
Applications of Structural Equivalence to Subgraph
Isomorphism on Multichannel Multigraphs

Thien Nguyen
University of California, Irvine

thienhn4@uci.edu

Dominic Yang, Yurun Ge, Hao Li, Andrea L. Bertozzi
University of California, Los Angeles

domyang, yurun, lihao0809, bertozzi @math.ucla.edu

Abstract—Structural Equivalence refers to the ability to ex-
change two vertices in a graph without changing the structure of
the graph. We provide basic definitions and properties applicable
to the subgraph isomorphism problem. We show examples of
structural equivalence that reduce the size of the search tree
for subgraph isomorphism counting and enumeration, applied
to multichannel networks.

Index Terms—graph matching, multichannel multigraphs,
multiplex network, structural equivalence, graph compression

I. INTRODUCTION

This paper considers subgraph isomorphisms (SI): given a
world graph and a smaller template graph, the goal is to find
a copy of the template graph within the world graph. This
problem, due to its simple description, finds application in a
wide variety of areas. The most immediate applications occur
in the fields of biology and chemistry where certain networks
of cells, proteins, or molecules are searched for the presence
of specific substructures [6] [7] [11]. Subgraph isomorphism
has also been used in the field of pattern recognition [3] for
problems such as handwriting recognition, facial recognition,
and 2D and 3D image analysis. Another application is social
network analysis [9].

The subgraph isomorphism problem is NP-complete [2],
suggesting that there is no obvious efficient and broadly
applicable algorithm, and that solving subgraph isomorphism
on graphs is in general computationally intractable. In spite of
this difficulty, significant progress has been made in the de-
velopment of algorithms for detecting subgraph isomorphism.
As in other NP-complete problems, the literature addressing
the enumeration of exact subgraph isomorphisms has focused
on performing a full tree search of the solution space. The
state-of-the-art algorithms optimize the variable ordering and
pruning of branches of the search tree.

The first significant subgraph isomorphism algorithm pro-
posed by Ullmann [1] generates candidate vertices from the
neighbors of already matched world vertices. The widely used
VF2 algorithm [4] improves on this by choosing a match

This material is based on research sponsored by the Air Force Research
Laboratory and DARPA under agreement number FA8750-18-2-0066. The
U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the Air Force Research Laboratory and DARPA
or the U.S. Government. 978-1-7281-0858-2/19/31.00 © 2019IEEE

ordering that favors template vertices adjacent to already
matched template vertices and adding pruning rules based on
the degrees of vertices. The authors more recently published
the VF3 algorithm [15] that further extends this approach.

In a different approach, Solnon [8] draws upon constraint
propagation from artificial intelligence, and her algorithm
internally stores candidate lists for every template vertex.
By way of repeated application of filters interspersed into
a tree search, her algorithm can effectively prune branches
to enumerate solutions. She expands on this work in [14] to
incorporate more powerful filters.

Significant work has been done to exploit symmetry to
compress graphs and count isomorphisms. TurboIso [10] ex-
ploits basic symmetry in the template graph and optimizes the
matching order based on a selection of candidate regions and
exploration within those regions. CFL-Match [13] proposes
a match ordering based on a decomposition of the template
graph into the core, a highly connected subgraph, and a forest
which is further decomposed into a forest and leaves. It
also exploits the symmetry in the template graph. BoostIso
[12] exploits symmetry in the world graph and presents a
method by which other tree-search-based approaches may be
accelerated by using their methodology.

Our work is part of the DARPA Modeling Adversial Activ-
ity (MAA) program [21]. The data referenced in this paper are
synthetically generated by three teams of researchers (Pacific
Northwest National Laboratory [17], the GORDIAN (Graph-
ing Observables from Realistic Distributions in Activity Net-
works) project [18], and Ivysys Technologies [16]). In practice,
the examples developed by these teams possess symmetry that
results in computational complexity when applying standard
subgraph isomorphism approaches. For example, consider the
graph in Fig. 1. Vertices of the same color may be interchanged
without changing the structure of the graph, implying that any
isomorphism can generate many more, simply by swapping
vertices. It is our goal to exploit this knowledge to fully
determine all possible solutions.

This paper builds upon previous work in [19] and develops
a theory of equivalence for both the template and world
graph in order to accelerate isomorphism identification. We
wish to adequately characterize the larger solution space and
present a compact solution representation that can be orders
of magnitude smaller than the total count.

1

2019 IEEE International Conference on Big Data (Big Data)

978-1-7281-0858-2/19/$31.00 ©2019 IEEE 4913

Fig. 1. Example template graph from Ivysys Technologies [16]. Non-gray
vertices of the same color may be interchanged without changing the structure
of the graph.

