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Summary. This paper considers a recently proposed model for the self-organizing,
decentralized, real-time motion planning for a swarm of homogeneous mobile robots
in a stationary environment. The model allows the robots to cooperatively locate the
boundary of a given environmental function in two space dimensions using a combi-
nation of sensing and communication. Starting from a partial differential equation
(PDE) used in image processing for edge detection, a finite difference approximation
provides the movement rules for each robot. We consider physical parameters for a
specific platform of underwater vehicles. We design the algorithm to function with
asynchronous communication and noisy position information. We present numerical
simulations illustrating the stability and performance of this system.

1 Introduction

The incentive to substitute robots for humans is particularly strong in hazardous
environments. Three areas where this substitution is successfully taking place are
de-mining operations [7], military urban operations [20], and aerial surveillance [31].
A natural extension that builds on this early success is the deployment of coordi-
nated mobile sensors. Multi-agent systems offer the promise of a leap in mapping
and exploration [17], navigation control [21], formation flying [29], multiple rover
planning [12], and military planning [1].

Here, we explore the problem of locating the boundary of a physical phenomenon
using multiple vehicles. An important application is the monitoring of harmful algae
blooms (HAB), whose impact on coastal areas has increased over the past decade [2].
One of the key obstacles to being able to forecast HABs is their vast size and rapid
dynamics which renders traditional techniques ineffectual. We propose to address
this using a team of mobile sensors that can move to the edge of the plume and
create an image of its perimeter.

Other cooperative boundary tracking (edge detection) algorithms exist in the
literature [9, 15]. In [9], the algorithm is implemented with a static sensor field. We
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adopt a self-organizing, distributed approach for boundary tracking with a dynamic
sensor field. Some efforts have modeled distributed systems inspired by biology [3,
6, 10, 33], fluidics [4, 8, 21, 39|, and economy-based [18, 32, 34, 38] concepts. We
consider a method used in image processing.

An analogous problem of locating boundaries exists in image segmentation.
There, the goal is to find the edges of an object in an image. This may be ac-
complished with a model known as a snake [23], or energy-minimizing curve. This
process simulates elastic material which can dynamically conform to object shapes
in response to internal or external forces. The basic snake model is a controlled
continuity spline [37] under the influence of internal forces and external constraint
forces. The internal forces impose a smoothness constraint on the curve, while the
external forces specify the attribute we wish the snake to locate (in this case, edges).

We assume knowledge of the robots’ absolute positions (we discuss the issue
of uncertainty in Section 6 and the issue of relative positions in Section 3.). Our
algorithm is high level and requires only the following platform features, in addition
to position estimation:

1. ability of each agent to perform a ‘move to’ function, to move to a specified new
position on command,

2. ability of each agent to obtain position information about other agents,

3. asensor for determining environmental concentration at the agent’s location and
a method for estimating the local gradient of the concentration (either through
a combination of local motion and sensing or from information received by other
agents).

Function 3 is perhaps the most difficult although approaches have been proposed
and studied for both groups of agents and single agents using bio-inspiration [5, 19,
28, 30].

The algorithm is relevant for both holonomic and nonholonomic vehicles pro-
vided that they can perform Function 1 over a sufficiently large scale. That is, the
typical length-scale of the environment is large compared with the typical length-
scale on which range of motion is constrained. Interesting points for further study
are cases where this assumption breaks down (confined areas, massively high num-
bers of robots, etc.). We do explicitly address one motion issue in the algorithm:
the inability to hover which is quite common in both underwater and air vehicles.
Specifically, we add a component to the motion that is along a level curve of the
environmental concentration, so that when the group reaches the boundary they do
not have to hover, they can continuously travel around the boundary in either a
clockwise or counter-clockwise direction.

