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Fourth order degenerate diffusion equations arise in the study of in the motion
of thin films and and membranes of viscous liquid in which the surface tension
of the liquid/air interface determines the evolution. These equations are derived
via a lubrication approximation in which the fluid velocity is depth averaged in
the direction transverse to the film [16, 14]. One typically obtains an evolution
equation for the thickness & of the film of the form

(1) hi +V - (A"VAR) =0, z&R* h(z,0)=ho(z) n>0

where n depends on the geometry of the problem and any boundary conditions
relevant for the fluid. Examples include a thin neck in the Hele-Shaw cell for
which n = 1 and d = 1 [11] and a thin film on a solid surface with no slip on
the fluid/solid interface for which n = 3 and d = 2 [14]. The problem that I
consider here is the evolution from strictly positive initial data. For a discussion
of evolution from nonnegative initial data see [7, 2, 3].

Topological transitions in the thin film have a simple mathematical interpreta-
tion in the context of the lubrication approximation. They correspond to finite
time singularities in the PDE of the form

(2) h(z,t) =0 as t— 1.

The recent work [8] is the first comprehensive study of the effect of the nonlinearity
n on finite time singularities of the form (2) for (1) in one dimension. One feature
of this work was the observation of various ‘bifurcations’ or transitions in the
structure of the solutions at many critical values of n. This is in sharp contrast
to the analogous second order ‘porous medium’ equation for which singularities
of the form (2) are not possible due to a maximum principle [15]. Furthermore,
equation (1) is known to have transitions at critical values of n for some known
exact solutions. For example, ‘source type’ solutions with compact support only
exist for n < 3 and have a transition in their behavior at the edge of the support
at n = 3/2 [4]. The lack of source type solutions for the case n = 3 is particularly
relevant to the problem of a spreading drop on a solid surface [10]. Furthermore,
traveling wave solutions have critical transitions at n = 3/2,2, and 3 [9]. Recent
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work on the weak existence theory [7, 2] suggests that 3/2 and 3 are true critical
exponents for the evolution problem.

A striking feature of the behavior of the singularities computed in [8] was that
most of the isolated point singularities of the form (2) were of ‘second type’ [1] in
the sense that the scaling observed was not what one predicts from the dimensional
analysis of the equation. Instead the solution has a leading order behavior that
does not solve the full equation and hence requires higher order corrections. In
problems with a fixed, small parameter [1], the higher order corrections produce
a ‘nonlinear eigenvalue problem’ that determines time dependence of the solution.
In [8] the time dependences resulted from matching the the behavior of the local
singularity to boundary conditions or to an ‘outer’ solution.

In this paper, I discuss the structure of the singularity as well as continuation
of the solution past the singularity.

In Section 1 I present some rigorous theory for the equation on a periodic domain.
The main features of the theory are (1) lack of singularity from positive data for
n sufficiently large and (2) existence of a nonnegative weak solution in a sense
of distributions for 3/8 < n < 3 (and in a weaker sense for 0 < n < 3/8) that
decays to its mean as t — oo. The main tool used to prove all results are a
class of dissipative entropies. This is in sharp contrast to similar second order
problems (e.g. the ‘porous media equation’) which possess a maximum principle.
One outcome of this theory is that even if a finite time singularity does occur
from smooth positive initial data, one can continue that solution after the initial
singularity time as a nonnegative weak solution and there must be a second critical
time after which the solution is again strong and positive and furthermore decays
to its mean in the infinite time limit. The weak continuation theory is particularly
relevant to the droplet problem with a moving contact line is modeled by a slip
condition on the liquid solid interface (see e.g. [7] or the references contained
therein for a discussion).