II. DEFINITIONS AND TERMINOLOGIES

A graph G is an ordered pair (V (G),E(G)) where V (G)
is the set of vertices or nodes of a graph, and E(G) ⊆ V (G)×
V (G) is the set of edges. Graphs of this form are referred to
as simple directed graphs. We only consider directed graphs
in this paper, so if (u, v) ∈ E(G), this does not necessarily
imply (v, u) ∈ E(G). We also consider additional structure
in the form of multiedges (or parallel edges) in separate
channels. In order to describe these additional features, given a
fixed ordering of the vertices v1, . . . , v∣V (G)∣

, we introduce the
adjacency matrix for a graph A which is a ∣V (G)∣ by ∣V (G)∣
matrix where the entry A[i, j] ∈ N denotes the number of
edges that start at vertex vi and end at vertex vj . For graphs
with multiple channels, we have multiple adjacency matrices
A1, . . . ,Am, one for each channel describing the adjacency
structure in that channel, with the non-superscripted matrix A
referring to the tuple (A1, . . . ,Am) of all channels. In general,
we use superscripts to denote a graph property for a specific
channel. The notation Ac

G denotes the adjacency matrix of a
graph G in channel c. We may omit G if the graph is clear
from the context. In this paper, we may also slightly abuse
notation by writing the number of edges going from vertex u
to vertex v in channel c as Ac[u, v], and the tuple of number of
edges across all channels A[u, v] = (A1[u, v], . . . ,Am[u, v]).
Given this, we let (u, v) ∈ E(G) if A[u, v] ≠ (0, . . . ,0).

We say H = (V (H),E(H)) is a subgraph of G if
V (H) ⊆ V (G) and E(H) ⊆ E(G). An independent set
of vertices is a subset of V (G) where there are no edges
between any two nodes in the subset. In other words, it is a
completely disconnected subgraph. A clique in channel c is
a set C of nodes such that for all u ≠ v ∈ C, Ac[u, v] > 0.
We say C forms an n-connected clique if Ac[u, v] = n for
all u ≠ v ∈ C and some positive integer n. That is each
pair of nodes in C is connected to each other by exactly n
edges. This becomes important later as a property of structural

equivalence. Finally, we denote the set of neighbors of a vertex
v by N(v) = {u ∈ V (G) ∣ (v, u) or (u, v) ∈ E(G)}. Similarly,
we define the set of incoming neighbors, Nin(u) and outgoing
neighbors, Nout(u).

The central topic of interest in this paper is the problem of
finding all subgraph isomorphisms.

Definition 1 (Subgraph isomorphism). Given graphs T =
(V (T),E(T)) and W = (V (W),E(W)), and a map f ∶
V (T) Ð→ V (W), we say that f is a subgraph isomorphism
if it is injective and edge-preserving, that is, for each (u, v) ∈
E(T), we have that (f(u), f(v)) ∈ E(W). In the case of mul-
tichannel multigraphs, we need Ac

T [u, v] ≤ Ac
W [f(u), f(v)]

in each channel c.

Related terms to this are subgraph homomorphism which
relaxes the injectivity requirement, and the induced subgraph
isomorphism which also requires it to be non-edge preserving
(if (u, v) ∉ E(T), (f(u), f(v)) ∉ E(W), and equality in the
multichannel multigraph case).

We denote the graph T above as the template graph and
the graph W as the world graph. Any subgraph of W which
is isomorphic to T is labeled as a signal of T in W . Given a
pair of graphs T,W , we say that the pair is satisfiable under
the subgraph isomorphism problem if there exists at least one
signal of T in W . In order to identify potential signal nodes
for template vertices, we introduce candidate sets. A candidate
set is the set of world vertices that could correspond to a
template vertex under an isomorphism map. The candidate set
for each template node evolves during steps of the algorithm.
Formally, we define a candidate set for a vertex v ∈ V (T) to
be any subset of V (W). We denote the candidate set of v as
C(v). We say that C(v) is a minimum complete candidate
set if it contains only w ∈ V (W) for which there exists
some subgraph isomorphism f such that f(v) = w. Having
introduced appropriate terminologies and notations, we turn
to the main topic of this paper.

III. STRUCTURAL EQUIVALENCE

Structural Equivalence is well-known for modeling social
networks [5]. Below we will give a motivating example and
show several facts that can be useful in computing subgraph
isomorphisms. Intuitively, we say that two vertices are struc-
turally equivalent to each other if they can be “swapped”
without changing the graph structure. Consider the example
in Fig. 2. We see that vertices B and C in the template graph
and 2 and 3 in the world graph are interchangeable.

With regards to subgraph isomorphisms, we see that map-
ping A to 1, B to 2, and C to 3 gives a subgraph isomorphism
from the template to the world graph and then swapping
the mapping between B and C will give another subgraph
isomorphism. Similarly, the same phenomenon happens when
we map B and C to 3 and 4: permuting the mapping of the
equivalent vertices gives us another subgraph isomorphism.
We wish to investigate this property and other usages in the
subgraph isomorphism problem.

2
4914

Fig. 2. Running Example

A. Definitions

Structural equivalence occurs when two vertices have the
same exact connections to the same set of neighbors. We give a
formal definition and show that it gives an equivalence relation
on vertices.

Definition 2 (Structural Equivalence). Let G be a graph
with n vertices, and x, y be vertices of G. We say that x is
structurally equivalent to y in channel c, denoted x ∼c y, if
they have:
● Same columns and rows: Ac[x,u] = Ac[y, u] and
Ac[u,x] = Ac[u, y] for all u ∈ V (G) − {x, y},

● Same intersecting entries: Ac[x,x] = Ac[y, y] and
Ac[x, y] = Ac[y, x].

Proposition 3. ∼c is an equivalence relation.