2 Modeling

2.1 Phenomenon scale

Although the approach we propose is not limited to HAB monitoring, this prob-
lem is an excellent case-study for clarifying key algorithmic issues. The objective is
to characterize the shape, content, and evolution of an environmental phenomenon.
The scales of interest are size (1km for HAB) and time scale (1hr) [2]. To characterize
the phenomenon, we use a team of autonomous underwater vehicles (AUVs), each
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equipped with an appropriate chemical sensor plus navigation sensors, and com-
munication hardware. The relevant vehicle parameters are AUV speed, navigation
accuracy, and communication rate [13].

2.2 Hardware

The specifics of sensing, navigation, and communication methods are often neglected
in the design of multi-agent algorithms. This type of encapsulation is not always
appropriate, and for plume monitoring these issues are in fact core concerns.

¢ Communication.
AUVs use one of two communication methods: Radio (RF) above the horizon,
or acoustically while submerged. RF has a long communication range but it is
only available at the surface. Acoustic communication is always available, but
it has a short range (500m). Also, it is noisy, it has low bandwidth (100bps),
and the bandwidth must be shared between vehicles. For HAB monitoring, the
range of the phenomenon and the subsurface nature of the plume dictates the
use of RF.
There are two important consequences to using RF: The first is that the avail-
ability of communication is episodic. In contrast to, say, a telephone line, one
cannot assume that a vehicle can transmit whenever it needs to. To transmit,
a vehicle must first surface. The second consequence is that communication is
asynchronous. The variance of surfacing time is large for a single vehicle; for mul-
tiple vehicles, the effect is compounded. Vehicles can therefore not be expected
to be at the surface at the same time.

e Navigation.
A vehicle’s position is never known with certainty. With GPS for example, the
(non-WAAS) positional accuracy is 25m RMS. Algorithms that rely on gradient
estimation must incorporate this early into the design.

e Sensing.
As with positional sensors, environmental sensors have limited resolution and
dynamical range. This is a limiting factor when the concentration is smaller
than the resolution or when the signal is larger than the sensor range, since in
these cases the environment appears locally homogeneous.

We formulate a dimensionless model based on parameters from the Ranger AUV
[13].

The relevant scales for the problem are as follows: the robots travel with a char-
acteristic speed of 1 m/s. The typical radius of a plume boundary is roughly 1km.
The position estimation is done with standard GPS which has an error of approx-
imately 25m. Communication is performed with radio which happens whenever a
vehicle comes to the surface at intervals of 30 seconds or more.

2.3 Dimensionless parameters

For the model we consider the following characteristics dimensions: the characteristic
velocity V is 1 m/s and the characteristic length L 1 km. This gives a characteristic
macro-timescale of 1000 seconds which we denote by ¢. There is another timescale
in the problem which is the time between surfacing. We denote this timescale by 7.
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We can now formulate a dimensionless version of the problem. We denote the
dimensionless parameters as follows: # = z/L, ¥ = ot/L, t = t/t, and ¥ = 7/t
where z is the spatial position. This means that in the dimensionless model, robots
move with unit speed to find a plume of unit length diameter. They can surface
after 0.03 dimensionless time units. There is also a micro-timestep (dt) that denotes
the interval at which the agent senses the environment. In our simulations we take
this to be 0.001 which is one second of real time. Finally the noise in the system due
to GPS inaccuracy of position is 0.025 dimensionless spatial units.

For the remainder of this paper, we consider dimensionless units and we drop
the = for simplicity of notation.

3 The Algorithm

‘We break the algorithm down into a series of components, each of which functionally
involves moving a vehicle based on sensing information from the environment, posi-
tion information, and other information relevant to the performance of the method.
In the following subsections we discuss the components of the algorithm. They in-
clude an anti-collision/inflation mechanism, a component of the motion related to
sensing, and a component related to communication and cooperation.

In this paper we derive these rules by first describing an instantaneous veloc-
ity field for the robots and then discussing how to implement this in practice by
specifying a position to advance to at each communication step and in between the
steps.

To begin, the motion is comprised of two distinct parts: sensing and commu-
nication. The sensing portion will involve an estimate of the local gradient of the
environmental concentration. Such estimates have been used previously by AUVs
[14, 25].

