρ > 0 denotes the spectral radius of ∆, we get, for all i ∈ V ,

dri |∆ui(t)|2 ≤ ‖∆u(t)‖2V ≤ ρ2C2.

In particular

|∆ui(t)| ≤ ρCd
− r

2
i , (40)

for all i ∈ V , thus, we have the inequalities

−ρCd−
r
2

i − 1
εd
−r
i W ′(ui) ≤ u̇i ≤ ρCd

− r
2

i − 1
εd
−r
i W ′(ui).

Without loss of generality, we can assume that there is a number α ∈ (0, 1) such that |ui(0)| ≥ α
for all i ∈ V . If there is an i ∈ V such that |ui(t)| = α for a given t, then we have that
|W ′(ui(t))| = 4α(1− α2), with a sign opposite to that of ui. Thus, if

ε ≤ ε0 := C−1ρ−14α(1− α2)d
− r

2
+ ≤ C−1ρ−14α(1− α2)d

− r
2

i , (41)

then u̇i ≤ 0 if ui(0) < 0, and u̇i ≥ 0 if ui(0) > 0. Hence ui(t) can never reach zero, and by
continuity in t it does not change sign.

Alternatively, instead of (40), we can estimate |∆ui(t)| ≤ supt≥0 ‖∆u(t)‖V,∞ < ∞. The
finitude of the right hand side follows from (40). Following the same reasoning as above, we
then conclude

εκ :=

(
sup
t≥0
‖∆u(t)‖V,∞

)−1

d−r+ 4α(1− α)2. (42)

The constant εκ in Theorem 5.3 involves ‖∆u‖V,∞, which is “curvature-like”. Compare this
to the constant τκ in Theorem 4.2, which depends on the maximum curvature of the indicator
set in the graph, ‖∆χS‖V,∞, as also discussed in Section 4.4. This tentative similarity makes
us suspect, that a condition on the local curvature, similar to those for the (MBOτ ) algorithm
given in Theorem 4.8, guarantees a phase change in the Allen-Cahn flow. We discuss this further
in Question 7.3.

We see that the discrete nature of the graph, manifest in the finite spectral radius of the
Laplacian, makes the limit behavior of (ACEε) as ε → 0 much different than that for the
continuum case. In particular, this means that we ought to look for a notion of mean curvature
flow on graphs more carefully.
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Remark 5.4. For ε small enough, but not smaller than the ε0 from Theorem 5.3 above, we
expect interesting asymptotic behavior for the motion of the phases in (ACEε) on intermediate
time scales. Such asymptotics might be connected to the graph curvature of the phases, which
would match the situation in the continuum setting, where the solution has phases that for large
times behave as if they were evolving by mean curvature flow, while the solution itself becomes
stationary in the limit t→ +∞. This phenomenon is known as dynamic metastability (see for
instance [BK91] and the references therein). See also Question 7.4.

6 Explicit and computational examples

In this section we give several examples of graphs where the mean curvature, MBO, and Allen
Cahn evolutions can be compared either explicitly or computationally.

6.1 Complete graph

Consider the complete graph, Kn, on n nodes with ωij = ω for all i, j ∈ V . See Figure 1a. In
this case, the matrix representation of the graph Laplacian is given by the circulant matrix,

L = ω[(n− 1)ω]−r
(
n Idn − 1n1tn

)
,

where 1n denotes the vector in Rn with all entries equal to 1, and Idn the identity matrix in
Rn×n. The eigenvalues of L are given by 0 and ωn[(n − 1)ω]−r (with multiplicity n − 1). In
particular, λ2 = λn = ρ. Note that the normalized eigenvector corresponding to eigenvalue 0 is
given by (vol V )−

1
2χV .

Let S ⊂ V be a set with volume ratio RS = vol S
vol V (see also Theorem 4.3). Using the spectral

decomposition from (11), the evolution of χS by the heat equation can be explicitly written as

e−t∆χS = RSχV + e−ρt (χS −RSχV ) .

Assume RS 6= 1
2 . Then there exists a critical time step τc depending only on vol S, vol V ,

and ρ such that τ < τc implies the solution to the (MBOτ ) evolution is pinned and τ ≥ τc
implies exactly one iteration of the (MBOτ ) evolution gives a stationary solution, either 0 or
χV depending on the initial mass, M(χS) = vol S (see (10)). From the solution, the critical
time step τc can be directly computed,

τc =
1

ρ
log

max{Rs, 1−RS}
|12 −RS |

If RS = 1
2 , symmetry pins the (MBOτ ) evolution for all τ > 0.

The bound from Theorem 4.2 states that pinning occurs if τ < τp = ρ−1 log
(

1 + 1
2(nRS)−

1
2

)
,

where we have used the fact that, for all i ∈ V , dri = volV
n . The bound in Theorem 4.3 states

that trivial dynamics occur if τ > τt = ρ−1 log

(
n

1
2R

1
2
S R

1
2
Sc

| 1
2
−RS |

)
. Note that for n > 2, RS >

1
n and

τt > τc > τp.
By symmetry, both the Allen-Cahn equations and mean curvature flows reduce to two-

dimensional systems, with one variable governing the value of the nodes in S and the other the
nodes in Sc. Critical parameters ε and ðt exist for which below the phase remains the same for
all nodes and above the phase simultaneously changes.
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Figure 1: Some small graphs, discussed in the examples of Section 6. (a) The complete graph
K4, (b) the star graph SG5, (c) a small grid, and (d) a cycle graph C4; see Sections 6.1, 6.2,
6.4, and 6.5.

6.2 Star graph

Consider a star graph SGn as in Figure 1b with n ≥ 3 nodes. Here the central node (say node
1) is connected to all other nodes and the other n− 1 nodes are only connected to the central
node. Hence, for all i ∈ {2, . . . , n}, ω1i = ωi1 > 0, and all the other ωjk are zero.

We consider the unnormalized graph Laplacian L = D − A (r = 0 in (8)). Since d1 =∑n
j=2 ω1j and di = ω1i, for i ∈ {2, . . . , n}, we can explicitly compute the characteristic polyno-

mial of L:

p(λ) =
(
− λ+

n∑
k=2

ω1k

) n∏
j=2

(ω1j − λ)−
n∑
k=2

ω2
1k

∏
j≥2, j 6=k

(ω1j − λ).

