
1

Subgraph Matching on Multiplex Networks
Jacob D. Moorman , Thomas K. Tu , Qinyi Chen , Xie He , and Andrea L. Bertozzi , Member,

IEEE

Abstract—An active area of research in computational science is the design of algorithms for solving the subgraph matching problem
to find copies of a given template graph in a larger world graph. Prior works have largely addressed single-channel networks using a
variety of approaches. We present a suite of filtering methods for subgraph isomorphisms for multiplex networks (with different types of
edges between nodes and more than one edge within each channel type). We aim to understand the entire solution space rather than
focusing on finding one isomorphism. Results are shown on several classes of datasets: (a) Sudoku puzzles mapped to the subgraph
isomorphism problem, (b) Erdős-Rényi multigraphs, (c) real-world datasets from Twitter and transportation networks, (d) synthetic data
created for the DARPA MAA program.

Index Terms—subgraph isomorphism, graph isomorphism, graph matching, subgraph matching, multiplex network

F

1 INTRODUCTION

MULTIPLEX networks (labeled directed multigraphs,
Definition 1.1) [32] are increasingly useful data struc-

tures for representing entities and their interactions in dis-
ciplines such as bioinformatics [73], social networks [65],
ecological networks [49], and neural networks [5]. Subgraph
matching is the process of determining whether a given
template network occurs as a subgraph of a world network,
and if so, exactly where it occurs and how many times [13].

Subgraph matching is commonly used in bioinformatics
[71], social network analysis [19], [68], and other applica-
tions [13]. It is also an important subroutine in frequent
subgraph mining [28], [67] and graph database search [74].
Despite the abundance of multiplex network data in these
applications, there are relatively few subgraph matching
algorithms that expressly support multiplex networks [29],
[43] compared to the number of algorithms that support
single-channel networks [6], [9], [10], [14], [24], [57], [61].
In this paper, we introduce a new algorithm for subgraph
matching on multiplex networks and discuss some simplifi-
cations of the subgraph matching problem.

We refer to any subgraph of the world that matches
the template as a signal. For sufficiently simple templates,
there are efficient algorithms for counting and listing out
all corresponding signals [1], [53], [54]. However, in general
there can be a vastly large number of signals, in which
case listing or even counting them can be computation-
ally intractable. In such situations, it is appealing to have
methods that characterize the space of all signals in some
way. For example, one might identify the world nodes that
participate in at least one signal. Alternatively, one may
seek the set of world nodes that correspond to a particular
template node in at least one signal. We find that these

• Jacob D. Moorman, Thomas K. Tu, and Andrea L. Bertozzi are with
the Department of Mathematics, University of California, Los An-
geles, Los Angeles, CA, 90095. E-mail: jdmoorman@math.ucla.edu,
thomastu@math.ucla.edu, bertozzi@math.ucla.edu

• Qinyi Chen is with the Operations Research Center, Massachusetts
Institute of Technology, Cambridge, MA, 02139. E-mail: qinyic@mit.edu

• Xie He is with the Department of Mathematics, University of North
Carolina, Chapel Hill, Chapel Hill, NC, 27514. E-mail: hexie@unc.edu

problems can be feasible, even when it is prohibitive to list
or count all of the signals.

Definition 1.1 (Multiplex Network). A multiplex network
G = (V, E ,L, C) is a set of nodes (frequently called vertices),
directed edges between the nodes, labels on the nodes, and channels
on the edges. The number of nodes is denoted n. Each node v ∈ V
has a label L(v) belonging to some arbitrary set of labels. There
can be any number of edges between each pair of nodes (u,v) in
either direction. Each edge belongs to one of the channels C. Edges
between the same pair of nodes in the same channel with the same
direction are indistinguishable. The function E : V × V → N|C|

describes the number of edges in each channel between each pair
of nodes. In particular, E(u,v) can be represented as a |C|-
dimensional vector the kth element of which is the number of edges
from node u to node v in the kth channel. |E|0 denotes the number
of distinguishable edges in G.

In the remainder of this section, we define several prob-
lems related to subgraph matching and discuss existing
approaches to solve these problems. In Section 1.3, we
explain our contributions to solving these problems. We
expand on the details of our approach in Sections 2, 3.1
and 3.2. In Section 4, we perform several experiments to
show that the methods we discuss are successful in solving
the problems of interest. We make some concluding remarks
and suggest some future avenues for research in Sections 5
and 6 respectively.