3.1 Sensing

Let C(z,y) denote the concentration function of the environment at the robot’s
position (z,y). Consider a function P(z,y) = f (C(z,y)) that achieves a minimum at
the boundary of the environmental concentration. One such example is P = —(Co —
C)?, where Cy is a designated boundary concentration. Let v = (z,y) denote the
position vector. It is well known that motion according to the simple rule ‘(ij—: =-VP
results in a gradient descent toward a local minimum of the function P. Also, the
instantaneous motion rule z—’t’ = V=1 results in travel along level sets of of the
concentration C. For a function P as described above, the instantaneous velocity

field
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results in a composite motion of an agent toward the boundary plus motion along
level curves of the concentration function C. The constant w determines the speed at
which the agent traverses the boundary once it arrives there. The subscripts denote
partial differentiation. Figure 1 shows a collection of 25 independent agents moving
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Fig. 1. 25 independent (non-communicating) agents moving to and following the

boundary according to (1). Panels (left to right) show times 0,1, and 3. Here w = 2,
Co = 0.01.

according to the rule (1). They begin in a circle and independently move outward
to find and follow along the boundary. In this simulation, P = —(C — Cp)?,

C(z,y) = tanh (F(:z:,y) — %) (2)

F(a,y) = Zexp (@ —20)> + (y— 1)) /o) 3)

where (zi,7:) = (1,0),(0,—3),(—3%,3),(5,1), for i = 1,2,3,4, and ¢ = 1.0. Be-
cause the agents do not communicate, a group of them w111 tend to bunch up along
the boundary. Moreover this ‘single-agent’ method is susceptible to sensor noise
[27]. Both issues can be dealt with by including interactions between agents that
damp out noise and diffuse agent positions around the boundary. We introduce this

through a virtual contour below.

3.2 Motion of the virtual contour

Another component of the instantaneous velocity vector is a function of the posi-
tion of other nearby robots along a ‘virtual contour’. This part of the algorithm
is motivated from the image snake [23]. The appendix discusses the mathematical
formalism behind the snake algorithm. The effect of the communication is for the
robots to spread themselves out to reach all parts of the boundary. Coupling the
motion (1) from Section 2.2.1 together with diffusive based communication yields
the following PDE:

, C

\VC\ (4)
aty = QYss — ﬂyssss ayP +w |VC|

0+t = QLss — BTssss — 0o P — w e

where the partial derivatives with respect to s denote differentiation along the virtual
contour. Here s is a smooth Lagrangian parameterization of the virtual contour. This
PDE can be viewed as the rule prescribing the desired instantaneous direction in
which to move the curve and hence the agents that are positioned along the curve.
It is a combination of sensing and communication. The parameters « and 3 are
constants (although they could be position dependent in a more general model) and
determine the relative strengths of two kinds of diffusive motion along the contour.
Equation (4) with w = 0 is precisely the basic snake algorithm from image processing
(see the Appendix).
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3.3 Discretization of the virtual contour

In reality, there are only a finite number of agents occupying discrete points on the
virtual contour. It is therefore natural to approximate the partial derivatives with
respect to s in (4) by finite differences at the robot positions. That is, approximate
at the ith robot location

Tos ~ (Tit1 — 20 + i—1)/h°,  Tssss ~ (Ti—z — Axi_1 + 62 — 4Tip1 + Tig2)/H(5)
Yss ~ (Wit1 — 20i +yi—1)/h%,  Yssss ~ (Yima — 4yi—1 + 6yi — 4yir1 + yira)/h*(6)
These are standard centered finite difference operators for which h = 1/N, N being
the number of agents. Here we assume a fixed ordering for the robots around the

virtual contour. We can then make this substitution in (4) to obtain an instantaneous
velocity vector (0:x;, Ory;) at each agent location (z;,y;):