If all non-zero edge weights have the same value ω, this simplifies considerably to

p(λ) =
(
(n− 1)ω − λ

)
(ω − λ)n−1 − ω2(n− 1)(ω − λ)n−2.

Hence, in this case, the eigenvalues are λ1 = 0, λi = ω for i ∈ {2, . . . , n− 1}, and λn = nω. A
choice of corresponding (normalized) eigenvectors {vi}ni=1 is given by15

v1 = n−
1
2χV , vij = 2−

1
2


1 if j = i,

−1 if j = i+ 1,

0 else,

for i ∈ {2, . . . , n− 1}

vnj =
1√

n(n− 1)

{
n− 1 if j = 1,

−1 if j 6= 1.

We now let S = {1} and note that χS has the explicit expansion in terms of these eigenvec-
tors,

χS = n−
1
2 v1 + (n− 1)

1
2n−

1
2 vn.

We now consider the (MBOτ ) iterates of χS . We compute

e−∆τχS = n−1χV + (n− 1)
1
2n−

1
2 (e−nωτ )vn.

Thus pinning occurs if τ < τc := 1
nω log

(
2n−1
n−2

)
. If τ > τc, the solution to the (MBOτ ) evolution

gives the stationary solution, 0, after exactly one iteration. The bound from Theorem 4.2 states
that pinning occurs if τ < 1

nω log 3
2 . The bound in Theorem 4.3 states that trivial dynamics

15Here, subscripts j denote the components of the vectors.
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occur if τ > 1
ω log

(
2n−1
n−2

)
. Qualitatively, this example shows that it is easier for a solution to

be pinned on nodes with smaller degree.

We now consider an implication of Theorem 4.8 in the case where the graph induced by S1

is a star graph with node 1 as center, i.e., d′i = 0 for all i ∈ S1. This is certainly true for the
case when the graph is a star graph and S = {2, . . . , n}. The following lemma states, in the
case where r = 1, a simple criterion on the degrees for which there exists a τ interval in which
node 1 switches phase in a single iteration of (MBOτ ). We will see an application of the lemma
in Section 6.3.

Lemma 6.1. Let r = 1 and consider the case where the subgraph induced by S1 is a star graph
with node 1 as center, i.e., d′i = 0 for all i ∈ S1. If either

• |S1| = 1 and di < d1, for i ∈ S1, or

• |S1| ≥ 2 and di ≤ d1, for all i ∈ S1,

then there exists a nontrivial τ interval (as in Theorem 4.8) such that node 1 will change phase
in the next (MBOτ ) iterate.

Proof. We see from condition (39) (or via direct computation from (38)) that a sufficient con-

dition for τ1 < τ2, is to have, for all i ∈ S1,
ωi1
di

<
d′1
d1

or equivalently
ωi1
d′1

<
d1

di
. If i ∈ S1 is the

only node in S1, then ωi1 = d′1 and we find the condition di < d1. If however |S1| ≥ 2, we have
ωi1
d′1
≤ 1, because d′1 = ωi1 +

∑
j∈S1\{i}

ωij , and thus the condition on d1
di

can be replaced by the

simpler (but stronger) condition di < d1, for all i ∈ S1.

6.3 A regular tree

We consider the (MBOτ ) iterations on a regular tree as in Figure 2. Let ωij = ω, for all
(i, j) ∈ E, and r = 1. As in Figure 2a, we consider the case where the initial set S consists of
the leaves of a branch. We first observe that the subgraph induced by Sj , for any j ∈ V , is a
star graph with node j as center, i.e., d′i = 0 for all i ∈ Sj (for an example of a star graph with
five nodes, see Figure 1b), so that the hypothesis of Lemma 6.1 are satisfied with nodes 9 and
10 each playing the role of “node 1” in the lemma.

Applying Lemma 6.1 to node 9 in Figure 2a where S = {1, 2, 3, 4}, we see that there exists
a τ such that node 9 will change in the next iteration. By symmetry, node 10 will change in the
same iteration. If node 13 doesn’t change in the first MBO iteration, Lemma 6.1 can be applied
again (because node 13 has two children, the hypotheses of the lemma are again satisfied with
9, 10 ∈ S13) to show that there exists a τ such that node 13 will be added to the set. After
node 13 has been added to the set, S, as in Figure 2b the MBO iterates are stationary. To
see that node 15 cannot be added to S, assume that it were. Then the value of the Lyapunov
functional, (33), must have decreased. But by symmetry, in the next MBO iteration, node 15
will be removed from S, again decreasing the value of the Lyapunov functional, a contradiction.
The final configuration in Figure 2b minimizes the normalized cut, as defined in Section 2.2.

This argument is easily generalized to trees where each node, excluding leaves, has the same
number of children c ≥ 2.
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1 2 3 4 5 6 7 8

9 10 11 12

13 14

15

(a) Initial configuration

1 2 3 4 5 6 7 8

9 10 11 12

13 14

15

(b) Final configuration

Figure 2: The initial and final configurations for an evolution by the (MBOτ ) scheme on a tree
graph; see Section 6.3.

6.4 A small square grid

Here we construct an explicit example where Theorem 4.8 can be applied to show that there
exists a time interval (τ1, τ2) such that a node is guaranteed to change in one iteration of the
(MBOτ ) algorithm.

Consider a three by three (nonperiodic) square grid as in Figure 1c with unit edge weights,
with nodes numbered 1 through 9 from left to right, top to bottom. Let S = {4, 6, 7, 8, 9}. We
focus on node 5. We have N5 = {2, 4, 6, 8} and S5 = N5 ∩ S = {4, 6, 8}. We then compute
d′5 = 3, d5 = 4, d′4 = d′6 = d′8 = 0 and d4 = d6 = d8 = 3. It is easily checked that, for i ∈ S5,

d′i
di

= 0 ≤ 3

4
=
d′5
d5

and
ωi5
di

=
1

3
<

3

4
=
d′5
d5
,

such that conditions (39) are satisfied. Furthermore, with S5 := S5 ∪ {5},

∑
k∈S5

d′k
dk

ωik
di

=

{
0 if i = 5,
1
4 if i ∈ S5,

thus
(
d′5
d5

)2
−maxi∈S5

∑
k∈S5

d′k
dk

ωik
di

=
(

3
4

)2 − 1
4 = 5

16 > 0, and even the full condition (38), for

r = 1, is satisfied. From (36) we can then compute

τ1,2 =
3/4

1/4
± 4

√
5

16
= 3±

√
5,

for the time interval (τ1, τ2) of Theorem 4.8.
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(a) (b) (c)

Figure 3: Two (MBOτ ) evolutions on the 2-torus graph, T 2
32,12. The top and bottom ‘border’

nodes are connected (not shown) as are the left and right ‘border’ nodes. (a) Initial condition.
(b) For τ = 1.12, the stationary state shown is reached in 4 iterations. (c) For τ = 4, the
stationary state shown is reached in 5 iterations. See Section 6.5.

