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ABSTRACT

Blind hyperspectral unmixing is a challenging problem in re-
mote sensing, which aims to infer material spectra and abun-
dances from the given hyperspectral data. Many traditional
methods suffer from poor identification of materials and/or
expensive computational costs, which can be partially eased
by trading the accuracy with efficiency. In this work, we pro-
pose a fast graph-based blind unmixing approach. In particu-
lar, we apply the Nyström method to efficiently approximate
eigenvalues and eigenvectors of a matrix corresponding to a
normalized graph Laplacian. Then the alternating direction
method of multipliers (ADMM) yields a fast numerical algo-
rithm. Experiments on a real dataset illustrate great potential
of the proposed method in terms of accuracy and efficiency.

Index Terms— Hyperspectral imaging, hyperspectral un-
mixing, Nyström method, graph Laplacian, alternating direc-
tion method of multipliers.

1. INTRODUCTION

Hyperspectral imaging (HSI) has been widely used in remote
sensing with many applications including social security,
agriculture, biology, health care, and astronomy. Unlike dig-
ital images with one or three color channels, a hyperspectral
image often contains hundreds or thousands of spectral bands
at each recorded pixel to facilitate clustering and classifi-
cation. Unfortunately, due to low spatial resolution, it is
difficult in HSI to separate materials, some of which may
jointly occupy at a single pixel. Hence, hyperspectral unmix-
ing (HSU) aims at decomposing a hyperspectral image into a
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linear combination of spectra of pure materials (also known
as endmembers), in which the linear coefficients correspond
to the proportions or abundances of each pure material in a
mixed pixel [1]. A more sophisticated process that estimates
abundances and endmember signatures simultaneously from
the HSI data is called blind hyperspectral unmixing.

There are a large number of HSU methods based on
geometrical, statistical, and/or variational modeling of the
problem. For example, it is physically reasonable to assume
that all the endmembers and abundances are nonnegative, and
hence nonnegative matrix factorization (NMF) [2] is one of
the most popular methods due to its simple formulation and
fast computation. However, the nonconvex nature of the un-
mixing problem leads to many local minimizers, and thereby
yields poor identification of materials. Some regularization
techniques including `1-norm [3], `0-norm [4], and total
variation (TV) [5, 6] have been applied to HSU in attempts to
preserve spatial smoothness of abundances or to promote joint
spatial-spectral sparsity. Recently, graph-based regularization
has attracted tremendous interest [7, 8, 9]. When representing
hyperspectral data as a graph, each spectrum vector is con-
sidered as a node in the graph, whose affinity matrix encodes
the pairwise similarities of nodes. Due to the linear rela-
tionship between spectra and abundances, abundance maps
at two pixels are similar to each other if their corresponding
spectra are similar. In other words, abundance maps inherit
the graph structure from the spectra data. However, pairwise
similarity is typically a computational bottleneck for many
graph-based algorithms, especially when the HSI data is of
high dimension.

In this paper, we propose an efficient way to incorporate a
graph regularization for blind hyperspectral unmixing. In par-
ticular, we apply the Nyström method [10] to approximate the
eigenvalues and eigenvectors of a normalized graph Lapla-
cian, constructed from the given hyperspectral data. In addi-
tion to the nonnegative constraint for both endmembers and
abundances, we assume that the sum of abundances at each
pixel is one. In order to solve the constrained graph-based



unmixing model, we apply the alternating direction method
of multipliers (ADMM) [11]. Motivated by an ADMM ap-
proach for solving the NMF problem [12, 13], we introduce
two auxiliary variables to deal with the linear constraints, i.e.,
nonnegativity and sum-to-one. As a consequence, each sub-
problem can be solved efficiently with a closed-form solution.
Numerical experiments on a real dataset show that our method
yields reasonable performance with high efficiency.

The rest of the paper is organized as follows. In Section 2,
we provide background knowledge including graph construc-
tion and the Nyström method. Section 3 presents details of the
proposed algorithm. Experiments are conducted in Section 4,
followed by conclusions and future works in Section 5.

2. BACKGROUND

In this section, we present how to construct a graph corre-
sponding to the given hyperspectral data as well as how to ap-
ply the Nyström method to approximate the eigenvalues and
eigenvectors of the graph Laplacian.