(Ti—2 — 4xi-1

w ayC(‘zlh yl)
[VC(wi, i)l

o
Orx; = 2 (Tix1 — 2@ + Ti—1) — X

+ 6x; — 4xi41 + Tiy2) — Ox P(xs,y:) — + Sparsing(z;), (7)

a B
Oyi = 75 (Yit1 — 2yi +yi—1) — 37 (Yi—2 — 4yi—1
h h

0:C (x4, i)

i — 4yi i+2) = Oy P(xi, 4 [VO (i, yi)]
+ 6y; — 4yiy1 + Yit2) — Oy P(z y)+w|VC(xi,yi)|

+ Sparsing(y;). (8)
Note that there is an additional part of the motion which we denote by “Spars-
ing”. This is also done on the communication step and has two functional roles: (1)
providing the vehicles with an anti-collision mechanism and (2) given the group a
virtual ‘inflationary force’ in order for the contour to expand outward in the case of
constant concentration ( i.e. starting from a point inside the plume). The coupled
system (7-8) of ordinary differential equations is very stiff. This leads to restrictions
on how frequently and how far each vehicle must communicate with other vehicles
in order to result in stable collective motion. In previous papers [27, 26] we reviewed
two different communication scenarios, one in which synchronous communication
is performed less frequently across the entire grouping and one in which only near
neighbor communication is performed rather frequently. In this manuscript we con-
sider a different option, that of asynchronous communication involving a central
command post.

Note that (7-8) is a coupled set of ODEs for the positions of the agents; such
ODE-based motion rules arise in control theory models for cooperative motion of
robots for formation flying [22] and coordinated control of groups [24].

4 Discrete time steps

In practice, we can not prescribe an instantaneous cooperative velocity rule without
requiring instantaneous and constant communication between the agents. Instead
we propose an algorithm in which communication occurs at discrete time intervals
spaced apart by a time-step 7. We have modified our previous synchronous algorithm
to perform asynchronously. The basic idea is that the motion planning steps that
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require communication are only updated as each agent surfaces. At this time, a
new velocity vector is prescribed that incorporates the communication step of the
algorithm. This velocity vector is incorporated into the sensing part of the algorithm
that is updated continuously while the vehicle is underwater.

4.1 Temporal operator splitting in numerical analysis

A well-known method in computational science for time stepping the system (7-8)
is called operator splitting. The basic idea is as follows: given a differential equation
of the general form
us = F(u) + G(u)
where F and G are functionals (possibly involving differential or integral operators),
the solution can be approximated by alternating small time steps of the separate
equations
uy = F(u) and wu; = G(u).

The simplest form of operator splitting is the Trotter product formula [36] which
computes identical timesteps of each equation. This method is typically first order
in time, meaning that the difference between the time stepped solution and the
solution of the continuous equation scales like O(At). A more complicated form of
time-stepping is Strang splitting [35] which involves an initial half step of the first
equation followed by alternating full steps of each with a final half step of the first
equation. Strang splitting is second order in time.

In previous papers we considered simple Trotter splitting as follows: Replace the
time derivative of the position v(t), denoted d;v(t) by a finite difference

okt _ ok

o~ (9)

where the k& + 1 superscript denotes the position at the next time.

If we let v;(t) = (zi,y:;) denote the spatial coordinates of the ith robot, then
the result is a ‘split-step’ discrete-time implementation in which the communication
dynamics is advanced over one step, followed by the sensing on a second step.

e STEP 1, (Communicate)

v?+1/2 = + At <% (vig1 — 2v; + vi—1) — ﬁ (vie2 — 4vi—1 + 6v; — dviqpr + Ui+2)> .

A
(10)
e STEP 2, (Use sensors and do not hit anything)
1 n
P = 212 4 A (VPP + o) | Sparsing(u?) ) - 11
v} v; + ( () +w Ve + Sparsing(v;") (11)

The superscript n + 1 denotes the position at the next time. We use n + 1/2
to denote the intermediate time for the split step. The choice of splitting serves
to illustrate two basic alternatives for the motion, based on ideas from numerical
analysis for which we have well developed theory.