6.5 Torus graph

Consider the n-cycle, Cn with n nodes. The nodes are arranged in a circle and each node is
connected to its 2 neighbors. We take ωij = ω for i ∼ j and zero otherwise. See Figure 1d.
We consider the unnormalized graph Laplacian L = D − A (r = 0 in (8)). In this case, L is a
circulant matrix diag({−1, 2,−1}, {−1, 0, 1}). The eigenpairs {(λj , vj)}nj=1 are given by

λj = 2ω − 2ω cos
2π(j − 1)

n

vji = exp (2πi(j − 1)/n) .

We then consider the 2-torus graph, T 2
n1,n2

which is the Kronecker (tensor) product of the
n1- and n2-cycles. See Figure 3. In particular, if u and v are eigenfunctions of the graph
Laplacian on Cn1 and Cn2 with corresponding eigenvalues α and β respectively, then w = u⊗ v
(with wi,j = uivj) is an eigenvector of T 2

n1,n2
with corresponding eigenvalue α+β. In particular,

the spectral radius of the Laplacian is ρ = 8ω.
Consider for a moment T 2

n1,n2
as a discretization of the torus, T2. The nontrivial minimal-

perimeter subsets of T2 are given by “strips”. Thus we might expect that for some initial
condition, χS , S ⊂ V the evolution by MBO, Allen-Cahn, or MC would converge to a strip.

We consider the (MBOτ ) evolution on a 32 × 12 torus with ω = 1 and initial condition,
as in Figure 3a. For τ = 1.12, the solution is stationary after 4 iterations once the “high
curvature corners” have been removed, as in Figure 3b. For τ = 4, the solution evolves into a
minimal-perimeter “strip” in 5 iterations, as in Figure 3c.

For the parameters in Figure 3b, we compute the guaranteed stationarity bounds in (30)
and (31) to be τρ ≈ 0.0057 and τκ = 1

4 , respectively, showing these bounds are not sharp. figs
Consider (MCFðt), with Sn equal to the minimal-perimeter strip in Figure 3c. Then Sn+1 = Sn
is a minimizer of F(·, Sn), but so are Sn+1 = Sn ∪ ∂(Scn) and Sn+1 = Sn \ ∂Sn (or variations in
which only one ‘vertical line’ of the boundary is added or removed). This illustrates a possible
type of non-uniqueness for (MCFðt), which occurs when Sn is totally geodesic (i.e., its boundary
is a geodesic). To reiterate, the stationary solution in Figure 3b is frozen (due to the smallness
of τ), while the solution in Figure 3c is totally geodesic.

6.6 Buckyball graph

Consider the buckyball graph with 60 nodes and 90 edges with ωij = ω for all edges (i, j) as in
Figure 4. The graph is regular; each node has degree 3ω.
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Figure 4: An (MBOτ ) evolution with τ = 2 on the buckyball graph. The solution at each
iteration is the characteristic function of the gray nodeset. See Section 6.6.

Consider for a moment the buckyball graph as a (coarse) discretization of the sphere, S2.
There are no nontrivial minimal-perimeter subsets of S2. Great circles are the only nontrivial
stationary submanifolds of S2 (and have constant curvature). In fact, great circles are totally
geodesic. Thus we might expect that for any initial condition, χS , S ⊂ V such that |S| 6= |S2|/2,
the evolution by MBO, Allen-Cahn, or MC would converge to a stationary solution, either 0 or
χV depending on the initial mass, M(χS) = vol S. If S is chosen to be a symmetric partitioning
of the nodes for the buckyball graph, we expect that the (MBOτ ) evolution will be stationary
for all values of τ .

The bound from Theorem 4.2 states that pinning in (MBOτ ) occurs if

τ < ρ−1 log

(
1 +

1

2
|S|−

1
2

)
.
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The bound in Theorem 4.3 states that trivial dynamics occur if

τ > λ−1
2 log

(
(3ω)

r
2 |S|(n− |S|)∣∣|S| − n

2

∣∣
)
.

We find numerically that λ2 ≈ ω1−r3−r · 0.2434 and λn ≈ ω1−r3−r · 5.6180.
For initial condition χS , with |S| = 14, as given in Figure 4 (top left), and r = 0 and ω = 1,

Theorems 4.2 and 4.3 predict that pinning occurs if τ < 0.0223 and trivial dynamics occur if
τ > 15.1811. We find numerically that this initial condition is pinned if τ < 1.89 and trivial
dynamics occur if τ > 3.54. For intermediate values of τ , the iterates shrink to the empty node
set. For τ = 2, the iterates take 3 iterations to reach steady state, as illustrated in Figure 4.

For the initial condition χS where S is taken to be a symmetric partitioning of the nodes,
(MBOτ ) evolution is pinned for all values of τ .

6.7 Adjoining regular lattices

We consider the graph which is composed by adjoining a square and triangular lattice. See
Figure 5. We take r = 0 and ωij = 1 for i ∼ j and zero otherwise. Note that the degree of a
node in the triangular lattice is 6 and the degree of a node in the square lattice is 4.

To test the intuition from the star graph (see Section 6.2) that it is easier for the solution
to pin on nodes with smaller degree, we consider the initial condition given in the top left panel
of Figure 5. The mass is initially distributed over both the square and triangular lattice sites.
We consider the (MBOτ ) evolution with τ = 0.8. The solution moves freely on the lattice sites
with degree > 4, i.e., on the triangular lattice. However, on the square lattice, the solution only
‘rounds corners’.

The nodes on the ‘border’ of the graph (where the regular lattice was cut) have smaller
degree. In Figure 6, we demonstrate that the solution can also be pinned on the border. Again,
the initial condition is given in the top left panel. In this simulation, we take τ = 0.9. Away
from the boundary, the solution set can again shrink freely. However, the solution becomes
pinned on the border.