1.1 Problem Statements

Given two multiplex networks, a template Gt =
(Vt, Et,Lt, C) and a world Gw = (Vw, Ew,Lw, C), we ex-
plore the space of all subgraphs of the world that match
the template. There are several closely related problems
with different computational costs. Each of these problems
relies on the same concept of subgraph isomorphism (SI) as
described below.

Definition 1.2 (SI: Subgraph Isomorphism)). An injective
function f : Vt → Vw is called a subgraph isomorphism (SI)

https://orcid.org/0000-0002-4291-1561
https://orcid.org/0000-0002-5539-6271
https://orcid.org/0000-0002-2912-2728
https://orcid.org/0000-0002-4136-9408
https://orcid.org/0000-0003-0396-7391

2

from Gt = (Vt, Et,Lt, C) to Gw = (Vw, Ew,Lw, C) if

Lt(v) = Lw(f(v)) ∀v ∈ Vt
Et(u,v) ≤ Ew (f(u), f(v)) ∀u,v ∈ Vt × Vt.

The set of all SIs from Gt to Gw is denoted F(Gt,Gw).

In short, an injective function f mapping template nodes
to world nodes is a SI if each node v in the template
has the same label as the corresponding node f(v) in the
world, and for each pair of nodes (u,v) in the template, the
corresponding pair of nodes (f(u), f(v)) in the world have
at least as many edges in each channel and direction as u and
v have between them. This is sometimes referred to as a
subgraph monomorphism in the literature. We use the term
induced SI when there are exactly the same number of edges
in each channel and direction. The problems introduced in
the remainder of Section 1.1 are summarized in terms of SIs
in Table 1.

Problem Description

SIP Check if there are any SIs.
SNSP Find all the world nodes involved in SIs.
MCSP Find all pairs (u,v) where u = f(v) for some SI f .
SICP Count the number of SIs.
SMP Find all the SIs.

TABLE 1: A summary of the various problems introduced
in Section 1.1, in increasing order of computation cost.

Nodes in the image of a SI are called signal nodes, and the
induced subgraph of the image of a SI is called a signal. For
example, Figure 1 highlights several signals in an example
problem. Note that there may be more edges between signal
nodes than there are between the corresponding template
nodes. As an example, in Figure 1 there are more edges
between 5 and 7 than there are between B and C.

Fig. 1: In the above networks, the shapes of the nodes corre-
sponds to their labels (circle or square) and the patterns of
the edges correspond to their channel (solid green or dashed
blue). Given the template and world networks above, there
are four signals consisting of the subgraphs of the world
induced by {1,2,6}, {1,6,8}, {4,5,7}, and {7,9,10}.

A typical definition of SI would include a map from
template edges to world edges. However, we omit this con-
sideration since we consider edges to be indistinguishable. If
edges were considered to be distinct, there would be two SIs
in Figure 1, both corresponding to signal 2, one for each way
to choose the dashed blue edge between template nodes B
and C from among those between world nodes 5 and 7.

Definition 1.3 (SIP: Subgraph Isomorphism Problem).
Given a template Gt = (Vt, Et,Lt, C) and a world Gw =
(Vw, Ew,Lw, C), check if there is at least one SI from the template
Gt to the world Gw. That is,

check if F(Gt,Gw) = Ø. (SIP)

Typically the SIP is solved by exhaustively searching
for any SI f ∈ F(Gt,Gw). If none can be found, then
F(Gt,Gw) = Ø. Though the SIP is NP-complete [22], it can
be solved in practice even for some very large networks
[53], [59]. The challenge of finding all SIs, rather than sim-
ply checking whether there are any, is called the subgraph
matching problem (SMP).

Definition 1.4 (SMP: Subgraph Matching Problem). Given
a template Gt = (Vt, Et,Lt, C) and a world Gw =
(Vw, Ew,Lw, C), find all SIs from the template Gt to the world
Gw. That is,

find all f ∈ F(Gt,Gw). (SMP)

The solution to the SMP for Figure 1 is the set of SIs
F(Gt,Gw) = {f1, f2, f3, f4}, where the fi are described in
Table 2. Notice that SIs can differ by as little as one node, for
example f1(v) = f3(v) for every template node v except
when v = B. Additionally, some SIs are completely disjoint.
For example, f2(Vt)

⋂
f3(Vt) = Ø.