In [27, 26], Steps 1 and 2 were alternated with a fixed time step At, resulting
in convergence to a hybrid dynamics in the limit as At — 0. Two different forms of
the communication step were considered.
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Near Neighbor Communication (Explicit Update)

Using an explicit update, step 1 can be solved by the explicit formula

a
vi"+1/2 =v; + At (— (Vi1 — 207 +ufy) — % (vizg — 4vi 1 + 6v] —4dufy, + UZ”+2)) .

h2
(12)

Note that robot 7 only needs to know the positions of robots ¢ — 2, i — 1, i + 1,
and ¢ + 2 in addition to its own position, in order to move accordingly. Thus, this
implementation requires only local (near-neighbor) communication between robots.
However, there is a significant drawback to using this method. Stability of step 1
requires that the time step At < h*/(83 +2ah?) [27], in particular as the number of
robots N increases, the algorithm must be updated on a timescale At that decreases
as 1/N* for N large. This results in an overall algorithm in that requires O(N®)
computations as the number of robots increases. The number of communications
required scales like O(1) per robot at each time-step.

All-to-all Communication (Implicit Update)

An implicit update can be used for solving step 1:
R R (- (e AR el

= (o - e o)) )

Note that in this situation, the new positions v?"‘l must be determined implicitly
by solving the coupled systems of linear equations above. This requires each robot
to perform a linear algebra computation, which is O(N) in complexity because
the matrix is pentadiagonal (e.g. a standard LU decomposition algorithm is very
straightforward to use). However, in order for each robot to solve for their next
position, they must know the positions of all the other robots in order to solve the
implicit equations. The benefit of this method is that it is unconditionally stable
for large time steps At [27] independent of the number of agents. Thus the total
computational complexity scales as O(NN) for N agents. Note that the above step
necessarily requires synchronous communication.

4.2 Asynchronous Communication

In this paper we consider a platform that uses asynchronous communication. Thus
we must adapt the above synchronous algorithm. For asynchronous communication,
we again base our algorithm on ideas from operator splitting in numerical analysis,
however we have to work with constraints that do not commonly arise in numerical
solution of PDEs. These constraints are as follows: for the communication part of the
algorithm, when a vehicle surfaces, it gets a GPS read on its own position, however
the data regarding positions of other vehicles is time-lagged back to the last time
each vehicle surfaced. Thus, we can not directly perform the step in (4.1) above.
Moreover there is another constraint that the timescale 7 in between surfacing is
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much larger than the timescale on which the sensors may be sampling the environ-
ment (and thus on which the sensing part of the algorithm could be updated). Thus
we need to consider an algorithm with two different timescales and asynchronous
communication.

Our approach is as follows. Motivated by operator splitting, we consider a multi-
step method in which each vehicle continuously moves according to a sensing algo-
rithm of the form

1 n
(vi)t = =V P(v;) + w% + Comm(v;, t,), te€ [t;,t; + 7"'] (14)
where t, is the nth surfacing time for vehicle ¢ and 7 is the surfacing time interval.
The additional velocity vector Comm(v;,t,) is what arises from a semi-implicit
timestep (of size 7) for solution of the split part of the PDE, namely the parts that
require communication.

In order to complete the algorithm, we have to define Comm(v;,t,). When a
vehicle surfaces, it only has information about other vehicle positions at previous
surfacing times. This is enough to make an extrapolated guess of the location of
the agents at the current time. Let ¥;(t) denote the guess for the jth vehicle at
time t based on the previous two location positions. In this case we make a linear
extrapolation using the formula

t - tn—l

0 (t) = v(th- _—
0j(t) = vltn-1) + ———

(v(tn—1) — v(tn-2))
where for simplicity of notation t,—1 and ¢,—» denote the previous two surfacing
times for the jth vehicle.