In Section 2 I show numerical simulations of such an occurrence. I consider
n = 0.5 on a periodic domain with specific positive initial data. This value of n is
sufficiently small to produce a finite time singularity with this special choice of ini-
tial condition. First, I show that the singularity has the same self-similar structure
observed in [8] with different boundary conditions. Some features of the singular-
ity are that hp, — 0~ (f. — 1), where 1, is the critical time, the third derivative
forms a bounded jump discontinuity at the critical time, and the singularity is
symmetric about its singular point. For this value of n, Theorem 1.2 guarantees a
weak distribution solution that describes the evolution past the singularity time.
I numerically compute this weak solution using the same approximation scheme
used to prove the existence theorem. The simulation suggests that shortly after
the singularity time the weak solution becomes zero on a set of positive measure.
At an even later time, the solution becomes strong a positive again and decays to
its mean as dictated by the rigorous theory.
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There are a number of unsolved problems connected with this study. For ex-
ample, within a highest regularity class, is the weak distribution solution of theo-
rem 1.2 unique? Also, there is no rigorous proof of an initial finite time singularity
with nonforcing (e.g. periodic) boundary conditions for any n > 0. T discuss these
questions in more detail in Section 3.

Self similar singularities and second type scaling. The numerical singu-
larity shown in Section 2 is typical of the ones seen in [8] in that it has only a
leading order self similar behavior. That is the leading order behavior is given by

(3) ha, 1) = 5(t)H(5(:§)q).

An exact solution to the equation of the form (3) is called a similarity solution
of “first type’[l] in which equations for é and H decouple into respective ODE’s.
In particular, fixing the scaling value ¢ fixes the power law time dependence of
0. Typically ¢ is determined from the particular problem at hand. For example,
‘source type’ solutions conserve mass which in 1-D fixes ¢ = —1 and therefore
6 ~ t=Y/"+4)  Consider a solution for which (3) is at least a leading order behavior.
Plugging (3) into (1) gives

6 - n
(4) gt(l - qnan)H + 0" 4q(H Hnnn)n =0.

An exact solution to the equation would have both terms in (4) of equivalent
magnitude. Separation of variables then gives separate equations for ¢ and for H.
If ¢ is known, the equation for ¢ fixes its time dependence. If ¢ is not known then
the self-similarity is deemed of ‘second type’ [1] and the determination of ¢ comes
from solving a ‘nonlinear eigenvalue problem’.

The typical situation for the self-similar singularities in [8] is different from the
above scenario. In this case the self-similarity is only a leading order behavior, and
one of the terms in (4) dominates the other. A commonly observed behavior in [§]
was for the time dependence 6 to cause the second term on the left hand side of
(4) to dominate the first. This means that the function H describing the leading
order behavior satisfies the ODE (H"H,,,), = 0. The time dependence of ¢ is
not determined by this leading order structure. However the scaling exponent ¢ is
determined simply by the parabolic scaling of the singularity' (seen for example
in the fact that when 2 — 0, the second derivative remains bounded away from
zero and infinity).

The example computed in Section 2 has exactly this structure. Moreover, it is
symmetric about its the singular point. Hence the only choice for H is the function
H(n) = Ao+ An?. Since the singularity is of the form (2) with positive initial data,
both Ag and A must be positive.

Iwhich fixes ¢ = %



If the self similarity is only a leading order behavior it is natural to look for
an infinite expansion. In [5] I discuss power series expansions in terms of rescaled
variables to describe the local behavior of solutions near a singular point. I discuss
the determination of 6 for symmetric singularities in the lubrication approximation
and in a related equation, h; + h"hpppr = 0.

1. MATHEMATICAL THEORY FOR THE EQUATIONS

I consider the one dimensional lubrication equation

on the circle, S'. The degeneracy of this equation as & — 0 requires h to be
bounded away from zero for standard parabolic theory to ensure well-posedness.
An a priori bound on the H! norm of h ensures that A is bounded from above
h < M on any time interval of its existence. Thus, given appropriate boundary
conditions, the initial value problem with smooth initial hg(z) > 0 has a unique
smooth solution on any time interval on which the solution is bounded away from
zero. Hence, the only possible finite time singularities are of the form A — 0.
This section presents some rigorous existence results for global strong and weak
solutions.