Template
node v

f1(v) f2(v) f3(v) f4(v)
⋃

i{fi(v)}

A 1 4 1 7 {1,4,7}
B 2 5 8 9 {2,5,8,9}
C 6 7 6 10 {6,7,10}

TABLE 2: Solutions to SMP and MCSP corresponding to the
template and world shown in Figure 1.

Since any algorithm for solving the SMP must list out
all of the SIs, the computation time required, at minimum,
must scale with the number of SIs |F(Gt,Gw)|. The problems
described in the remainder of this section can be used to
explore the space of SIs, especially when solving the SMP is
computationally prohibitive.

In certain contexts, one may wish to only count the
number of SIs from the template to the world. Examples
of such contexts include summary statistics of the world
network, as in triangle counting [54] or motif counting [2].
This is called the SI counting problem (SICP).

Definition 1.5 (SICP: Subgraph Isomorphism Counting
Problem). Given a template Gt = (Vt, Et,Lt, C) and a world
Gw = (Vw, Ew,Lw, C), determine the number of SIs from the
template Gt to the world Gw. That is,

find |F(Gt,Gw)| . (SICP)

Another concise summary of the set of SIs is the set of
all signal nodes, i.e. those nodes that are in the image of
at least one SI. Finding this set of nodes is the signal node
set problem (SNSP). Though the SNSP lacks the descriptive
power of the full set of SIs, it is much more compact and
easier to calculate.

Definition 1.6 (SNSP: Signal Node Set Problem). Given
a template Gt = (Vt, Et,Lt, C) and a world Gw =

3

(Vw, Ew,Lw, C), find all world nodes that belong to at least one
signal. That is,

find
⋃

f∈F(Gt,Gw)

f(Vt). (SNSP)

A compromise between the compactness of the SNSP
and the descriptive power of the SMP is to find the min-
imal candidate sets. For each template node, the minimal
candidate set is the smallest set containing all world nodes
that correspond to that template node in any signal. This
preserves the relation between template nodes and world
nodes, but loses some information about compatibility be-
tween candidates for different template nodes.

Definition 1.7 (MCSP: Minimal Candidate Sets Problem).
Given a template Gt = (Vt, Et,Lt, C) and a world Gw =
(Vw, Ew,Lw, C), for each template node v ∈ Vt find all world
nodes which correspond to v in at least one signal. That is,

find
⋃

f∈F(Gt,Gw)

{f(v)} for each v ∈ Vt. (MCSP)

A naive algorithm for solving the MCSP is to solve the
SIP with the added constraint u = f(v) for each (u,v) ∈
Vw × Vt. Thus, solving the MCSP is at most |Vt| |Vw| times
as hard as the hardest among those SIPs.

1.2 Related Work
Most state of the art algorithms for subgraph matching fol-
low one of three approaches [9], [10]: tree search, constraint
propagation, and graph indexing. Existing algorithms are
largely restricted to the single-channel case and thus are not
applicable to multiplex networks. Also, existing algorithms
focus mainly on addressing the SIP, SMP, and SICP, and do
not address the MCSP or SNSP directly.

Tree search approaches keep track of a search state,
and navigate the tree of possible search states, backtracking
when they reach the end of a branch. Due to the enormity
of this tree, to limit computational complexity as much as
possible, these approaches refine the search space at each
step of the search to avoid unnecessary branches. Examples
of tree search approaches include Ullmann’s algorithm [61],
VF2 [14] and its variants (VF2Plus [11], VF3 [9], [10], VF2++
[30]), and for specific graphs, RI/RI-DS [7].

Constraint propagation approaches view subgraph iso-
morphism as a constraint satisfaction problem, where vari-
ables are assigned values while satisfying a given set of
constraints. These approaches keep track of a compatibility
matrix which indicates the world nodes that are possible
matches for each template node. By repeatedly applying
local constraints, this matrix is reduced until only a few
possible matches remain. The matrix can then be explored
to find all solutions. Examples of constraint propagation
approaches include McGregor [42], nRF+ [36], ILF [69], LAD
[57] (and its variants, IncompleteLAD and PathLAD [35]),
McCreesh and Prosser (Glasgow) [40], and FocusSearch [62].