6.8 Two moons graph

In this last example, we consider a graph which is widely used as a benchmark problem for
partitioning algorithms. Our construction of the graph follows [BH09]. The graph is generated
by first randomly distributing 600 points in a region described by two half arcs in R2—referred
to as “two moons”. See Figure 7 (top left). The points are then embedded in R100 and randomly
perturbed by i.i.d. Gaussian noise with mean zero and standard deviation σ = 0.1. Let k = 10.
The edge weights are chosen to be

wij = max{si(j), sj(i)}, where si(j) = e
− 4

d2
i

‖xi−xj‖2
,

and di is the Euclidean distance between xi and its k-th nearest neighbor. We then take the
symmetrized k-nearest neighbors graph. This is given in Figure 7 (top right).

We consider the (MBOτ ) evolution with τ = 5 and initial condition as shown in Figure 7
(bottom left). After 9 iterations, the (MBOτ ) evolution converges to the state in Figure 7
(bottom right).

We want to stress that the two moons example is meant as an illustration of the (MBOτ )
algorithm on a more complex toy graph. In this paper we do not aim to compete in terms of
accuracy or efficiency with existing clustering methods, hence we will not focus on those aspects
of the two moons example.
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Figure 5: An (MBOτ ) evolution with τ = 0.8 on a graph consisting of adjoining regular lattices.
The solution at chosen iterations is the characteristic function of the gray nodeset. For the
initial condition, given by the top left panel, the evolution reaches a steady state in 9 itera-
tions. Iterations 3 (top right), 6 (bottom left), and 9 (bottom right) are shown. This example
strengthens the ‘rule of thumb’ that it is easier for a solution to become pinned on nodes with
smaller degree. See Section 6.7.

7 Discussion and open questions

Motivated by curvature flows in continuum mechanics, we described several analogous processes
on graphs. In particular we used the graph total variation, or graph cut, to define curvature on
graphs, which we then related to the graph Allen-Cahn equation, graph MBO scheme, and graph
mean curvature flow. The continuum intuition for these problems suggests many results, some
of which we proved in this paper, some which we have shown cannot hold on a graph because of
the lack of infinitesimal length scales, and some which we state below as, still unproven, open
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Figure 6: An (MBOτ ) evolution with τ = 0.9 on a graph consisting of adjoining regular lattices.
The solution at chosen iterations is the characteristic function of the gray nodeset. For the initial
condition, given by the top left panel, the evolution reaches a steady state in 13 iterations.
Iterations 4 (top right), 9 (bottom left), and 13 (bottom right) are shown. This example
strengthens the ‘rule of thumb’ that it is easier for a solution to become pinned on nodes with
smaller degree. See Section 6.7.

questions.
In a sense to be made precise, for a suitable choice of τ (not too small, not too large,

depending on ω, most likely depending on the graph’s spectrum), the dynamics of (MBOτ ) are
expected to approximate those of graph MCF.

Question 7.1 (MBO and graph Mean Curvature Flow). Is there an interval of τ (depending
on ðt), for which a single (MBOτ ) iteration minimizes the (MCFðt) functional F from (25)?
For such a τ , the graph mean curvature flow (MCFðt) would coincide with the (MBOτ ) scheme
(up to a time rescaling).
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Figure 7: (top) Construction of the two moons graph. (top left) Some random points in the
shape of two moons. (top right) The connectivity of the graph resulting from connecting
nearest neighbors after adding high dimensional noise. (bottom) An (MBOτ ) evolution for
τ = 5, starting with initial condition on the left and terminating at the stationary solution on
the right in 9 iterations. See Section 6.8.

An approach to Question 7.1, uses the Taylor series expansion for the solution of the graph
heat equation: e−t∆χS =

∑∞
k=0

1
k! (−t∆)k χS , for S ⊂ V . Hence, we can rewrite the Lyapunov

functional J from (33) as

J(χS) = 〈1− χS , χS − τ∆χS〉V +RS(τ), where RS(τ) :=
∞∑
k=2

(−τ)k

k!
〈χSc ,∆kχS〉V .

Using 〈1− χS , χS〉V = 0, 〈1,∆χS〉V = 0, and (3), we find

J(χS) = τTV1
a(χS) +RS(τ).

This connection between the Lyapunov functional J and the total variation, and hence the
MCF functional F from (25), strengthens the plausibility of a positive answer to Question 7.1.
A more difficult question, which could be of great use in numerical problems, is how we can
estimate the number iterations of (MBOτ ) needed to go from some initial data to a minimizer
of the Ginzburg-Landau functional or graph cut functional.
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Question 7.2 (Minimizing graph cut). For any, a priori specified, approximation error, is
there a local, quantitative bound on the number of iterations of (MBOτ ) needed to approximate
a minimizer of the graph cut functional TVq

a up to the specified accuracy? “Local” means here
that the bound does not rely on the spectrum of the graph, but instead uses quantities such as
graph curvature κq,r or the total variation TVq

a(χN ) for some local graph neighborhood N ⊂ V .
The analogous question can be asked for (MCFðt).

In Theorem 4.8 it was shown that, if the curvature at a given node is sufficiently large and
the time step τ in (MBOτ ) is chosen in the right interval, then the value at the node will change
in one (MBOτ ) iteration. The next question is the analogous statement for the Allen-Cahn
equation, (ACEε).

Question 7.3 (Non-freezing for Allen-Cahn). Let ε be in some positive interval and let uε be
a solution of the Allen-Cahn equation (ACEε) for this choice of ε. Suppose that the curvature
(κ1,r
S )i of S = {j | uεj(t0) ≤ 0} at a node i ∈ S, is sufficiently large (possibly depending on ε).

Is there is some interval of positive times such that uεi (t0 + h) > 0 for h in this interval?

Because (ACEε) is derived from the graph functional (GLε), we suspect that the correct
curvature in Question 7.3 is κ1,r

S , the curvature related to the anisotropic functional 1
2TV1

a,
which was identified as the Γ-limit of (GLε) for ε → 0 in earlier work [vGB12], and not the
curvature which can be derived from the isotropic total variation functional TV as the continuum
case might suggest at first glance. Since we have seen that pinning occurs for small enough ε,
full convergence is not expected here, but the numerical examples of Section 6 suggest an
approximate result for small ε is feasible.