Before stating the theorems I review some elementary properties of the equations
for smooth solutions: One can use these properties and other properties to prove
results for weak solutions. The first property is conservation of mass,

/51 h(x,t)dx = /sl ho(x)dx.

Second, dissipation of surface tension energy,

(6) Lot O+ [ R = [ bt 0,

In addition to the above two quantities, there is a basic entropy dissipation: con-
sider a function G(y) satisfying G"(y) = 1/f(y). The convexity of G and mass
conservation allow a choice of G satisfying [ G/(h(x,t)) da > 0 for all t. Integra-
tion by parts yields

(7) /G(h(x,T))dx+//§1X[07T] h2, = /G(h(:z;,()))d:z;.

For n = 0, the linear problem, the entropy is merely the L? norm. Bernis and
Friedman first introduced these entropies in [3]. In fact, a larger class of entropies
also dissipate [8, 7, 2]. Namely,

d
s < _ 1—s/2\2 )

For all G, satisfying G”(h) = h=6+" and s € [0,1/2). This fact allows one to

prove



Theorem 1.1. (Global strong solution for all time [8])

Let h be a solution to (1) with periodic boundary conditions and smooth initial
data ho(x) > 0. Then if n > 3.5 then there exists a unique smooth solution h(x,t)
for all time that satisfies h(x,t) > 0. (2) If n > 2, then the above is true on any
time interval on which hy.(x,t) remains bounded.

In lieu of a proof, I refer the reader to [8]. The proof of this theorem follows
from the same argument used by Bernis and Friedman, [3], for n > 4. The sharper
result is proved via a more refined class of entropies.

In addition, if a finite time singularity intervenes, one can continue the solution
as a weak solution for all time. Moreover, there exists a critical time after which
the solution is guaranteed to be strong and positive:

Theorem 1.2. (Global existence of a weak solution with positive initial data [7])
Let 0 <m < hg < M, hg € H'(S"), n > 0 and T > 0. Given0§5<%and

n>a > % — % then there exvists a weak nonnegative solution to the lubrication

approximation in the following sense of distributions

(8) forn>1,
// he,dadt — // WbV by, dedt — // by, dedt = 0,
Qr Qr Qr

(9) f0r§<n§1,
hOZ
| hedadt— [ 0 hasg,,dedt— [[ 0= (—) howp,dedt = 0
Qr Qr Qr a /.

and in the weaker sense

3
(10) for0<n< 3’

// hc,otd:z;dt—l—// W hpwopodedt = 0, P = {(z,0)|h(x,1) > 0}
Qr P

for all p € C52(Qr). In all cases the solution has the additional regularity

(11) hl=/2 e L30,T; H*(SY)),
(12) (h*). € LY(Q1).

Moreover, in all cases there exist positive A and ¢ so that
(13) A1) = Fllze < A~

A depends on M, m, h, and n, and ¢ depends on n and h. In particular, there
exists a critical time T™ after which the solution is gquaranteed to be strong and
positive.



This theorem is proved in [7]. Similar existence and long time results are also
proved in [7] for the case of nonnegative initial data for 0 < n < 3.2 A striking
feature of the evolution from nonnegative data is the sharpness of the existence
theory given a most regular class of ‘source type’ solutions for the problem.

The above result strengthens previously known weak existence result due to
Bernis and Friedman [3]. One feature of the entropies used to prove this result is
that when n > 3/2, if a singularity forms from positive initial data, the resulting
weak solution can only be zero on a set of zero measure. No numerical evidence
exists for the occurrence of finite time singularities from positive initial data with
periodic boundary conditions when n > 3/2.

2. NUMERICAL RESULTS

In this section I present a numerical case study showing both the onset of the
singularity and the evolution of the weak solution past the singularity time. Specif-
ically I solve the equation

ht + (hnhamm’)x = 07 T < [_17 1]7 n = 057
on the periodic domain [—1, 1] with positive initial data
(14) ho(x) = 0.8 — cos(wx) + 0.25 cos(27x).