Proof. Given a graph G with n vertices. To simplify notation,
let Ac

G = A and ∼c=∼. We show reflexivity, symmetry, and
transitivity of ∼. Let x, y, z ∈ V (G):

Reflexivity: x ∼ x – clearly, as x has the same column, row,
and intersecting entry (A[x,x]) with itself.

Symmetry: Since everything in the definition is symmetri-
cal, x ∼ y implies y ∼ x.

Transitivity: Suppose x ∼ y and y ∼ z. We show x ∼ z.
First, same intersecting entries:
● A[x,x] = A[y, y] = A[z, z] is clear.
● A[x, z] = A[y, z] = A[z, y] = A[z, x], where the first

and third equality is due to same rows and columns from
x ∼ y, and the second equality is due to same intersecting
entries from y ∼ z.

Same column: We have A[u,x] = A[u, y] = A[u, z] for
all u /∈ {x, y, z} since x ∼ y and y ∼ z. It remains to show
A[y, x] = A[y, z]. We have A[y, x] = A[z, x] = A[x, z] =
A[y, z], where the first equality is due to same row of y ∼ z,
the second equality due to same intersecting entries shown
above, and the third equality due to x ∼ y and the same row
property. The proof is similar for same row. We have x ∼ z as
desired.

Now we generalize this equivalence relation to the multi-
channel case:

Definition 4 (Multichannel Equivalence, ≃). We say x ≃ y if
x ∼c y for all channel c.

“≃” is an equivalence relation because the intersection of
equivalence relations is an equivalence relation. From the

equivalence relation, we can generate a partition of the tem-
plate graph. Given any template vertex x ∈ V (T), we use [x]
to denote its equivalence class.

B. Basic Properties

Proposition 5. Nodes in the same equivalence class either
form a k-connected clique (for some k ∈ N) or an independent
set in each channel.

Proof. It suffices to show that all the nodes in an equivalence
class have the same connections between each other in each
channel. Given an equivalence class [x], for all u, v ∈ [x], u ∼c
v Ô⇒ Ac[u, v] = Ac[v, u] which establishes our claim.

We show an important fact that illustrates the usefulness
of structural equivalence: given a subgraph isomorphism, we
obtain another subgraph isomorphism by switching the images
of two equivalent vertices.

Theorem 6 (Properties of Equivalent Vertices in Subgraph
Isomorphism). Given a template graph T and a world graph
W with m channels, let f ∶ V (T) → V (W) be a subgraph
isomorphism from T to W . Let x ≃ y be two structurally
equivalent vertices in V (T). We define f ′ ∶ V (t) → V (w) as:

f ′(a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f(x) if a = y,

f(y) if a = x,

f(a) otherwise.

Then f ′ is also a subgraph isomorphism from T to W .

Proof. Since f is injective, it is clear that f ′ is also injective.
To see that f ′ is edge-preserving, we show for all a, b ∈ V (T),
AT [a, b] ≤ AW [f ′(a), f ′(b)]. Without loss of generality, there
are three cases:

(i) a, b /∈ {x, y},
(ii) a ∈ {x, y} and b /∈ {x, y},

(iii) a, b ∈ {x, y}.
For a, b /∈ {x, y}, (f ′(a), f ′(b)) = (f(a), f(b)), and

AT [a, b] ≤ AW [f(a), f(b)] satisfies the condition since f is
a edge-preserving.

For the second case, WLOG, suppose a = x. Then
(f ′(a), f ′(b)) = (f ′(x), f ′(b)) = (f(y), f(b)), and
AT [a, b] = AT [x, b] = AT [y, b] due to x ≃ y. But we have
AT [a, b] = AT [y, b] ≤ AW [f(y), f(b)] = AW [f ′(a), f ′(b)],
since f is an isomorphism.

For the final case, WLOG, suppose a = x and b = y. We
have AT [a, b] = AT [x, y] = AT [y, x] ≤ AW [f(y), f(x)] =
AW [f ′(x), f ′(y)] = AW [f ′(a), f ′(b)], where the second
equality is due to x ≃ y.

These cases show that f ′ is edge-preserving and moreover,
injective. Therefore, it is a subgraph isomorphism.

This theorem has several major consequences that can
significantly reduce redundant computations in highly sym-
metrical template graphs in that instead of having to consider
all candidates permutations of equivalent template nodes, we
only have to consider subsets of them, since any matching (of
subsets of candidates) gives us that all the permutations are

3
4915

also subgraph isomorphisms. This fact gives a lower bound on
the number of subgraph isomorphisms in satisfiable problems.

Corollary 7 (A lower bound for the number of subgraph iso-
morphisms). Given a satisfiable subgraph isomorphism prob-
lem with template T and world graph W , let P = {V1, . . . , Vn}
be a partition of V (T) into structural equivalence classes.
Then:

n

∏
i=1

(∣Vi∣!)

gives a lower-bound for the number of subgraph isomorphisms
of T into W .

We proceed by giving a basic modification of the typical
backtracking algorithm to apply the previous result.

C. Application to Tree Search

To demonstrate how knowledge of the equivalence structure
on a graph can be used for subgraph isomorphisms, we elabo-
rate on tree searches. A tree search in this context involves the
construction of a partial match of template vertices to world
vertices, at each step extending the matching by assigning the
next template vertex to one of its candidate world vertices.
If at any point, the matching cannot be extended (due to a
contradiction or finding a complete matching), the last made
assignment is undone and reassigned to the next candidate
vertex. This procedure can be viewed as exploring a tree where
each possible assignment of template vertex to world vertex
corresponds to a node in the tree, and a path from the root of
the tree to a leaf corresponds to a full mapping of vertices.