Graph indexing approaches seek to retrieve from a
database of graphs all graphs that match a given subgraph
query. To accelerate searching, they construct indexes for
the database, so that future searches will be efficient. These
indexes are often based on characteristic substructures of
the template. A Cartesian product is then performed on

the results of these indexed queries, identifying all pos-
sible matches. Next, there is a verification step to check
which retrieved graphs fully match the pattern; this typi-
cally involves running another subgraph isomorphism al-
gorithm, such as VF2. Examples of graph indexing ap-
proaches include GraphQL [25], SPath [72], GADDI [71],
QuickSI [55], TurboISO [24], BoostISO [52], CFL-Match [6],
and CNI-Match [45]. Our problem does not involve graph
databases and we thus do not construct indices. However,
several graph indexing approaches involve filtering tech-
niques which can be used independently of the indices they
construct [58].

1.2.1 Ullmann’s Algorithm
Ullmann’s algorithm [61] is a backtracking tree search with
refinement. For each template node v, it creates a list of
candidate nodes in the world that could correspond to v.
Initially, this is simply all nodes with degree greater than or
equal to the degree of v. At each step in the tree search, can-
didate node u is chosen as a match for template node v. To
reduce computation time, the remaining candidates are then
refined as follows. For every pair of template nodes joined
by an edge, their candidates should also be joined by an
edge in the world. Any candidate for one of these connected
nodes that does not have an edge to any candidate for the
other connected node can be removed from consideration.
Our topology filter, as detailed in Section 2.3, is a simple
extension of this constraint to the multiplex network case.

1.2.2 VF2
VF2 [14] generalizes Ullmann’s algorithm to directed graphs
and extends refinement with additional semantic feasibility
rules. It distinguishes matched nodes (nodes with only one
candidate) from other nodes, and ensures that candidates
have more matched neighbors and unmatched neighbors
than their corresponding template node; in the directed case,
these neighbors must have edges with matching directions.
It also enforces a matching order where neighbors of previ-
ously matched nodes are matched before other nodes.

1.2.3 Constraint Propagation Approaches
In [36], the authors classify existing constraints using two
categorizations: binary vs. non-binary and forward checking
(FC) vs. really forward look ahead (RF). Binary constraints
map n variables to m values using an nxm matrix of binary-
valued variables, while non-binary constraints use a vec-
tor of length n, whose entries are restricted to m values.
The authors propose nRF+, a non-binary really forward
lookahead algorithm, with specific look ahead for subgraph
isomorphism. They enforce the constraint that if vw is a
candidate for template node vt, then the number of vt’s
neighbors must be less than or equal to the number of
candidates for those neighbors that are adjacent to vw.

The work [57] classifies many constraints previously
used in different subgraph isomorphism algorithms. The
author proposes a new algorithm, LAD, using the constraint
that for a match to exist between nodes m and n, there
must exist a matching between their neighborhoods subject
to the alldifferent constraint introduced in [51], which can
be identified using the Hopcroft-Karp algorithm [27].

4

1.2.4 Graph Indexing Approaches
In GraphQL [25], the authors describe a graph query
language and provide an algorithm for resolving graph
database queries. In particular, they iterate a constraint
similar to that of [57], where there must exist a bipartite
matching between the neighborhoods of a template node
and its candidate. This approach is further expanded upon
in SPath [72], where the k-distance neighborhood is also
considered.

TurboISO proposes a method for handling permutable
template nodes, as well as addressing the order of matching
when identifying isomorphisms. It constructs an NEC tree,
whose vertices represent groups of permutable template
nodes, and perform matching using this tree. At the end,
it combines and permutes the candidates for each of these
template nodes. For the matching order, it divides the graph
into candidate subregions, each of which contains a group
of candidates that may take part in a signal. It then priori-
tizes searching the smaller candidate subregions. We take a
similar approach in Section 3.1, prioritizing nodes with the
least number of candidates.

In CFL-Match [6], the template is first decomposed into
three types of structures: Core, Forest, and Leaf. To do this,
it first constructs a spanning tree of the template. Then, it
computes the minimal connected subgraph containing all
nontree edges of the template. It then iteratively removes all
nodes with degree 1, updating the degree counts after each
removal. The remaining nodes form the core.