Question 7.4 (Allen-Cahn and graph Mean Curvature Flow). Is there an ε > 0 such that,
given the solution uε to (ACEε) for some ε > 0, there is an increasing sequence of times tn for
which either the sets Sn := {j | uεj(tn) ≤ 0} or the sets Sn := {j | uεj(tn) ≥ 0} form a solution
to the graph MCF?

Furthermore, among sequences with this property is there exactly one sequence {tn} that
is maximal in the following sense: there exists no sequence {t′n}, of which {tn} is a strict
subsequence, such that {St′n}n 6⊂ {Stn}n and {St′n} is still a solution to the graph MCF?

A different question is how the graph MCF behaves in the continuum limit, when it is
formulated on a sequence of graphs which are ever finer discretizations of some continuum space.
We expect that it should give back the usual MCF in the continuum limit, or some anisotropic
MCF, as the convergence results in [vGB12] show the final limit could crucially depend on the
scaling in ðt and the discretization parameter (which will show up in the graph weights). This
question is similar (and perhaps equivalent) to the convergence of discretization schemes for the
usual MCF. Similar questions can be asked about the graph Allen-Cahn equation and graph
MBO scheme.

Question 7.5 (Stability of graph MCF, MBO, and ACE, in the continuum limit). Suppose we
are given any sequence of graphs (V k, ωkij), k ∈ N, converging in the Gromov-Hausdorff sense to
a Riemannian manifold (M, g). Is there a fixed time interval such that, as k →∞, any sequence
generated by (MBOτ ) with τ in this interval converges to a sequence generated by the (possibly
anisotropic) continuum MBO algorithm in M (with the Laplacian induced by g)? Accordingly,
do solutions of (ACEε) converge to solutions of the (possibly anisotropic) continuum Allen-Cahn
equation in M , and do solutions to (MCFðt) converge to viscosity solutions (via the level set
formulation) of (possibly anisotropic) continuum MCF in M , with initial data given by the limit
of the initial data in each V n?
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As explained in Appendix A, MCF is closely related to certain models of continuum phase
transitions, particularly Allen-Cahn and Ginzburg-Landau dynamics. However, another impor-
tant connection with statistical mechanics involves Ising models and other interacting particle
systems, which are known to converge in the mesoscopic limit to flow by mean curvature. In
work of Katsoulakis and Souganidis [KS94, KS97] convergence to a viscosity solution of MCF
is first proved. See also the related work of Funaki and Spohn [FS97] where MCF is derived
as a deterministic limit of stochastic Ginzburg-Landau dynamics. On the other hand, there is
vast literature concerned with (for instance) the Ising model (and its generalizations) on graphs
[Lyo89, Lyo00], see also Durrett’s book [Dur07]. This suggests the following question.

Question 7.6 (Possible probabilistic interpretations of graph MCF, MBO, and AC). Is (MCFðt)
related to an interacting particle system on the underlying graph? Also, are there interacting
particle systems or stochastic processes in V that are related to (MBOτ ) or (ACEε)?

Finding such a system would partly resolve the issue that a front moving on a graph in
continuum time necessarily does so in a way that, from a continuum point of view, looks
discontinuous (as discussed previously in this paper, in particular in Sections 3.3 and 5.), as
the particle dynamics would be continuous in time and stochastic The convergence results in
[KS94, KS97, FS97] show that the above question has an a priori higher chance of having a
positive answer for a large graph, as it already holds in the continuum limit.
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A The continuum case

In this appendix, we briefly review and provide references for the Allen-Cahn equation, the
MBO algorithm, and mean curvature flow in the continuum setting.

A.1 The continuum Allen-Cahn equation

The Allen-Cahn equation is a reaction-diffusion equation, given by

ut = ∆u+ f(u), (43)

where u : Rn×R+ → R and ∆ is the standard Laplacian (although other linear elliptic operators
can be considered as well), and f is a non-linear function of the form f = −W ′ where W : R→ R
is a double well potential with two global minima. For simplicity, take W (u) = (u+1)2(u−1)2,
where the minima are at ±1.

A question which is always of interest is understanding the way that solutions to (43)
converge to equilibrium. For each fixed x, one expects that u(x, t) approaches either 1 or −1,
as t→ +∞, as these values correspond to the minima of W . This indicates that for very large
t the function u defines two regions of Rn, where it is very close to either 1 or to −1, separated
with a smooth transition layer in between.
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This asymptotic behavior is well understood nowadays. Rescaling (x, t) as (xε ,
t
ε2

), we obtain
the equation

uεt = ∆uε + ε−2f(uε). (44)

Note that for very small ε the function uε describes the long time behavior of the original
u. Then, it is well known (see [BSS93, BK91] for background and discussion) that, as ε→ 0+,
the solutions uε(x, t) converge to a function which takes the value −1 in some set St (depending
on time) and takes the value 1 in Sct . Here St is a set whose boundary is evolving by mean
curvature flow (see Section A.2).

Although the original motivation for studying (43) was phase transitions, it is also the
gradient flow of the Ginzburg-Landau functional. Precisely, equation (44) is the L2 gradient
flow of the functional

GLε(u) :=

∫
ε

2
|∇u|2 +

1

ε
W (u) dx. (45)

It is expected that solutions to (44) converge to a local minimum of this functional, as t→ +∞,
thus schemes for (44) could be used for approximating minima of (45). This is the application
that serves as the biggest motivation in the graph setting.

For more information about reaction-diffusion equations with a polynomial nonlinearity we
refer to [Tem97, Section 1.1].

A.2 Continuum mean curvature flow

Mean curvature flow (MCF) consists of the evolution of a closed, oriented hypersurface Σt ⊂ Rd
over time, such that the inner normal velocity at a given point of Σt is equal to the mean
curvature of Σt at that point. The study of such a flow has been greatly motivated by phase
transition models in crystal growth and materials science, in particular since the important work
of Allen and Cahn [AC79]. Starting with the seminal work of Brakke [Bra78], the mathematical
study of this flow has been vast, and has involved areas of mathematics ranging from differential
geometry to stochastic control. The use of MCF is now widespread in the modeling of moving
fronts [CS94]. The reason why MCF is so ubiquitous in the phase transitions literature, is
that many singular limits of reaction diffusion equations (i.e., singular limits of Ginzburg-
Landau dynamics) converge to motion by mean curvature. See [BK91, Peg89, BG95] for precise
convergence theorems and further discussion.