We display the general purpose procedure as a recursive
routine in Algorithm 1. In this procedure, we maintain a binary
∣V (T)∣ by ∣V (W)∣ matrix C where C[i, j] is 1 if world vertex
j is a candidate for template vertex i and 0 otherwise. The
function ApplyFilters exists to eliminate candidates and ensure
that the next candidate vertex chosen can properly extend the
current partial match.

Algorithm 1 Basic routine for a tree search
1: function SOLVE(partial match, cands)
2: if MatchComplete(partial match) then
3: ReportMatch(partial match)
4: return
5: ApplyFilters(partial match, cands)
6: Let u = GetNextTemplateVertex()
7: Let cands copy = cands.copy()
8: for candidate v of u do
9: partial match.match(u, v)

10: Solve(partial match, cands copy)
11: partial match.unmatch(u, v)
12: ▷ Add this for loop if using template equivalence
13: for unmatched u′ ∼ u do
14: Set cands[u′, v] = 0
15: Let cands = cands copy
16: return

To demonstrate how template equivalence can accelerate the
tree search, we note that by Theorem 6, we can swap the
assignments of equivalent template vertices to find another iso-
morphism. We assert that if we have a partial match, template
vertices u1 ∼ u2, and we have just finished trying candidate
w for u1, we do not need to explore branches where u2 is
mapped to w since we can generate any possible isomorphism
by taking one where u1 is mapped to w and swapping. Lines
13 and 14 demonstrate how we can incorporate this fact into
a tree search (without these, we would have a standard tree
search).

Note that after performing the tree search, the solutions
found will be representatives for multiple solutions. Some
bookkeeping will need to be done to determine what assign-
ments can be swapped to count the number of distinct solu-
tions. We now generalize the notion of subgraph isomorphism
to equivalence classes and apply it to world nodes.

IV. EQUIVALENCE SUBGRAPH ISOMORPHISM AND
CANDIDATE EQUIVALENCE

The world graph can also be compressed to avoid redundant
branching during tree search. We have already laid out a
basic framework for backtracking using equivalence template
vertices. Computing equivalence classes for world nodes is
trickier because the world graph might contain equivalence
relations that are hidden by extra edges. So we do not blindly
compute structural equivalence partition on the world graph as
that can be expensive and not so useful. Instead, we consider
the relationship between candidates at each level of the search-
tree. To do so, we compress the template graph using structural
equivalence and adapt subgraph matching using an auxiliary
data structure called the candidate structure instead of the
original template graphs.

A. Compressing Graphs with Structural Equivalence

Given a graph G, we construct a new graph G̃ with the
same number of channels, called the equivalence graph of G,
where the vertices of G̃ are the equivalence classes of V (G),
called super-nodes. We say that a super-node is non-trivial if
it is an equivalence class of size greater than one. We call the
edges between super-nodes super-edges, and we use similar
notation V (G̃) and E(G̃) to refer to the set of super-nodes
and super-edges. The adjacency matrix of G̃ in channel c, Ac

G̃
is constructed by setting Ac

G̃
[[u], [v]] = Ac

G[u, v]. We must
show that the definition for super-edges is well-defined.

Proposition 8 (Characteristics of super-edges). Given two
super-nodes [u] and [v] in V (G̃), for all vertices a ∈ [u] and
b ∈ [v], AG[u, v] = AG[a, b]. Consequently, AG̃ [[u], [v]] is
well-defined.

Proof. We have A[u, v] = A[a, v] = A[a, b], where the first
equality is due to u ≃ a, and the second equality is due to
b ≃ v.

Given a set of super-nodes S that is a subset of V (G̃), we
define the induced subgraph of G̃, G̃[S], similarly to how we
would for an uncompressed graph: keeping the super-nodes of

4
4916

G̃ that contains super-nodes in S and the super-edges between
them. An example of the compressed template graph of the
running example is shown on the left side of Fig. 3.

Fig. 3. Compressed Template Graph with Uncompressed Candidate Structure

B. Candidate Structure

We generalize the candidate structure introduced in [20]
to the compressed graph of a multichannel multigraph. An
uncompressed version is shown on the right of Fig. 3.

Given a super-node [u], a candidate node of [u] is a subset
of size ∣[u]∣ of C(u). The set of all candidate nodes of [u]
is denoted as C([u]), and we use the notation v[u] ∈ C([u])
to refer to a specific candidate node of [u]. Note that C([u])
is the set of ∣[u]∣-subsets of C(u). This definition is well-
defined since it can easily be shown that equivalent template
vertices have the same candidates. We use V (W̃) to denote all
the candidate nodes of a given world graph and an equivalent
template graph. This is a generalization of candidate nodes
in the single vertex case to equivalent classes. We refer to
the vertices that candidate nodes contain as world nodes of a
certain candidate node. For example, if ∣[u]∣ = n and v[u] =
{v1, . . . , vn} ∈ C([u]), then the vi’s are the world nodes of
v[u].