Since the initial data is symmetric about * = 0 and the equation preserves the
symmetry, I compute the solution on [0,1] and use reflection symmetry at the
boundary.

The numerical method used is an adaptation of a code used in [6, 8] and earlier
papers [11, 12]. It is a conventional finite difference method using an implicit,
two level scheme based on central differences. The implicit time step is crucial to
remove stiffness associated with the parabolicity of the equation. On each time
step, the fully nonlinear difference equations are solved via Newton’s method. The
interested reader can read [6, 8] for details on the difference scheme.

The main difference between the code used to compute solutions in [6, 8] and the
results presented here is the implementation of a self similar dynamically adaptive
mesh scheme to resolve the singularity to arbitrary order. This method is also
used in [5] to study a family of singularities of this type.

2.1. Self similar adaptive mesh scheme. The main advantage of this regrid-
ding scheme is that (1) it is straightforward to implement and (2) it is very efficient
in that the total number of mesh points required depends only logarithmically on
the smallest length scale resolved. The computation described below took only a
few minutes to run on a Sparcl0.

The following scheme assumes a singularity at the origin. However, it can be
generalized to a singularity at another point or a moving singularity. Initially

?Existence with the same degree of regularity (e.g. (11-12)) in the weaker sense (10) was
proved in the recent work [2]).



7

start with a fixed mesh. The computation presented here uses an initial grid of
210 = 1024 uniform intervals. A second parameter is the number of grid points
desired to resolve the singularity scale. In this calculation, this scale is ~ §/2
(for the remainder of this article I use the notation 6 interchangeably with the
minimum height, A,,;,: see below). The calculation presented here uses 64 mesh
points resolving the smallest length scale. When §'/2 decreases to 64 mesh points
(= 64/1024) wide divide the first 64 intervals in half and define this to be the
new mesh. When /2 decreases to 64 of the new mesh points, repeat the division
process. Each regridding introduces only 64 new mesh points. This can be repeated
ad infinitum with only logarithmic dependence of the number of mesh points on the
smallest scale resolved. Moreover, in this special case where the singularity occurs
at = 0, the fact that intervals are always halved exploits the binary arithmetic of
of the computation and hence computes dz to infinite precision® (within the limits
of machine storage of the exponent (e.g. approx. 107°% for double precision)).
The simulation presented here goes through 55 levels of regridding, producing 3520
new points. Hence the smallest dx at the end of the simulation is dz = 27, The
values of h at each new mesh point are computed by linearly interpolating h,,.*
The third derivative h,,,, stored as a separate array throughout the calculation,
is computed by linear interpolation.

2.2. Loss of regularity: form of the initial singularity. First I show that
the structure of the solution around the singularity is locally described by the first
two terms in an expansion.

First, to check that h(x,1) to leading order behaves like a decreasing parabola,
one simply needs to note that the minimum remains at * = 0 and that the second
derivative remains bounded away from zero and infinity as the solution nears the
critical time. In fact the second derivative at * = 0 approaches a constant value of
1.00 as t — t.. The simulation indicates that the singularity occurs at ¢, ~ 0.00073.

The behavior of the second derivative suggests that locally, to leading order, the
solution behaves like 6(t) + %:1;2 +.... Asin [8], a higher order correction to this
simple form comes from writing h(z,t) = §(t) + 2* 4 g(x,t) and solving for ¢ as
a perturbation. This procedure results in the following equation for ¢:

5"’ gt = — [(5 + %xz + g(xvt))ngxxx]x-

To leading order, neglect g; on the left hand side and ¢ in the () on the right
hand side to obtain a correction to the leading order parabola, 6 + %:1;2, with a self

3There is also roundoff error introduced at the level of the spatial differencing. This error
is damped out by the implicit time step for large d¢ but becomes significant as dt gets small.
This calculation, run in double precision arithmetic, was stopped after the roundoff error became
significant in the computation of (A" hyzyp)s.