Given a collection of spectral vectors V = {xi}ni=1 ⊆ Rw
with n being the number of pixels in the hyperspectral data,
we define an affinity matrix, or similarity matrix, W ∈ Rn×n
of the underlying graph as

Wij = e−d(xi,xj)2/σ, i, j = 1, . . . , n, (1)

where d(xi,xj) is the distance between the two spectral vec-
tors xi and xj , and σ > 0 controls how similar they are.
Following [14], we adopt the cosine similarity as the distance
function for HSI, i.e.,

d(xi,xj) = 1− 〈xi,xj〉
‖xi‖2‖xj‖2

.

Calculating pairwise similarities of a fully-connected
graph is the crux of many graph-based algorithms. In or-
der to reduce the computational cost, we apply the Nyström
method [10] to approximate the eigenvectors and eigenvalues
of W by using a small number of sampled data points. Up to
permutations, the similarity matrix W can be expressed in a
block-matrix form,

W =

[
W11 W12

W21 W22

]
,

where W11 is the similarity matrix of the sampled points,
W12 = WT

21 is the one of the sampled points and the un-
sampled points, and W22 is the one of the unsampled points.
Assume that the symmetric matrix W11 has the eigendecom-
position: W11 = UΛUT , where U has orthonormal eigen-
vectors as columns and Λ is a diagonal matrix whose diagonal
entries are eigenvalues of W11. The Nyström extension gives
an approximation of W by using U and Λ as follows,

W ≈ ÛΛÛT , where Û =

[
U

W21UΛ−1

]
. (2)

In other words, computation of the pairwise similarity matrix
W can be significantly reduced by using a small set of sam-
pled points.

It has been shown in [15, 16] that a normalized similarity
matrix yields better performance with more efficient compu-
tation. Therefore, we consider to normalize the weight W as,

W̃ = D−1/2WD−1/2, (3)

where D is called the degree matrix, i.e., a diagonal matrix
with column sums of W as its diagonal entries. Similarly, W̃
can be approximated via (2), i.e., W̃ ≈ V Λ̃V T , where V ∈
Rn×d and the diagonal elements of Λ are eigenvectors and
eigenvalues of the approximated weight by using d (d � n)
sampled points. Denoting the graph Laplacian byL := I−W̃
with the identity matrix I , we have the eigendecomposition
form of L = V ΣV T , where Σ = I − Λ̃ and V is the same as
that in the eigendecomposition of W̃ . Please refer to [17] for
more details.

3. PROPOSED METHOD

Consider a hyperspectral data X = [x1, · · · ,xn] ∈ Rw×n,
where w is the number of wavelengths and n is the number
of spatial pixels. We assume that the spectral measurement at
each pixel is a linear combination of the endmember’s spec-
tra. Suppose there are k pure materials to be considered and
we denote a matrix S ∈ Rw×k as a dictionary of endmem-
bers’ spectra, each column representing one material. The
linear coefficients or the abundances that represent the pixel
xi over this dictionary S is denoted as ai. By organizing ai
as a column vector, we obtain a matrix A ∈ Rk×n. In short,
we assume the hyperspectral data can be modelled as

X = SA+ ε,

where ε ∈ Rw×n is a noise term, which is often assumed to
have a Gaussian distribution.

The blind hyperspectral unmixing is to recover two matri-
ces S and A, given the hyperspectral data X . As it is highly
ill-posed, additional assumptions and proper regularizations
are necessary. In addition to the standard constraints of non-
negativity and sum-to-one, we consider a graph-based regu-
larization on the abundance matrix A formulated as follows,

J(A) =
1

2

n∑
i,j=1

‖ai − aj‖2W̃ij , (4)

where W̃ij is a normalized weight between pixels xi and xj ,
defined in (3). By minimizing the regularization term J(A),
we assume that two column vectors of ai,aj in abundance
matrix should be close to each other if the hyperspectral mea-
surements xi,xj are similar. Simple calculations show that

J(A) =

n∑
i=1

aTi ai −
n∑

i,j=1

aTi ajW̃ij = tr(ALAT ),



where tr(·) is the trace operator summing up all diagonal en-
tries of a matrix.

Now we are ready to formulate the proposed blind unmix-
ing model,

min
S,A≥0

1T
k

A=1T
n

1

2
‖X − SA‖2F +

λ

2
tr(ALAT ), (5)

where ‖·‖F is the Frobenius norm and 1k stands for the col-
umn vector whose entries are all ones. The constraint 1TkA =
1Tn means that all columns ofA belong to the probability sim-
plex, i.e., the set of any nonnegative vector that sums to one.