Definition 9 (Candidate Edges). The set of candidate edges in
channel i, denoted CEi(W̃), consisting of pairs of candidate
nodes is constructed as follows: For any pair of candidate
nodes a[u] ∈ C([u]) and b[v] ∈ C([v]) where [u], [v] ∈ V (T̃),
(a[u], b[v]) is in CEi(W̃) if ([u], [v]) ∈ Ei(T̃), a[u]⋂ b[v] =
∅, and a′ ∈ a[u] and every world node b′ ∈ b[v], AW [a′, b′] ≥
AT̃ [[u], [v]] = A[u, v].

These conditions enforce that world nodes in the candidate
nodes have at least the same connections as the super-edges
from the super-nodes in the template graph, and that an edge
cannot connect two candidate nodes that have some world
nodes in common. We do this because our goal is to only
keep the relevant information for the subgraph isomorphism
problem.

A candidate structure of a template graph T on a world
graph W , denoted W̃T̃ or simply W̃ , is a tuple that consists
of the candidate nodes V (W̃) and candidate edges CE(W̃)
corresponding to super-nodes of T̃ . Note that with the given
definition of candidate edge, the candidate structure is a
simple directed graph. For an example, consider the candidate
structure of the running example is presented in Fig. 4 after
obtaining the candidates of A,B, and C from applying the
statistics and topology filter from [19]. The candidate nodes

Fig. 4. Candidate Structure of the Running Example

of C([A]) are shown in blue and C([B]) = C([C]) in
red. We note that some of the candidate nodes like {2,6}
through {4,7} do not have a candidate edge because they do
not meet the requirement in definition 9. From the candidate
structure graph for this example, we can almost read off
the isomorphisms and remove candidates who do not have
appropriate candidate edges corresponding to template edges
(a variant of the topology filter in [19]).

C. TE Subgraph Isomorphism

Having developed the terminology and tools for incorpo-
rating equivalence classes into the subgraph isomorphism (SI)
problem, we will now give a formal definition of subgraph
isomorphism using equivalent template graphs.

Definition 10 (TE Subgraph Isomorphism). Given a template
graph T and a world graph W , let T̃ be the equivalence graph
of T . We say a map f ∶ V (T̃) Ð→ P(W) is an TE (template
equivalence) subgraph isomorphism from T̃ to W if f satisfies
the following conditions:

(i) for all [u], [v] ∈ V (T̃), [u] ≠ [v], f([u])⋂ f([v]) = ∅ ,
which implies that f is injective,

(ii) for all [u] ∈ V (T̃), ∣[u]∣ =∣f([u])∣,
(iii) for all [u] ∈ V (T̃), if [u] forms a k-connected clique

in channel i of T , then f([u]) must also contain a k-
connected clique in channel i of W ,

(iv) For all [u], [v] ∈ T̃ , if ([u], [v]) ∈ Ei(T̃) then
(f([u]), f([v])) ∈ CEi(W̃).

When given a TE subgraph isomorphism, we can obtain a
standard subgraph isomorphism by fixing an ordering on each
of the template vertices contained within a super-node. The
set of all possible subgraph isomorphisms is then generated
by considering all possible orderings on each super-node.

We modify the current tree search introduced in Section
III-C by adding a new extension rule. We introduce a joinable
condition for TE subgraph isomorphism.

Definition 11 (Partial Matches for Equivalence Classes). A
partial match M of the equivalent graph, T̃ , of a template
graph T to a world graph W is a map from a subset MT of
V (T̃) to a subset, MW , of P(V (W)) such that M is a TE
SI from T̃ [MT] to W .

Remark 12. A partial match of equivalent classes of size
∣V (T̃)∣ is a TE SI from T̃ to W .

5
4917

Now we give the conditions for extending a current partial
match to a new match and that it forms a new partial match.

Definition 13 (M-Joinable). Given a partial match of equiv-
alence classes M , candidate structure W̃ , and a new pair of
super-node [u] and candidate node v[u] ∈ C([u]) to match,
we say that ([u], v[u]) is M -Joinable if:

(i) [u] /∈MT , and ∀([x], a[x]) ∈M , v[u]⋂a[x] = ∅
(ii) ∣[u]∣ =∣v[u]∣,

(iii) For every super-node [u] that forms a k-connected clique
in channel i, v[u] must contain a k − connected clique
in channel i,

(iv) For every [u′] ∈ N([u])⋂MT , we must have:

● ([u], [u′]) ∈ E(T̃) Ô⇒ (v[u],M([u′])) ∈ CE(W̃),
● ([u′], [u]) ∈ E(T̃) Ô⇒ (M([u′]), v[u]) ∈ CE(W̃).

To use it on our modified tree search, we must show it
extends some partial match.

Proposition 14 (Extending Partial Matches). If M is a partial
match of equivalence classes and ([u], v[u]) is an M -Joinable
pair, then M ′ = M ⋃([u], v[u]) is another partial match of
size ∣MT ∣ + 1.

Proof. To show M ′ is a partial match, we must show that M ′

is a TE SI from T̃ [M ′

T] to W . We check:
(i) Since M is a partial match and [u] /∈MT , v[u]⋂MW = ∅

by 13(i), M ′ is well-defined and injective. Also, for the
same reason, M ′([a])⋂M ′([b]) = ∅ for any [a], [b] in
M ′

T .
(ii) For all [a] ∈ M ′

T , ∣[a]∣ = ∣M ′([a])∣ since M ′([a]) =
M([a]) for a /∈ [u] and M is a partial match. The
verification for [u] follows from 13(ii).