For each node in the core that is connected to a non-core
node, a forest structure is created, consisting of that node
and all non-core nodes it is connected to. Finally, the leaf
structure consists of chains of removed non-core nodes.

After decomposing the template in this way, each struc-
ture is queried independently. In order to postpone the
Cartesian product of the results as much as possible, the
core is queried first, and the results are then used to restrict
queries for each forest structure. Similarly, the leaf queries
are restricted by the results of the forest queries.

1.2.5 Multiplex Approaches
Though most subgraph isomorphism algorithms in the
literature focus on the single-channel networks, there are
two algorithms that explicitly solve the multiplex SMP.
SuMGrA [29] is a graph indexing and backtracking tree
search approach and RI [7] can be extended to the multiplex
case (MultiRI) [43]. These existing multiplex approaches are
designed to solve the SMP. However, the SMP is infeasible
when there are too many SIs as in many of the problem
instances in Section 4. Additionally, the networks considered
by SuMGrA and MultiRI differ slightly from Definition 1.1.
Though they allow multiple edges between nodes, they do
not allow multiple edges between a pair of nodes in the
same channel. SuMGra also does not allow directed edges.

To extend any existing single-channel algorithms to mul-
tiplex networks, one possibility is to use a single-channel
approach (e.g., VF2, LAD) to solve the SMP in each channel
and take an intersection across all channels. However, this
approach is infeasible when there are too many SIs in any
channel, even if there are few SIs overall. In Section 4, we
show examples where the number of SIs is too large to solve
the multiplex SMP, let alone the single-channel SMP.

1.3 Contributions
We extend existing constraint satisfaction approaches to
operate on multiplex networks. We demonstrate experimen-
tally that these approaches allow us to list out or count
all SIs for world graphs with thousands to hundreds of
thousands of nodes and templates with tens to hundreds
of nodes.

Due to the underconstrained nature of the templates in
some datasets, there are often too many SIs to reasonably
list, or sometimes even count. In such situations, we propose
that a natural problem to solve in place of the SMP or SICP
is the MCSP. On datasets where we can solve the MCSP,
we observe that the output of our filters can be a good
approximation to the solution of the MCSP.

We have published our code as an open-source
Python package available on GitHub (https://github.com/
jdmoorman/uclasm/tree/master) [44].

2 FILTERING

Our algorithms for solving the problems discussed in Sec-
tion 1.1 revolve around the use of filters to cheaply approx-
imate the solution of the MCSP (Definition 1.7). For each
template node vt ∈ Vt, we keep track of its candidates
D(vt) ⊆ Vw. Initially, we treat every world node as a
candidate for every template node. Each filter enforces a
different set of constraints to eliminate candidates that can-
not be part of any signal. The filters are applied repeatedly
until no further candidates can be eliminated (Algorithm 1),
applying the cheaper filters before the more expensive ones.

Algorithm 1 Filtering
1: Input template Gt, world Gw, candidate set D(vt) for

each vt ∈ Vt, list of filters filters
2: converged← False
3: while converged is False
4: converged← True . Stop unless progress is made
5: for filter ∈ filters
6: D ← filter(Gt,Gw, D) . Apply the filter
7: if |D(vt)| decreased for some vt ∈ Vt
8: converged← False . Progress was made
9: Break . Restart from the first filter

10: Output updated candidate set D(vt) for each vt ∈ Vt

In this paper, in general, we are not searching for in-
duced subgraphs: we do not require equal number of edges
to exist between nodes in the template and nodes in the
world graph; instead, we only require the edges between
template nodes to be less than or equal to the number of
edges between their corresponding candidates in the world.
However, modifying our filters to find induced subgraphs
is simple: in Algorithm 3, change ≥ to == on Lines 6 and 7,
and in the Algorithm 5, change≥ to == each time it appears
on Line 8.

2.1 Node Label Filter
In order for a world node vw to be a candidate for a template
node vt, the label Lw(vw) must match the label Lt(vt). For
example, consider the template and world shown in Figure 1
in which the node labels correspond to their shapes. By the

https://github.com/jdmoorman/uclasm/tree/master
https://github.com/jdmoorman/uclasm/tree/master

5

label filter, the square world nodes 2, 5, 8, and 9 can be
eliminated as candidates for the circular template nodes A
and C, while the circular world nodes 1, 3, 4, 6, 7, and
10 can be eliminated as candidates for the square template
node B. The label filter is run only once, immediately after
receiving the template and world.