A well known feature of MCF is both the formation of singularities and the occurrence of
topological changes, regardless of the smoothness of the initial data. A significant portion of the
literature on MCF deals with notions of weak solutions, the first of which goes back to Brakke
[Bra78]. Partial regularity for weak solutions as well as regularity up to the first singular time
have been widely studied [Eck04].

An equivalent formulation of the flow looks not only at the hypersurface Σt, but at the entire
domain Ωt bounded by it, so that ∂Ωt = Σt. Accordingly, it is said that Ωt itself is evolving by
mean curvature flow. This perspective is natural for phase transitions.

Let φ(t, ·) : Rd → R be the signed distance function to the set Ω at time t. From the level
set method perspective [OF03], the motion by mean curvature16 of Ωt corresponds to an initial
value problem for a fully non-linear degenerate parabolic equation,

φt = F (D2φ,∇φ), φ(., 0) = φ0, where F (D2φ,∇φ) = −|∇φ|div
∇φ
|∇φ|

. (46)

16In the literature two related, but different, concepts of mean curvature appear. One corresponds with the
factor div ∇φ|∇φ| in (46), the other has a normalization factor 1

d−1
, where d is the dimension of the space. This

normalization by the dimension of the hypersurface justifies the “mean” part of “mean curvature”.

45



Then, when there is a smooth solution φ(x, t), the domains given by Ωt := {φ(·, t) < 0} will be
evolving by mean curvature flow and will start from the original domain Ω. In general, even for
an initial domain with a smooth boundary, a smooth solution might not exist for all times, and
one must work with viscosity solutions. In this context, the convergence of the MBO scheme
(47) (explained in Section A.3) to such viscosity solutions was proved by Evans [Eva93].

It is worth remarking that Soner and Touzi in [ST03] interpret MCF as a stochastic control
problem. In this interpretation, one controls a Brownian motion for which one is allowed to
turn off diffusion in one given direction. The surface Σt in this case arises as the set of points
that can be reached with probability 1. This probabilistic interpretation is quite different from
those mentioned in the discussion at the end of Section 7.

Finally, given the affinity with the graph setting, it is worthwhile to comment briefly on
the more recent nonlocal mean curvature flow. Caffarelli and Souganidis [CS10] arrive at this
flow by following a nonlocal and continuum analogue of (MBOτ ), where instead of using the
Laplacian one uses a fractional power of the Laplacian (−∆)s with s ∈ (0, 1/2). A level set
formulation based on viscosity solutions was developed later by Imbert [Imb09].

A.3 The continuum MBO algorithm

The Merriman, Bence, and Osher (MBO) algorithm [MBO92, MBO93, MBO94], also known
as the threshold dynamics algorithm, approximates the dynamics of mean curvature flow (46)
by alternatively applying diffusion and thresholding operators. Let χ(t, ·) be the characteristic
function of the set Ωt at time t. Define the diffusion operator χ0 7→ u(t, ·) := e−t∆χ0 to be the
solution of the initial value problem

u̇ = −∆u, u(0) = χ0(·).

Define the threshold operator

Pu(x) =

{
1 u(x) ≥ 1

2

0 u(x) < 1
2

.

The MBO evolution of a set described by u at time T can then be succinctly written

χ(T, ·) =
(
Pe−τ∆

)k
χ0, where τ = T/k (47)

is the ‘time step’ and k is a parameter. In [Eva93, BG95] convergence of the MBO algorithm
to motion by mean curvature, defined in (46), as k ↑ ∞, is proven.

The MBO scheme and its implementation has evolved considerably since its original pro-
posal. We provide a small, non-exhaustive, overview here. In [Mas92, Ruu98a], the MBO
scheme was extended to multiple-phase problems. In [Ruu96, Ruu98b], a spectral discretization
of the MBO scheme for motion by mean curvature was proposed, which is much more efficient
then finite difference approaches. This approach can be applied to both two-phase and multi-
phase problems. In [ERT08], diffusion generated motion was applied to higher order geometric
motions. In [ET06], the MBO scheme was extended to a thresholding method for approximat-
ing the evolution by gradient descent of the Mumford-Shah functional and applied to image
segmentation problems. In [ERT10] the authors study MBO-like schemes which use the signed
distance function. Recent work [EO13] presents new algorithms for multiphase mean curvature
flow, based on a variational description of the MBO scheme.

It is well-known that, in a finite difference scheme for the MBO algorithm, the time step τ
(equivalently k) in (47) must be chosen carefully and in the limit as k ↑ ∞, the discretized MBO
evolution is stationary. In fact, when discussing the numerical implementation of the algorithm
on a discrete grid, Merriman, Bence, and Osher [MBO92] observe:
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“The basic requirement is that [the time step, τ ,] be short enough so that the local
analysis . . . is valid, but also long enough so that the boundary curve moves by at
least one grid cell on the spatial grid (otherwise the curve would be stuck).”

They derive heuristic upper and lower bounds on the time step, τ , for the algorithm to approx-
imate motion by mean curvature.

B Coarea formula for anisotropic graph total variation

In this appendix we prove a layer cake or coarea formula for the discrete total variation in
TVq

a. Such a formula is useful when trying to minimize the total variation over binary valued
functions. The formula shows that such minimization can be achieved, by first minimizing over
real-valued functions and then selecting (almost any) sublevel set of the resulting minimizer.
This will give a binary minimizer of the total variation. Minimizing the total variation by itself
gives a trivial solution, so the usefulness of this layer cake formula hinges on the ability to find
a similar formula for the fidelity term or constraint that is applied to the minimization. An
example where this technique is used for the continuum isotropic total variation is [CEN06]. In
[CvGO11] it is used for a continuum anisotropic total variation.

Recall from Section 2 that

TVq
a(u) := max{〈divϕ, u〉V : ϕ ∈ E , ‖ϕ‖E,∞ ≤ 1}

= 〈∇u, ϕa)〉E =
1

2

∑
i,j∈V

ωqij |ui − uj |.

where a particular choice of ϕa is given in (1): ϕa := sgn(∇u). Since, for given u ∈ V , and for
all i, j ∈ V , (ui − uj)ϕaij ≤ 0, an equivalent definition of TVq

a is

TVq
a(u) = max{〈divϕ, u〉V : ϕ ∈ E−(u)},

where
E−(u) := {φ ∈ E : ‖φ‖E,∞ ≤ 1, ∀i, j ∈ V (ui − uj)φij ≤ 0}.