(iii) The clique condition is specified in 13(iii) for [u] and
follows from M being a partial match for all other super-
nodes in MT .

(iv) For all ([a], [b]) ∈ Ei(T̃ [M ′

T]), if [a], [b] ≠ [u], the edge
condition is satisfied due to M being a partial match.

WLOG, suppose [a] = [u] i.e. ([u], [b]) ∈ Ei(T̃ [M ′

T]).
We have (M ′([u]),M ′([b])) ∈ CEi(W̃) from condition
(iv) in def 13.

This shows that M ′ is a partial match of T̃ [M ′

T] to W .

In the running example, supposed we have a partial match
[A] with 1 from Fig. 4, we can extend this by matching
[B] with {2,3} by checking the joinable condition. Since it’s
joinable, and our partial match is now of size ∣V (T̃)∣, we have
a subgraph isomorphism. We can use this to easily develop a
backtracking-algorithm for equivalence template graphs.

D. Candidate Node Equivalence

We start with an observation that, due to how we traverse the
search tree using candidate edges, at every level of the search
tree, the subtree explored rooted at a candidate node will be
similar to another candidate node if they have the same set of
neighboring candidate nodes. We formalize these observations
and give several useful applications.

Definition 15 (Candidate Node Equivalence). Given a super-
node [u] ∈ V (T̃), we say that two candidate nodes a[u], b[u] ∈
C([u]) are equivalent, denoted a[u] ≃ b[u], if they have the
same set of neighbors in W̃T i.e. Nin(a[u]) = Nin(b[u]) and
Nout(a[u]) = Nout(b[u]).

This relation is clearly another equivalence relation since
it is the same equivalence relation as in Definition 2 but on
the bigger candidate graph W̃ (where there’s no complication
of multiedges or self loops). An example can be seen in
Fig. 4 where all the nodes adjacent to node 1 are equivalent
candidates of C([B]), and the set of nodes adjacent to 4
forms another candidate equivalence class. This definition also
applies to the uncompressed candidate structure where we
just consider candidates of ordinary vertices. An example of
this case can be seen in Fig. 3, where nodes 2,3,4 ∈ C(B)
form a candidate equivalence class, and nodes 6,7 ∈ C(B)
form another. We now state a property that relates candidate
equivalence in the uncompressed case to the compressed case
which can be useful for computing candidate equivalence for
non-trivial super-nodes. Let [S]k denotes the set of k-subsets
of a set S.

Proposition 16. Given a super-node [u] ∈ V (T̃), consider
C(u) and its candidate equivalence partition U1, . . . , Um in
the uncompressed candidate structure. Then any two candi-
dates of [u] constructed by choosing ∣[u]∣ nodes in any Ui

are equivalent i.e. a[u], b[u] ∈ [P(Ui)]∣[u]∣ ⊆ C([u]) implies
a[u] ≃ b[u].

Proof. This can be verified by checking the candidate edge
condition and how superedges are formed.

Note that if ∣Ui∣ < ∣[u]∣ then [P(Ui)]∣[u]∣ = ∅, and hence the
proposition only applies to equivalence classes of size greater
than ∣[u]∣. Now we show the main result that allows us to
interchange world vertices given a TE SI.

Theorem 17 (Interchangeability of equivalent candidate
nodes). Given a TE subgraph isomorphism f ∶ V (T̃) Ð→
V (W̃) and equivalent candidate nodes x[u], y[u] ∈ C([u]), if
f([u]) = x[u] and f([v]) ∩ y[u] = ∅ for all [v] ∈ V (T̃) − [u],
then defining f ′ as:

f ′([v]) =
⎧⎪⎪⎨⎪⎪⎩

y[u], if [v] = [u]
f([v]), otherwise.

gives another TE subgraph isomorphism.

Proof. We note that f−([u], x[u]) = f ′−([u], y[u]) is a partial
match (from def 11). It suffices to show ([u], y[u]) is joinable
(by remark 12). Since f ([v]) ∩ y = ∅ for all [v] ∈ V (T̃) and
x ≃ y, condition (i) to (iii) in definition 13 is satisfied. Also
because x[u] ≃ y[u] and how y[u] has all x[u]’s neighbors in
the given match by definition, condition (iv) is also satisfied.
Hence, f ′ is a TE subgraph isomorphism.

This property gives us a powerful way to permute now the
world nodes in a match. In order to exploit it, we must not

6
4918

only take into consideration the computation the equivalence
candidates but also how to deal with the intersecting condition
requirement.

E. Non-Intersecting Candidates and a New Algorithm for
Equivalent Candidate Nodes

We want to use theorem 17 to avoid redundant branching
during a tree search. One simple case is when, during a level
of the tree search, the intersection between a candidate equiv-
alence class of a certain template vertex and the candidates of
unmatched vertices is empty. This would guarantee the validity
of the intersecting condition in theorem 17, which means we
would only need to consider a representative candidate node
in each equivalence class. This gives a guideline to modify the
current backtracking algorithm:

1) At every recursive call matching template vertex [v] with
candidates, compute the candidate equivalence partition
and put the equivalence classes into a queue Q.