*computed from simple three point central differencing
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FIGURE 1. Onset of initial singularity. Formation of a jump discon-
tinuity in the third derivative.

similar third derivative:

. £e1/2—n Y _ T
This functional form was verified in [8] for solutions with ‘pressure’ and ‘pumping’
boundary conditions for many values of 0 < n < 1.

Note that when n = 0.5, 6 ~ (t.—1), the above dictates that the third derivative
should form a jump discontinuity as ¢ — ¢.. This phenomena is shown in Figure 1
which shows the third derivative at times very close to the singularity time. The
different curves correspond to a minimum height, §, of 2.1 x 1073, 1.9 x 107!,
1.8 x 10772, 1.7 x 107%*, 1.6 x 107**.  To check the functional form of the solution,
note that (15) predicts the fourth derivative locally behaves as 667" /(1 + %y2)3/2.
Figure 2 shows rescaled profiles of hyyq.(2,1). The plots are of

hxxxx(x/ V hminv t)
The data collapses onto the solid line 1/(1+ $y?). The five different profiles corre-
spond to approximate values of §: 1077, 1072, 1072°, and 107%°. The data shows
that the simulated solutions agree with the leading order terms in the expansions
quite well.
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2.3. Time dependence of the minimum. I show that the solutions have the
time dependence 6 ~ (t.—1). Figure 3 depicts log1o(hmin) versus logio(|dhmin/dt])
for 22 decades of scaling in hp;,. The slope measured is 0.0000... (to five decimal
places) and is computed using data with h,,;, ranging from 107'% to 107%* and
a standard linear regression fit of the data. dh,,;,/dt is computed by simply
differencing (hmin(t + At) — hpmin(t))/dt over the step. This data clearly indicates
a linear time dependence in (¢. — t). Note that the solution must reach a fairly
small minimum height before the linear time dependence is truly observed. This
‘transient’ time scale in the range h,,;, > 1071° has been observed in other fourth
order computations with ‘second type’ scaling [12, 8, 5]. Hence much resolution is
needed to see the actual power law in the time dependence.

2.4. After the initial singularity and eventual gain of regularity. I com-
pute a nonnegative weak continuation of the solution after the singularity via the
approximation scheme first introduced in [3] and used in [7] to prove Theorem 1.2
for existence of a distribution solution after the singularity time.

That is, regularize the equation by
htf(h)

16 he + ehe hexxxx:() ehe = T i~ 1 4
Note that f. is still degenerate however for n < 4, f. ~ h*/e as h — 0. Bernis and
Friedman [3] proved that this approximate problem has global, positive, smooth
solutions:

Theorem 2.1. (Global existence of smooth positive solutions for the regularized
problem [3]) Let ho € H'(S'), ho > 0. Gliven an initial condition

heol) = hol) + 6(¢)
there exists a unique positive solution to the reqularized equation
het + (fe(he)hexmc)x =0

_ hlf(h)
Jelhe) = cf(h)+ h*

In the case of nonnegative initial data, the regularization of the equation must
be accompanied by a ‘lifting’ of the data. However, since I consider strictly positive
initial data in this example, the only change is in the equation. The weak solution
of Theorem 1.2 is obtained as the uniform limit of strong positive solutions of (16).

The numerics indicate that the initial singularity occurs at approximately ¢t =
0.00073. To compute the weak solution I solve (16) with a fixed ¢ and initial data
(14). The data presented here compares several values of e. The simulations show
that after the singularity time the weak solution is zero on finite interval around

xz = 0.
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FIGURE 4. Regularized approximation of weak solution. Pictured
are the h.(x,t) profiles at fixed time ¢t = 0.001 for the three values
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FIGURE 5. Regularized approximation of weak solution. At fixed
time ¢ = 0.001, ¢ = 107", 107'3, and 10™'*. Regularizations con-

verge to 0 on the interval [—0.06, 0.06].