Now we can compute a change in the position of vehicle v; due to the commu-
nication terms in the PDE over the timestep 7. Note that for the Ranger platform,
surfacing intervals force 7 to be greater than 0.03 which means that we have to
evaluate the stiff part of the problem implicitly. This is done by solving the implicit
system of equations

o = 0+ 7 (25 (0T — 200 ol
e Y Ufj;”)> +r(S@'h). (15)

where S denotes the sparsing term previously implemented in Step 2.

The communication velocity Comm(v;, n) used in (14) is then the differential
position D; = v —v; divided by the communication time 7. The integrated steps
described above are consistent with a discrete time implementation of equations (14)
using asynchronous communication. In practice we believe that it will be simpler
to have each robots travel at a constant speed while updating its direction vector
based on sensing and communication information. The simulations described in the

next section take this into account by normalizing the speed in (14) to be one.

5 Cooperative motion simulations

We now show some simulations that illustrate the algorithm using an environmental
function P = —|C — Cy|?. The parameters o and 3 were set to be .01 and .0001,
respectively. The sparsing for the ith robot is a repulsive force of the form
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N
Vi Y Crexp (—loi = vgl/l), (16)
j=1

where vy, is the two-dimensional position coordinate for robot k. The concentration
function, C(v), is

C(z,y) = tanh (F(:c,y) — %) (17)
F(z,y) = ZGXP (—((—2:)" + (y —9:)")/o”) (18)

where (mn?h) = (17 1)1 (27 _1)7 (_%7 %)7 (%7 1)1 (37 _%) fori = 1,....5, and o = 1.0.

5.1 Internal initialization

The N agents are dropped off from a boat in the plume. Upon insertion in the water,
agent k moves at an angle (2 7/N) % k until all agents are inserted. When an agent
surfaces, it checks to see how many other agents have surfaced. Until all are in the
water, the agents continue in their initial direction. Once all agents are present,
then both the communication and sensing steps are implemented, i.e. the algorithm
is turned on.

The following simulations each have 25 agents. The repulsion strength from (16),
C, ,is 10 for the first .78 dimensionless time units of the simulation. After that, it
drops to 1. The repulsion length, /., is 1. The spatial resolution is .025 and each
simulation has variable surfacing times.

5.2 Effect of surfacing time

The majority of the dynamics of HAB occurs underwater. Therefore, we expect that
the AUVs will spend most of their time there. They will periodically surface to get a
position fix, and to implement the communication part of (14). Below, we show four
simulations showing agent positions during a simulation. The only difference between
the figures is the amount of time between surfacing for each agent. The surfacing
times were .03,.045, .06, and .12, respectively. As one can see, the coverage of the
algorithm deteriorates as the surfacing time increases. This makes sense, as it is the
communication step of the algorithm that prevents behavior seen in Figure 1. So
the more each agent surfaces, the less the full algorithm acts less like a single agent.

5.3 Effect of initialization

In the previous figures, the initialization procedure was to drop the agents off in
the plume, have them move at a specific angle until all vehicles were inserted, then
begin the algorithm. We change this procedure in the figure below to demonstrate
the impact of the initial conditions on the success of the algorithm. Figure 6 has
the same parameters as that of Figure 2 except the initialization procedure. Here,
instead of each agent moving at a prescribed angle, each vehicle sits and waits until
all AUVs are inserted. Such a scenario might take place in the case of agents being
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Fig. 2. 25 agents with surfacing time of .03 moving to and following the boundary
according to (14). Panels (left to right) show times .14, .885, and 5.385. Here w = —2,
Co = 0.01.

Fig. 3. 25 agents with surfacing time of .045 moving to and following the boundary
according to (14). Panels (left to right) show times .14, .885, and 5.385. Here w = —2,
Co = 0.01.