2) Take a candidate equivalence class from Q, and check if
there’s any intersection with the candidates of unmatched
template vertices.

3) If the intersection is empty, go to step 4. Otherwise,
remove each of the intersecting node from the candidate
equivalence class and add them to Q as a single equiva-
lence class. Then go to step 4.

4) Match the candidate equivalence class, m[v], with [v]
and repeat while only checking for joinability on a
representative candidate.

5) If Q is not empty, go to to step 2. Otherwise, return.
This procedure can significantly reduce the number of
branches given a high number of equivalent candidates. Com-
bining theorems 6 and 17, we obtain (∣m[v]∣

∣[v]∣
)∣[v]∣! isomor-

phisms from each match.

V. EXPERIMENTS

In order to quantify the speed up and compression factor
granted by the use of our equivalence structures, we performed
time tests on various data sets provided by DARPA-MAA
teams. These data sets are synthetic and have been generated
for the purposes of modeling a variety of transactions across
various channels, representing phone calls, emails, bank trans-
actions, etc. between human actors. General information about
the data sets is included in Table I.

TABLE I
DATA SET INFORMATION

Data Set ∣V (T)∣ ∣E(T)∣ ∣V (W)∣ ∣E(W)∣ Channels

pnnl v4 75 857 22154 480242 6
pnnl v5 73 1554 23037 12393659 7
pnnl v6 74 1620 22996 12318861 7
pnnl rw 35 158 6407 74862 3

gordian v6 161 1850 101934 84854616 8
gordian v7 156 3045 190869 123267100 11

ivysys v6 92 195 2488 5470454 3
ivysys v7 92 195 2488 5470970 3

In each sample template-world pair, we considered three
different scenarios: no equivalence (NE), solely template
equivalence (TE), and both template and candidate equivalence
or full equivalence (FE). In each case, we determined the time
it took to enumerate all the solutions (or timed it out at ten
minutes if enumerating all solutions took longer than this).
We computed the number of solutions found as well as the
number of “representative solutions” found corresponding to
the actual number of leaves reached in the solution tree. The
ratio of these numbers can give a scale of the compression
possible by considering equivalence classes and is recorded in
the last column of table II. The results for each data set are
displayed in Table II. The experiments were performed on an
Intel Xeon Gold 6136 processor with 3 GHz, 25 MB of cache,
and 125 GB of memory.

TABLE II
DATA SOLVER STATISTICS

Data Set
Nontrivial
Eq. Class
Sizes

Alg. Run
Time (s)

Solution
Count

Rep.
Solution
Count

Compr.
Rate

pnnl rw 2
NE >600 3.85e+8 384648 1
TE >600 6.50e+5 325091 0.5
FE >600 5.45e+8 5029 9.23e-6

pnnl v4 2,6
NE >600 1.43e+5 143380 1
TE 158.94 5.71e+7 39680 0.0007
FE 126.78 5.71e+7 112 1.96e-6

pnnl v5 2,3,6
NE >600 34230 34230 1
TE 0.35 181440 21 0.0001
FE 0.39 181440 1 5.51e-6

pnnl v6 2,4,4
NE 427.76 1152 1152 1
TE 0.34 1152 1 0.0009
FE 0.40 1152 1 0.0009

gordian v6 2,2,142
NE >600 1832 1832 1
TE 1.46 5.18e+247 48 9.28e-247
FE 0.37 5.18e+247 1 1.93e-248

gordian v7 2,2,6
NE >600 68289 68289 1
TE >600 1.98e+8 68850 0.0003
FE >600 3.80e+11 873 2.30e-9

ivysys v6 2,2,2,4,8,
10,13,20

NE >600 9460 9460 1
TE >600 2.07e+46 48710 2.35e-42
FE >600 8.87e+59 5719 6.45e-57

ivysys v7 2,2,2,4,8,
10,13,20

NE >600 40520 40520 1
TE >600 2.134e+46 50148 2.35e-42
FE >600 7.76e+61 5645 7.27e-59

A. Discussion

As can be seen in all cases considered, there is clear benefit
to explicitly addressing the equivalence apparent in subgraph
isomorphism problems. Visually, the amount of compression
in the template graph is significant as can be seen in Figure 5
which is the equivalent graph version of Figure 1 thus reducing
the number of nodes in the template graph from 92 to 39.

In examples such as pnnl v5, pnnl v6, and gordian v6,
our method can reduce a monumental number of solutions
to a single representative solution. In the case for the PNNL
generated data, this captures the method used to generate the
problem which is based on embedding a single solution.

7
4919

Fig. 5. Compressed version of the graph presented in Figure 1. Each colored
node corresponds to the group of nodes of the same color in Figure 1.

In the cases where the solvers timed out, the use of
equivalence classes still allowed for the discovery of orders of
magnitude more solutions than the NE Solver. For some of the
harder data sets like those produced by Ivysys Technologies,
we may need even more refined notions of equivalence to
capture the full solution space.