Lemma B.1. Let u ∈ V and define

E(t) := {i ∈ V : ui > t}.

Then

TVq
a(u) =

1

2

∑
i,j∈V

ωqij |ui − uj | =
1

2

∫
R

∑
i,j∈V

ωqij

∣∣∣(χE(t)

)
i
−
(
χE(t)

)
j

∣∣∣ dt.
Proof. Fix u ∈ V. Note that

ui =

∫
R
χ[0,ui](t) dt =

∫
R

(
χE(t)

)
i
dt, (48)

from which it immediately follows that∑
i,j∈V

ωqij |ui − uj | =
∑
i,j∈V

ωqij

∣∣∣∣∫
R

[(
χE(t)

)
i
−
(
χE(t)

)
j

]
dt

∣∣∣∣ ≤ ∫
R

∑
i,j∈V

ωqij

∣∣∣(χE(t)

)
i
−
(
χE(t)

)
j

∣∣∣ dt.
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To prove the opposite inequality, we follow closely the argument used to prove the analogous
result in the continuum case, in [EG92, 5.5 Theorem 1]. Let

k(t) :=
∑

i∈V \E(t)

∑
j∈V

ωqij |ui − uj | =
∑

i∈V : ui≤t

∑
j∈V

ωqij |ui − uj |.

Since k is a monotone nondecreasing function, the derivative

k′(t) = lim
r→0

1

r

∑
i∈V : t<ui≤t+r

∑
j∈V

ωqij |ui − uj | (49)

exists almost everywhere. Hence∫
R
k′(t) dt ≤

∑
i,j∈V

ωqij |ui − uj |. (50)

We claim that, for ϕ ∈ E−(u),∫
R

∑
i,j∈V

ωqij
(
χE(t)

)
i
(ϕji − ϕij) dt ≤

∫
R
k′(t) dt. (51)

If this claim is true, then by taking the maximum over all ϕ ∈ E−, just as in the discussion
immediately preceding this lemma, it follows that∫

R

∑
i,j∈V

ωqij

∣∣∣(χE(t)

)
i
−
(
χE(t)

)
j

∣∣∣ dt ≤ ∫
R
k′(t) dt.

By (50) the result then follows.
We now prove the claim (51). First note that∑

i,j∈V
ωqij
(
χE(t)

)
i
(ϕji − ϕij) =

∑
i∈E(t)

∑
j∈V

ωqij(ϕji − ϕij).

Fix t ∈ R and r > 0, and define the function η ∈ C(R) as

η(s) =


0 if s ≤ t,
s−t
r if t ≤ s ≤ t+ r,

1 if s ≥ t+ r.

Clearly

η′(s) =

{
0 if s < t or s > t+ r, ,
1
r if t < s < t+ r.

Let φ ∈ C∞(R) be a mollifier with suppφ ∈ [−1, 1] and
∫
R φ = 1, and define for δ > 0,

φδ(x) := δ−1φ
(
x
δ

)
. Let ηδ := φδ ∗ η, then ηδ ∈ C∞(R), ηδ → η a.e. as δ → 0, and ηδ → η

uniformly on compact subsets of R as δ → 0 (e.g., [Eva10, Appendix C, Theorem 7]). The
Taylor series with remainder gives us that for all ui, uj ∈ R there exists a ξij ∈ [ui, uj ] ∪ [uj , ui]
such that

ηδ(uj) = ηδ(ui) + η′δ(uj)(uj − ui) +
1

2
η′′δ (ξij)(uj − ui)2.

Writing δt for the Dirac delta distribution centered at t ∈ R, we compute

η′′δ (s) = η′′ ∗ φδ(s) =
1

r
(δt − δt+r) ∗ φδ(s) =

1

r
(φδ(s− t)− φδ(s− t− r)).
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We note that since suppφ′δ ⊂ [−δ, δ] we have supp η′δ ⊂ [t − δ, t + r + δ]. Using the symmetry
of ωij and antisymmetry of ϕij we now find∑

i,j∈V
ηδ(ui)ω

q
ij(ϕji − ϕij) =

1

2

∑
i,j∈V

ωqij (ηδ(ui)− ηδ(uj)) (ϕji − ϕij)

=
∑
i,j∈V

ωqij (ηδ(ui)− ηδ(uj))ϕji

= −
∑
i,j∈V

ωqij

(
η′δ(ui)(uj − ui) +

1

2
η′′δ (ξij)(uj − ui)2

)
ϕji

=
∑

i∈V : t−δ<ui<t+r+δ

∑
j∈V

η′δ(ui)ω
q
ij(ui − uj)ϕji (52)

+
1

2r

∑
i,j∈V

ωqij(φδ(ξij − t− r)− φδ(ξij − t))(ui − uj)
2ϕji

Integrating over R and taking the limit δ → 0, for the first term in (52) we compute

lim
δ→0

∫
R

∑
i∈V : t−δ<ui<t+r+δ

∑
j∈V

η′δ(ui)ω
q
ij(ui − uj)ϕji dt

≤lim
δ→0

∫
R

∑
i∈V : t−δ<ui<t+r+δ

∑
j∈V

1

r
ωqij(ui − uj)ϕji dt

=

∫
R

lim
δ→0

∑
i∈V : t−δ<ui<t+r+δ

∑
j∈V

1

r
ωqij(ui − uj)ϕji dt

=

∫
R

∑
i∈V : t<ui<t+r

∑
j∈V

1

r
ωqij(ui − uj)ϕji dt,

where we have used, that by definition of E−(u), (ui−uj)ϕji ≥ 0, and the monotone convergence
theorem.

For the second term in (52) we find

1

2r
lim
δ→0

∫
R

∑
i,j∈V

ωqij(φδ(ξij − t− r)− φδ(ξij − t))(ui − uj)
2ϕji dt

=
1

2r
lim
δ→0

∑
i,j∈V

ωqijϕji(ui − uj)
2

∫
R

(φδ(ξij − t− r)− φδ(ξij − t)) dt = 0,

since
∫
R φδ = 1.