3 3 3
2 2 2
1 1 1
0 0 0
> 4 -1 -1
-2 -2 -2
I 0 2 I 0 2 I 0 2

X

Fig. 4. 25 agents moving with surfacing time of .06 to and following the boundary
according to (14). Panels (left to right) show times .14, .885, and 5.385. Here w = —2,
Co = 0.01.

released from a moving platform such as a boat. The first panel of Figure 6 shows
this case in which the agent positions lie on a line at the beginning of the algorithm.
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Fig. 5. 25 agents with surfacing time of .12 moving to and following the boundary
according to (14). Panels (left to right) show times .14, .885, and 5.385. Here w = —2,
Co = 0.01.

3 3 3

2 2 2

1 1 1

0 0 0

> 1 -1 -1
-2 -2 -2
-3 -3 -3

Fig. 6. 25 agents released along a line and following the boundary according to (14).
The surfacing time is 0.03. Panels (left to right) show times .14, .885, and 5.385. Here
w = —2, Co = 0.01.

The different initialization procedures determine the amount of inflation that the
algorithm needs to function well. The more scattered the agents are initially, the less
inflation they need as the algorithm progresses. Widely scattered initial conditions
require less frequent surfacing time than those that are initially clustered. This is
because the inflation term is implemented at the surface, so to inflate, the agents
must communicate.

5.4 Effect of position noise

The following figure shows the error of the agents’ positions as a function of GPS
spatial resolution. The resolution was implemented in the following way: Upon sur-
facing, when the agent reports its position to the surface node, it reports its true
position + (Noise Coefficient)*h, where h is a uniform random variable in [—3, 1].
The error plotted is calculated in the following way: At the final timestep, each
agent calculates the concentration at its point. The average of the absolute value of
the difference between these values and the “true” level set value is the error. This
process is repeated 100 times, and the average value is the one plotted in the figure.
Barely visible are the error bars showing the variance of the error. Note that this is
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a single agent error, it does not measure how well the agents are distributed along
the boundary. In particular it does not differentiate between the bunched agents in
Figure 5 and the well-distributed agents in Figure 2.

0.5

—=— .03
—— 12

0.45}f

0.4r

Single Agent Error in Concentration
o
n
o

0 05 1 15

Noise Coefficient
Fig. 7. The figure is a plot of the single agent boundary “errors” as measured by
concentration. We compare two different surfacing times, .03 and .12, respectively.
The error bars are so small as to be (almost) invisible.

As can be seen from Figure 7, the larger surfacing time interval actually has less
concentration error. We believe this is related to the fact that our simulation only
considers the error when an agent reports its position, therefore the less this occurs
(the less an agent surfaces), the less the error. In the field, there is error in both the
sensing and communication steps.

Figure 8 shows the effect of changing the relative navigational accuracy, as would
be the case if the plume were smaller. The left panel has no noise, while the right
panel has a noise coefficient of 1.5. The surfacing time for both simulations is .03.

6 Discussion and Future Work

The Princeton group [16] has designed a multi-vehicle solution to the related problem
of tracking large-scale ocean phenomena. The elegant solution they propose is a
deployment in formation and the use of this formation to extract the front gradient.
The gradient is then used to direct the group towards the front.

Similar to the problem of detecting environmental boundaries, the control al-
gorithm is derived using a continuous formulation, (ODEs there and PDEs in our
case). This is most naturally formulated on a time grid, but as we also found, syn-
chronous updating is impractical since the vehicles can only communicate while at
the surface. To address this, they propose a solution similar to the one we adopted,
i.e. a surfacing vehicle determines the location of the other vehicles by extrapola-
tion. Likewise, they found that the algorithm is robust to latencies. An interesting
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-2 0 2 -2 0 2

Fig. 8. The left panel shows the final positions (¢ = 5.28) with no noise. Notice that
the boundary level set is tracked and “locked on.” The right panel is the same sim-
ulation with an error coefficient of 1.5. In this case, the agents are widely scattered.
The error, as computed in figure 7 is around 0.4, showing that this is a “large” value
of error.

question is whether the robustness to latency that is found in these two problems
shares a common origin.