In some applications, template node labels cannot be
specified exactly. For example, in geospatial applications,
template node labels may represent broad regions, whereas
world node labels may represent exact coordinates. In such
applications, it does not make sense to require equality be-
tween template node labels and world node labels. Rather,
one should require the world node labels to be somehow
“compatible” with the template node labels. The notion of
compatibility depends on the application. In Section 4.3.1
we discuss an example application where a world node is
compatible with a template node if the coordinates of the
world node lie within the region of the template node.

2.2 Node-level Statistics Filter

The idea behind the node-level statistics filter (Algorithm 2)
is intuitive: for a world node vw to be a candidate for
a template node vt, certain statistical properties of vw

should not be less than those of vt. The idea of the node-
level statistics filter has been applied to simpler settings in
the related literature [43], [57]. Any statistic that is non-
decreasing as nodes and/or edges are added to a graph
can be used as part of the filter. The statistics that have
been applied in our filter include in/out-degree, number
of in/out-neighbors, number of reciprocated edges, and
number of self-edges. Each of these statistics is used in each
channel in the networks.

Algorithm 2 Node-level Statistics Filter
1: Input template Gt, world Gw, candidate set D(vt) for

each vt ∈ Vt
2: for statistic ∈ [in-degree, out-degree, . . .]
3: for template or world node v ∈ Vt ∪ Vw
4: Compute statistic(v)
5: for template node vt ∈ Vt
6: for candidate vw ∈ D(vt)
7: if statistic(vw) < statistic(vt)
8: Remove vw from D(vt)

9: Output updated candidate set D(vt) for each vt ∈ Vt

Other more complex statistics can be used channel-wise,
such as number of triangles, number of nodes within k
steps, and number of paths of length `. Statistics combining
information from multiple channels can also be used, such
as the number of in-neighbors in channel a that are also
out-neighbors in channel b. We use only simple statistics
so that the cost of computing them scales only linearly in
the number of distinguishable edges (edges whose source,
destination, direction, and channel are distinct).

As an example, consider applying an in/out-degree filter
to the problem in Figure 2. The in-degree and out-degree of
each template and world node are listed in Table 3. Node
A has one out-going edge and one in-coming edge, thus
nodes 2 and 5 can be ruled out as candidates since node

Fig. 2: In the network shown, there is only one valid signal
for the template: 1 for A, 2 for B, and 4 for C.

Template World

A B C 1 2 3 4 5

in-degree 1 1 1 1 2 2 1 0
out-degree 1 0 2 1 0 1 2 2

TABLE 3: In/out-degree for nodes in the template and
world shown in Figure 2

2 has no out-going edges and node 5 has no in-coming
edges. Similarly, node B has one in-coming edge, so node
5 can be ruled out as a candidate since it does not have
any in-coming edges. Finally, node C has two out-going
edges and one in-coming edge, so all world nodes except
4 are eliminated as candidates since 4 is the only world
node with at least two out-going edges and at least one in-
coming edge. The candidates for each template node after
applying the node-level statistics filter are summarized in
the “Statistics” column of Table 4.

Filters run

statistics statistics,
topology

statistics,
topology,

repeated-sets

Candidates for A 1,3,4 1 1
Candidates for B 1,2,3,4 1,2 2
Candidates for C 4 4 4

TABLE 4: Candidates per template node for the problem
shown in Figure 2 after various filters have been applied.

The node-level statistics filter is the second cheapest filter
to apply, after the node label filter, and is most effective
when some template nodes have local structure that is
uncommon in the world. Narrowing down the candidates
for even one template node can help the other filters to refine
the candidates for the remaining template nodes.

2.3 Topology Filter

In the topology filter, we enforce the constraint proposed
by [61], extended to multiplex networks. The original con-
straint, denoted as AC(Edges) [57], is that if vw is a candidate
for template node vt, then for every template node ut

neighboring vt, there must exist a candidate uw for ut that
neighbors vw. The natural extension to multiplex networks
is that if vw is a candidate for template node vt, then for
every template node ut neighboring vt, there must exist a
candidate uw for ut that has as many edges in each channel
and direction between vw and uw as there are between vt

and ut.