We introduce two indicator functions to deal with the con-
straint sets in (5). Generally, we define the indicator function
1G of a set G ⊆ Rn as

1G(Z) =

{
0, Z ∈ G;

∞, otherwise.

Denote P := Rw×k+ be the set of all nonnegative matrices
of the size w × k and the set N := {Z ∈ Rk×n : Z ≥
0,1Tk Z = 1Tn}. Then we can rewrite the model (5) as,

min
S,A

1

2
‖X−SA‖2F +

λ

2
tr(ALAT ) +1P (S) +1N (A). (6)

In order to apply the ADMM framework to minimize (6),
we further introduce two auxiliary variables B,C ∈ Rk×n.
Specifically, we split variables and rewrite (6) into an equiva-
lent form,

min
S,A,B,C

1

2
‖X − SA‖2F +

λ

2
tr(BLBT ) + 1P (C) + 1N (A)

s.t. A = B, S = C.

The augmented Lagrange function is then given by

L =
1

2
‖X − SA‖2F +

λ

2
tr(BLBT ) + 1P (C)

+ 1N (A) +
ρ

2
‖A−B + B̃‖2F +

γ

2
‖S − C + C̃‖2F ,

where B̃, C̃ are dual variables and ρ, γ are two positive pa-
rameters. Then ADMM yields the following algorithm

S ← argmin
S

1

2
‖X − SA‖2F +

γ

2
‖S − C + C̃‖2F

A← argmin
A∈Π

1

2
‖X − SA‖2F +

ρ

2
‖A−B + B̃‖2F

B ← argmin
B

λ

2
tr(BLBT ) +

ρ

2
‖A−B + B̃‖2F

C ← argmin
C≥0

γ

2
‖S − C + C̃‖2F

B̃ ← B̃ +A−B

C̃ ← C̃ + S − C.

(7)

For the S-subproblem in (7), the Karush-Kuhn-Tucker
(KKT) condition indicates that −XAT + SAAT + γ(S −
C + C̃) = 0, leading to a closed-form solution for S, i.e.,

S =
(
XAT + γ(C − C̃)

)
(AAT + γI)−1. (8)

Note AAT ∈ Rk×k has a small matrix size as k � n, which
implies that the S-subproblem is fast to solve.

As for the A-subproblem, we adopt the fast algorithm in
[18] that involves the projection onto the set N , denoted by
ΠN . The KKT condition gives a closed-form solution for A,

A = ΠN

(
(STS + ρI)−1

(
STX + ρ(B − B̂)

))
. (9)

The B-subproblem involves the graph Laplacian. As de-
tailed in Section 2, we can approximate L by V ΣV T . The
KKT condition for the B-subproblem is (7) is given by

BV ΣV T + µ(B −A− B̃) = 0, (10)

where µ = ρ/λ and hence we can solve for B by

B = µ(A+ B̃)V (Σ + µI)−1V T . (11)

Notice that the matrix to be inverted is a diagonal matrix of
size d× d, which enjoys fast computation.

Finally, we have the closed-form solution for the C-
subproblem,

C = max(S + C̃,0), (12)

which is an element-wise operation to project onto the non-
negative set. The entire algorithm is summarized in Algo-
rithm 1. The stopping criteria are to set ‖Si−Si+1‖F /‖Si‖F
and ‖Ai −Ai+1‖F /‖Ai‖F smaller than some tolerance.

Algorithm 1 Blind Hyperspectral Image Unmixing Based on
the Graph Laplacian

Input: The data X , parameters ρ, λ, and maximum num-
ber of iterations T , tolerance tol.
Output: S and A.
Initialize: S0, A0 and use Nyström method to get the
reduced eigendecomposition form of the graph Laplacian
L = V ΣV T .
for t = 0, . . . , T − 1 do

Update St+1 via (8).
Update At+1 via (9).
Update Bt+1 via (11).
Update Ct+1 via (12).
Set B̃t+1 = B̃t + (At+1 −Bt+1).
Set C̃t+1 = C̃t + (St+1 − Ct+1).
Stop if the stopping criteria are met.

end for

[HL: since speed is the highlight of our method, I think
it’d be nice to have complexity analysis of the algorithm here,
if we have time/space after first draft.]