Figure 4 shows the height profiles for i at the fixed time ¢ = 0.001 for three dif-
ferent values of the regularization parameter, ¢ = 1071, 10713, and 107!, Figure 5
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FIGURE 6. Eventual gain of regularity and convergence to the mean.
‘Weak solution” computed from the ¢ regularization, ¢ = 107,

depicts the same data as Figure 4 at very small heights on the interval [—0.1,0.1].
The trend in Figure 5 as € — 0 indicates that the weak solution is zero on the
interval [—0.06,0.06] (approximate). Note that the apparent ‘edge’ of the support
of the weak solution has quite good dependence on e. Similar data (not shown) of
the second derivative indicates that at this time ¢ = 0.001 the solution has a jump
discontinuity in the second derivative at the edge of its support. This is charac-
teristic of such solutions and is the weakest behavior possible given the regularity
dictated by Theorem 1.2. This behavior is also consistent with local analysis of ex-
plicit traveling wave solutions to the equations [9]. Figure 6 shows the solution at
later times ¢ = 0.001 to 0.05. The data suggests that at approximately ¢t = 0.0023
the weak solution becomes strong and positive again. It clearly decays to its mean
in the infinite time limit as dictated by Theorem 1.2.

3. CONCLUSIONS AND REMARKS

This paper serves to discuss some issues involved in the singularity problem for a
family of fourth order degenerate diffusion equations of the form hy+(h"hypy)r = 0.
In addition to the discussion, I present a numerical case study of such a singularity
when n = 0.5 and when the equation is solved with periodic boundary conditions.
The numerics indicate that with a special choice of initial condition, the solution
has a finite time singularity at the origin and that a nonnegative weak continuation
of the solution past the singularity time shows the weak solution to be zero on a
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set of positive measure for a finite interval of time. Moreover, this weak solution
eventually becomes strong a positive as dictated by rigorous theory.

This example illustrates just one of the ways in which fourth order degener-
ate diffusion equations show a richer class of behavior than their second order
cousins. Finite time singularities of the type described here are only one facet of
the problem. The weak solution theory also shows much more rich behavior than
that indicated for the second order porous media equation. A common thread
in both the singularity and weak solution problems is the appearance of ‘critical
exponents’, values of n where the equation h; + (A" hy:). = 0 has a characteris-
tic change in its behavior. For a discussion of critical exponents and singularity
formation in this equation with the ‘pumping’ boundary conditions, h(+1) = 1,
hezs(£1) = +c or ‘pressure’ boundary conditions, h(+1) = 1, hy(£1) = p, in-
cluding some with non self similar complex structure, see [8]. For a discussion of
critical exponents and singularity formation in the equation hy + h"hyppr = 0 see
[5].

Regarding the case of periodic boundary conditions, singular solutions of the
type (2) have not been observed for the lubrication equation with n = 1 (cor-
responds to the thin neck in the Hele-Shaw cell) unless one adds a destabilizing
force such as gravity in the Hele-Shaw cell [13, 16]. Alternatively, with the pres-
sure boundary conditions (a forcing at the boundary), finite time singularities have
been observed for n =1 [12, 8].

Very few rigorous results exist for the question of finite time singularities. With
the ‘pumping’ boundary condition, one trivially obtains a singularity because [ h
decreases at a constant rate. However, we lack theory for whether this happens on
the boundary or in the interior of the domain when n < 3.5. Numerics [8] indicates
a transition from an interior singularity to a boundary singularity at n ~ 1.5.

Also, a rigorous result with the pressure boundary conditions, with n < 0.5 and
p > 2 was recently obtained [2] by exploiting the nontrivial long time character
of the system. However, no results exist proving singularity formation for the
situation with unforced boundary conditions. Moreover no rigorous results with
any boundary conditions exist to describe the local structure of the singularity.

The are also a number of open problems concerning the weak solutions. One
such problem is uniqueness of a distribution solution within the higher regularity
class. While the recent work [2] shows clear nonuniqueness of very weak solutions
(in the sense (10)) the sharp existence results of [7] suggest a uniqueness result
in a restricted class may be true. Furthermore, none of the above questions have
been addressed in higher dimensions.
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