VI. CONCLUSION

In this paper, we exploit the symmetry of the template and
world graphs via vertex equivalence, to better understand the
full solution space of subgraph isomorphism problems for
multichannel networks. These equivalence relations enable us
to compress the template and world graphs; this compression
significantly reduces the computation time for finding all sub-
graph isomorphisms and allows for a compact representation
of the solution space. We developed efficient computation
routines for computing the equivalence relations and adapted
the previously developed framework for equivalence classes.
We tested this approach on several synthetic DARPA MAA
datasets and observed considerable improvement on datasets
with several equivalence classes, such as those produced by
Ivysys Technologies and GORDIAN.

For future work, one obvious direction is the case where the
intersections between candidate equivalence classes and un-
matched vertices’ candidates are non-trivial. Other directions
include inexact subgraph matching, integrating node cover
methods, vertex ordering, and further development of filters.

REFERENCES

[1] J. Ullmann, “An algorithm for subgraph isomorphism,” Jour-
nal of the ACM (JACM), vol. 23, no. 1, pp. 31–42, 1976.

[2] M. R. Garey and D. S. Johnson, Computers and intractability.
New York: W.H. Freeman, 2002, vol. 29.

[3] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years
of graph matching in pattern recognition,” International jour-
nal of pattern recognition and artificial intelligence, vol. 18,
no. 03, pp. 265–298, 2004.

[4] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)
graph isomorphism algorithm for matching large graphs,”
IEEE transactions on pattern analysis and machine intelli-
gence, vol. 26, no. 10, pp. 1367–1372, 2004.

[5] R. A. Hanneman and M. Riddle, Introduction to social net-
work methods, 2005.

[6] T. Aittokallio and B. Schwikowski, “Graph-based methods for
analysing networks in cell biology,” Briefings in Bioinformat-
ics, vol. 7, no. 3, pp. 243–255, Sep. 2006.

[7] V. Lacroix, C. G. Fernandes, and M.-F. Sagot, “Motif search
in graphs: Application to metabolic networks,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics
(TCBB), vol. 3, no. 4, pp. 360–368, 2006.

[8] C. Solnon, “Alldifferent-based filtering for subgraph isomor-
phism,” Artificial Intelligence, vol. 174, no. 12-13, pp. 850–
864, 2010.

[9] W. Fan, “Graph pattern matching revised for social network
analysis,” in Proceedings of the 15th International Conference
on Database Theory, ACM, 2012, pp. 8–21.

[10] W.-S. Han, J. Lee, and J.-h. Lee, “Turboiso: Towards ultra-
fast and robust subgraph isomorphism search in large graph
databases,” in SIGMOD Conference, 2013.

[11] A. Kuccukural, A. Szilagyi, O. U. Sezerman, and Y. Zhang,
“Protein homology analysis for function prediction with par-
allel sub-graph isomorphism,” in Bioinformatics: concepts,
methodologies, tools, and applications, IGI Global, 2013,
pp. 386–399.

[12] X. Ren and J. Wang, “Exploiting vertex relationships in speed-
ing up subgraph isomorphism over large graphs,” Proceedings
of the VLDB Endowment, vol. 8, no. 5, pp. 617–628, 2015.

[13] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang, “Efficient
subgraph matching by postponing cartesian products,” in
Proceedings of the 2016 International Conference on Man-
agement of Data, ACM, 2016, pp. 1199–1214.

[14] L. Kotthoff, C. McCreesh, and C. Solnon, “Portfolios of sub-
graph isomorphism algorithms,” in Learning and Intelligent
Optimization, P. Festa, M. Sellmann, and J. Vanschoren, Eds.,
Cham: Springer International Publishing, 2016, pp. 107–122.

[15] V. Carletti, P. Foggia, A. Saggese, and M. Vento, “Introducing
VF3: A new algorithm for subgraph isomorphism,” in Interna-
tional Workshop on Graph-Based Representations in Pattern
Recognition, Springer, 2017, pp. 128–139.

[16] K. O. Babalola, O. B. Jennings, E. Urdiales, and J. A.
DeBardelaben, “Statistical methods for generating synthetic
email data sets,” in 2018 IEEE International Conference on
Big Data (Big Data), Oct. 2018, pp. 3986–3990.

[17] J. A. Cottam, S. Purohit, P. Mackey, and G. Chin, “Multi-
channel large network simulation including adversarial activ-
ity,” in 2018 IEEE International Conference on Big Data (Big
Data), Oct. 2018, pp. 3947–3950.

[18] K. Karra, S. Swarup, and J. Graham, “An empirical assess-
ment of the complexity and realism of synthetic social contact
networks,” in 2018 IEEE International Conference on Big
Data (Big Data), Oct. 2018, pp. 3959–3967.

[19] J. D. Moorman, Q. Chen, T. K. Tu, Z. M. Boyd, and
A. L. Bertozzi, “Filtering methods for subgraph matching on
multiplex networks,” in 2018 IEEE International Conference
on Big Data (Big Data), IEEE, 2018, pp. 3980–3985.

[20] M. Han, H. Kim, G. Gu, K. Park, and W.-S. Han, “Ef-
ficient subgraph matching: Harmonizing dynamic program-
ming, adaptive matching order, and failing set together,” in
Proceedings of the 2019 International Conference on Man-
agement of Data, ACM, 2019, pp. 1429–1446.

[21] B. Onyshkevych, Modeling adversarial activity (maa). [On-
line]. Available: https://www.darpa.mil/program/modeling-
adversarial-activity.

8
4920