4. NUMERICAL RESULTS

We conduct numerical experiments on a real hyperspectral
dataset, called Urban1, which has 307 × 307 pixels and 162
spectral bands. The ground truth that consists of six identi-
fied endmember labels and their corresponding abundances is
shown on the top row of Fig. 1. We compare the proposed
method, denoted by GraphL, with two competing methods:
fully constrained least squared unmixing (FCLSU) [19] and a
recent work of fractional norm penalty method with q = 0.1,
denoted by FRAC [20] . All experiments are performed in
MATLAB 2018b on a MacBook Pro 2017 with an 2.9 GHz
Intel Core i7 and 16GB RAM in double precision.

To quantitatively measure the performance, we adopt the
following two metrics to calculate the error between an esti-
mator Ŷ ∈ Rr×c and the ground truth Y ∈ Rr×c:

(a) Root-mean-square error (RMSE)

RMSE(Y, Ŷ ) =
1

c

√√√√1

r

r∑
i=1

‖yi − ŷi‖22,

where yi ∈ Rc is the i-th row of Y ;

(b) Normalized mean-square error (nMSE)

nMSE(Y, Ŷ ) =
‖Y − Ŷ ‖F
‖Y ‖F

.

In order to make a fair comparison, we use the initial-
ization steps in [20]. In particular, we run vertex component
analysis (VCA) [21], which results in 60 endmember candi-
dates that are clustered into 6 groups. This is directly used
as S for FCLSU and FRAC, while we use the mean spec-
trum within each group and the sum of the abundances es-
timated by FCLSU within each group as initial conditions
for S0 and A0, respectively. We randomly sample 0.5% of
the pixels for the Nyström method to approximate the graph
Laplacian, and use σ = 5 in (1). When choosing ρ and λ,
we perform a grid search with parameter candidates evenly
spaced over the interval in a logarithmic spacing, i.e., ρ ∈
{10−3, 10−2.6 . . . , 100.6, 101}, µ = ρ/λ ∈ {10−6, . . . 1},
and γ ∈ {10−2 . . . , 10, 102, 103} for GraphL. For the FRAC
method, we fix ρ = 10 as suggested in [20] and choose λ
among {10−3, 10−2.6 . . . , 100.6, 101}. The optimal param-
eters are chosen based on visual inspection of the resulting
abundance vectors, and are summarized in Table 1.

The quantitative comparisons in Table 1 indicate that
GraphL achieves the best results in terms of RMSE and
nMSE. It also requires less computational time than FRAC.
Fig. 1 shows that the GraphL produces the abundances that
are visually similar to those from FCLSU and FRAC. But the

1The data is downloaded from http://www.escience.cn/
people/feiyunZHU/Dataset_GT.html
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Fig. 1. Abundance matrices (A) of the Urban data produced
by FCLSU, FRAC, and GraphL. Top row is the ground truth.

FCLSU FRAC GraphL

RMSE(S, Ŝ) 0.196 * 0.151

nMSE(S, Ŝ) 0.807 * 0.675

RMSE(A, Â) 0.240 0.251 0.207

nMSE(A, Â) 0.849 0.930 0.681
time (sec) 34 119 74† + 5

λ n/a 100.2 103

ρ n/a 10 10−3

γ n/a n/a 103

iterations n/a 200 50

∗ : same as FCLSU, since FRAC only estimates A.
† : time spent estimating the graph Laplacian matrix L.

Table 1. Quantitative comparison of the unmixing perfor-
mances and a summary of the chosen parameters. The best
results in each row are highlighted in bold.

third panel (Tree) of GraphL looks much closer to the ground
truth. Overall, GraphL has great potential in hyperspectral
unmixing, especially for high-dimensional data.

5. CONCLUSIONS

In this paper, we proposed a blind hyperspectral unmixing
model based on a normalized graph Laplacian. To enhance
the computational efficiency for high-dimensional hyperspec-
tral data, we adopted the Nyström method to approximate
the eigenvalues and eigenvectors of the graph Laplacian. By
introducing auxiliary variables, we applied ADMM to mini-
mize the proposed model in a way that each subproblem has
a closed-form solution. Experiments on a real dataset have
shown promising results of the proposed method in terms of
efficiency and identification accuracy. Future works include
convergence analysis and comprehensive experiments on both
synthetic and real datasets in comparison with the state-of-

http://www.escience.cn/people/feiyunZHU/Dataset_GT.html
http://www.escience.cn/people/feiyunZHU/Dataset_GT.html


the-art methods in blind hyperspectral unmixing.
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