Combining the above we have∫
R

∑
i,j∈V

η(ui)(ϕji − ϕij)ωqij dt =

∫
R

lim
δ→0

∑
i,j∈V

ηδ(ui)(ϕji − ϕij)ωqij dt

= lim
δ→0

∫
R

∑
i,j∈V

ηδ(ui)(ϕji − ϕij)ωqij dt

≤
∫
R

∑
i∈V : t<ui<t+r

∑
j∈V

1

r
ωqij(ui − uj)ϕji dt, (53)

where we used the dominated convergence theorem in the second line.
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Finally, we conclude, by the definition of η, (49), and (53),∫
R

∑
i∈E(t)

∑
j∈V

(ϕji − ϕij)ωqij dt =

∫
R

lim
r→0

∑
i,j∈V

η(ui)(ϕji − ϕij)ωqij dt

= lim
r→0

∫
R

∑
i,j∈V

η(ui)(ϕji − ϕij)ωqij dt

≤ lim
r→0

∫
R

∑
i∈V : t<ui<t+r

∑
j∈V

1

r
ωqij(ui − uj)ϕji dt

=

∫
R

lim
r→0

∑
i∈V : t<ui<t+r

∑
j∈V

1

r
ωqij(ui − uj)ϕji dt

≤
∫
R
k′(t) dt,

which proves (51). The second and third identities follow from Lebesgue’s dominated conver-
gence theorem, using repeatedly the fact that u is fixed and hence, by the finitude of the graph
G, u has compact support and a finite range. The final inequality follows since ϕ satisfies
‖ϕ‖E,∞ ≤ 1.

C Calculation of the first variation for graph total variation

In (28) we computed d
dt |t=0

TVq
a(u + tv) = 〈sgn(∇u),∇v〉 using the convexity of TVq

a. In this

section we review this fact to other kinds of graph total variation, which are expressible as

T V(u) := max{〈divϕ, u〉V : ϕ ∈ A}, (54)

where A ⊂ E is some admissible set of edge functions, such that a maximizer ϕu ∈ A exists
(even if it might not be unique). The key fact is that such a T V(u) is convex and might be
studied via convex analysis. The convexity of T V is evident from its definition: u→ T V(u) is
a scalar valued function given as the maximum of a family of linear functions u 7→ 〈divϕ, u〉V .
Let us recall some concepts from convex analysis [ET76, Chapter 1, Section 5], in particular,
the subdifferential of T V at u. This set valued function is denoted by ∂T V(u) and given by

∂T V(u) := {v ∈ V | T V(u) <∞ and ∀ w ∈ V T V(w) ≥ T V(u) + 〈v, w − u〉V}.

That is, v ∈ T V(u) if and only if it is the slope of an affine function which is tangent to the
graph of T V at u. In particular, at the points where T V(u) is differentiable ∂T V(u) consists of
a single element: the gradient of T V(u) at u.

In the particular case of T V, it follows that

∂T V(u) = {v ∈ V | 〈v, u〉V = T V(u)}. (55)

Indeed, note that by (54), for any w ∈ V, T V(w) = 〈divϕw, w〉V , where ϕw ∈ A is a maximizer
in (54). It follows that, if u ∈ V is given, then

v ∈ ∂T V(u)⇔ 〈divϕw, w〉V ≥ 〈divϕu, u〉V + 〈div v, w − u〉V .

By choosing w = 0 and w = 2u, respectively, we find 〈v, u〉V = 〈divϕu, u〉V = T V(u). This
proves the set identity (55) for any u ∈ V.
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On the other hand, the convexity of T V(u) implies it is a locally Lipschitz function, making
it differentiable for a.e.17 u ∈ V by Rademacher’s theorem [EG92, Chapter 6, Section 6.2,
Theorem 2]. Therefore, for a.e. u ∈ V, ∂T V(u) contains a single element v = divϕu. Then, for
a.e. u, it follows that

d

dt |t=0

T V(u+ tv) = 〈divϕu, v〉V

Now we can consider particular choices for T V and hence for A. For T V = TVq
a, we have

ϕu = ϕa from (1), as already explained in Remark 3.11. Similar computations can be done if
we take A’s corresponding to ϕu given respectively by

ϕu(u) = ϕE(u) =

{
∇u
‖∇u‖E if ‖∇u‖E 6= 0,

0 if ‖∇u‖E = 0,
and ϕuij(u) = ϕTV

ij (u) =

{
(∇u)ij
|∇u|i if |∇u|i 6= 0,

0 if |∇u|i = 0,

i.e., optimal ϕ’s for T V(u) = ‖∇u‖E18 and T V(u) = TV(u), respectively (see Section 2).The
previous analysis shows the first variations in these cases are given by the V-inner product with

divϕE =

{
∆u
‖∇u‖E if ‖∇u‖E 6= 0,

0 if ‖∇u‖E = 0,

(divϕTV)i =


1
2d
−r
i

[∑
j∈V : |∇u|j 6=0 ω

q
ij

(∇u)ji
|∇u|j

−
∑

j∈V ω
q
ij

(∇u)ij
|∇u|i

]
if |∇u|i 6= 0,

1
2d
−r
i

∑
j∈V : |∇u|j 6=0 ω

q
ij

(∇u)ji
|∇u|j if |∇u|i = 0.

For the latter we can also write

(divϕTV)i =
1

2
d−ri

∑
j∈V

ωqij

(
ui − uj
|∇u|j

+
ui − uj
|∇u|i

)
=

1

2
d−ri

∑
j∈V

ωqij

(
1

|∇u|j
+

1

|∇u|i

)
(ui − uj),

where we have to remember that ωqij
ui−uj
|∇u|j and 1

|∇u|j are to be interpreted as 0 whenever |∇u|j =

0 for any j ∈ V (including j = i). Because the node function divϕTV is the first variation of
the isotropic graph total variation, in the literature it is sometimes referred to as curvature or
1-Laplacian. In this paper we have argued why the use of the anisotropic total variation TVa

to define curvature, as in (14), is a more natural choice on graphs.
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PDEs and p-Laplacian equation on graphs with applications in image processing and ma-
chine learning, IEEE Journal of Selected Topics in Signal Processing 6 (2012), no. 7, 764–
779.

[EG92] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, first ed.,
Studies in Advanced Mathematics, CRC Press LLC, Boca Raton, Florida, 1992.

[ELB08] Abderrahim Elmoataz, Olivier Lezoray, and Sébastien Bougleux, Nonlocal discrete reg-
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