6

Algorithm 3 Topology Filter
1: Input template Gt, world Gw, candidate set D(vt) for

each vt ∈ Vt
2: for neighboring template nodes vt and ut

3: for candidate vw ∈ D(vt)
4: nbr_cand_found← False
5: for candidate uw ∈ D(ut)
6: enough_out← Ew(vw,uw) ≥ Et(vt,ut)
7: enough_in← Ew(uw,vw) ≥ Et(ut,vt)
8: if enough_out and enough_in
9: nbr_cand_found← True

10: break
11: if nbr_cand_found is not True
12: Remove vw from D(vt)

13: Output updated candidate set D(vt) for each vt ∈ Vt

To clarify the concept, consider applying the topology
filter to the problem in Figure 2 after already applying the
node-level statistics filter. Since node 4 is the only candidate
for node C, nodes 3 and 4 are eliminated from the candidate
lists for both nodes A and B because they do not have
neighbors that are candidates for node C. This results are
shown in Table 4.

In terms of computational complexity, the topology filter
scales linearly with the number of distinguishable template
edges, and with the number of world nodes squared. In
practice, by using sparse matrices, the second factor can
be reduced to the number of distinguishable world edges.
Thus, the computational complexity is O(|Et|0 |Ew|0).

The topology filter is particularly useful when one or
more template nodes have few candidates remaining after
applying other filters. In such situations, it can significantly
reduce the candidates for neighboring template nodes.

2.4 Repeated-Sets Filter

Here, we apply another constraint, GAC(AllDiff) [57], [64]:
generalized arc consistency (also known as hyper-arc consis-
tency) for the alldifferent constraint. GAC(AllDiff) requires
that for a world node vw to be a candidate for template
node vt, there must exist some injective mapping from
the template nodes to their candidates under which vt is
mapped to vw. To enforce GAC(AllDiff), we identify sets of
template nodes T ⊆ Vt where the union of their candidates⋃

vt∈T D(vt) has the same cardinality as T . These are
known as tight sets [64]. Candidates for template nodes in
a tight set cannot be candidates for any nodes outside of the
tight set, since this would violate GAC(AllDiff).

Standard algorithms for enforcing GAC(AllDiff) run
in O

(√
|Vt|+ |Vw|

∑
vt∈Vt

|D(vt)|
)

time complexity [23],
[51]. Some improvements and modifications to the stan-
dard algorithms have been explored to mixed benefit
[23]. In the repeated-sets filter (Algorithm 4), we enforce
GAC(AllDiff) by directly considering unions of candidate
sets to find tight sets. Though the number of candidate set
unions grows exponentially with the number of template
nodes [64], we restrict this growth by not considering unions
with more nodes than there are template nodes. We also
keep track of template nodes that belong to tight sets and

do not use them in unions. In practice, template sizes are
often small, and we don’t observe the worst case exponen-
tial scaling. In terms of the world graph, naive maximum
cardinality matching-based algorithms scale as O(|Vw|3/2),
whereas Algorithm 4 scales linearly with |Vw|.

Algorithm 4 Repeated-Sets Filter
1: Input template Gt, world Gw, candidate set D(vt) for

each vt ∈ Vt
2: unions← EmptyMap()

. Map sets of world nodes Uw to sets of template
nodes Ut for which Uw =

⋃
vt∈Ut

D(vt). Any Ut with
|unions[Ut]| == |Ut| is a tight set.

3: T ← Ø . Nodes known to belong to tight sets.
4: todo← {vt ∈ Vt : |D(vt)| < |Vt|}

. Template nodes with too many candidates cannot
belong to a tight set.