We believe that to implement this algorithm in the field we will require a very
good method for gradient estimation. Adaption of the algorithm to cooperatively
use sensor data is one approach that could be combined with biomimetic motion or
the motion of agent clusters. The version of the algorithm presented here only uses
the sensor data for motion of the particular agent on which the sensor is located.

Although we use this method for perimeter detection, there are other closely
related applications. One of the simplest and most useful extensions is for charac-
terizing the horizontal and vertical structure of a plume. To extract the horizontal
structure, the target level set is slowly varied between two extremes, enabling the
construction of a topographical map. The same idea is used to get the vertical struc-
ture: the target depth gradually changes and constant depth slices can be assembled
into a 3D map.

One of our observations is that the dynamics of the virtual contour may depend
on the initial location of the agents, the magnitude of the inflation forces, and the
snake parameters. In order to spread the vehicles out, we use an ad-hoc method
where the inflation parameter is set high initially and low thereafter. Alternatively
we could have changed the snake parameters. We are currently designing a more
elegant method for achieving this, where the algorithm parameters are automatically
set using inputs from the proximity to the perimeter and from vehicle clustering.

Regarding positional accuracy we find that the tracking performance actually
improves with fewer surfacing events. This is because we only consider positional
error introduced at the surfacing time through a GPS reading. In the single-agent
part of the algorithm, we do not consider errors in the gradient estimation. This
part of the algorithm allows the agent to converge to an environmental level-set. On
the other hand, the vehicles tend to clump when they act only individually.
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An effective multi-agent algorithm should meet two criteria: (1) they must work
even if only one agent remains and (2) the communication should accelerate perfor-
mance. Here we clearly meet the first criterion. The second criteria is also met when
we consider additional sensor error that will naturally be introduced in the field. In a
previous paper [27] we show that errors arising from sensor readings are significantly
reduced by the multi-agent method over the single agent method. This is because
the diffusive nature the virtual contour equation damps out high frequency spatial
noise very effectively.
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Appendix: Energy Minimizing Curves in Image
Processing

We review the theory of [11]: The deformable contour model is a mapping
Q=S"2R, s 0(s) = (x(s),y(s)) (19)

where S?! is the periodic unit interval. For the purpose of this paper, we assume
periodic boundary conditions; other boundary conditions are possible and used in
image processing problems [23]. A deformable model is defined to be a space of
admissible deformations F' and functional F to minimize. This functional represents
the energy of the model and has the following form:

E:FSR (20)
B(v) = /Q [wn [vs()]? + wolves(s)” + P(v(s))] ds (21)

where the subscripts denote differentiation with respect to the Lagrangian parameter
s, and P is the potential function associated with the environment. In imaging, P
is a function of the image data. For example, if we want the snake to be attracted
to boundaries, then P would depend upon the gradient of the image intensity. The
mechanical properties of the contour are specified by the functions w;. Their choice
determine the elasticity and rigidity of the curve.

If v is a local minimum of E, it satisfies the associated Euler-Lagrange equation:

—0s (W1vs) + Oss(wavss) + VP =0 (22)

with periodic boundary conditions.
Equation (22) can be interpreted physically as a mechanical balance.

e The first two terms of equation (22) impose the regularity of the curve. The
functions w; and ws impose elasticity and rigidity of the interpolated curve
through the agents.
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In image segmentation, one chooses P as
P(v) = —|VI(v)]’ (23)

where I denotes the image intensity function. This choice causes the contour
to be attracted to sharp gradients, i.e. boundaries in the image. A thorough
treatment of the relationship between potential functions and desired goals is
discussed in [23].

One way to achieve a solution to equation (22) is to perform a time dependent

gradient flow of the energy E,

0w = 0, (w1v,) — Bs (w2vs5) — VP| (24)

with steady state solving (22). Equation (24) is the motivation for the boundary
tracking feature of the mobile agent algorithm developed in this paper.
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