5: while |todo| > 0
6: vt ← element of todo with fewest candidates D(vt)
7: todo← todor {vt}
8: for (Uw,Ut) ∈ unions
9: Uw ← Uw ∪D(vt)

10: if |Uw| < |Vt|
11: Ut ← Ut ∪ {vt}
12: if |Ut| == |Uw| . Ut is a tight set.
13: T ← T ∪ Ut
14: D(ut)← D(ut)r Uw for ut ∈ Vt r Ut
15: else
16: unions[Uw]← Ut
17: if D(vt) 6∈ unions
18: if |D(vt)| == 1 . {vt} is a tight set.
19: T ← T ∪ {vt}
20: D(ut)← D(ut)rD(vt) for ut ∈ Vt r {vt}
21: else
22: unions[D(vt)]← {vt}
23: todo← {vt ∈ todo : |D(vt)| < |Vt r T |}
24: Output updated candidate set D(vt) for vt ∈ Vt

To illustrate the application of the repeated-sets filter,
consider the example in Figure 2. Using the node-level
statistics and topology filters, the candidates for the tem-
plate nodes were narrowed down to those in Table 4. Since
A has only one candidate, {A} is a tight set and 1 can be
removed as a candidate for the remaining template nodes.
This leaves only one candidate for each template node,
exactly corresponding to the only signal in Figure 2.

The repeated-sets filter is most important when some
template nodes have only one candidate, since any template
node with only one candidate forms a tight set. It is also
useful for templates such as those in Sections 4.4.1 and 4.4.5
that contain nodes that are structurally interchangeable.

2.5 Neighborhood Filter

In this filter, we extend the local alldifferent (LAD) con-
straint introduced in [57] to the multiplex network case.
In the undirected single-layer graph context, the LAD con-
straint ensures that for a world node vw to be a candidate for
a template node vt, there must be some injective mapping
f` from the neighbors of vt to their candidates under which

7

f`(ut) is a neighbor of vw for each ut. We extend this to the
multiplex network context by requiring not just that f`(ut)
neighbors of vw, but also that there are enough edges in
each channel and direction

Ew(vw,uw) ≥ Et(vt,ut)

and Ew(uw,vw) ≥ Et(ut,vt)
(1)

where uw = f`(ut). In the neighborhood filter (Algo-
rithm 5), we enforce the multiplex LAD constraint by search-
ing for such a mapping f`. If none exists, we eliminate vw

as a candidate for vt.
We now transform the search for a mapping f` into a

matching problem on a bipartite graph B. Let Nvt
and Nvw

denote the neighborhoods of vt and vw respectively. Define
the undirected bipartite graph B with parts Nvt

and Nvw

to have an edge between nodes ut ∈ Nvt
and uw ∈ Nvw

whenever uw is a candidate for ut and Equation (1) holds.
A matching on B is a subset of its edges where no two edges
share a node. A mapping f` is equivalent to a matching on
B of size |Nvt

| where each edge (ut,uw) in the matching
corresponds to f`(ut) = uw. The Hopcroft-Karp algorithm
[27] can be used to find the maximum cardinality matching
on B in O(

√
|Nvt
|+ |Nvw

| |EB|) time, where EB denotes the
set of edges of B.

Algorithm 5 Neighborhood Filter
1: Input template Gt, world Gw, candidate set D(vt) for

each vt ∈ Vt
2: for template node vt ∈ Vt
3: for candidate vw ∈ D(vt)
4: Nvt

← Neighborhood(vt)
5: Nvw

← Neighborhood(vw)
6: B ← EmptyBipartiteGraph(Nvt

,Nvw
)

7: for (ut,uw) ∈ Nvt
×Nvw

8: if

uw ∈ D(ut)

and Ew(vw,uw) ≥ Et(vt,ut)

and Ew(uw,vw) ≥ Et(ut,vt)

9: Add an edge between ut and uw in B
10: max_match = MaxCardinalityMatching(B)
11: if |max_match| < |Nvt

|
12: Remove vw from D(vt)

13: Output updated candidate set D(vt) for each vt ∈ Vt

In the example from earlier, in Figure 2, the node-level
statistics, topology, and repeated-sets filters were sufficient
to narrow down the candidates until they solve the MCSP
(Definition 1.7). In Figure 3, we give an example where those
filters are not sufficient. The resulting candidates before and
after neighborhood filter are given in Table 5. Before the
neighborhood filter is applied, node 4 remains a candidate
for node C because node 3 is a candidate for its neighbors
A and B. The biadjacency matrix of B corresponding to
vt = C and vw = 4 is shown in Table 6. Since the
maximum cardinality matching on B has only two elements,
the neighborhood filter is able to eliminate node 4 as a
candidate for node C.

2.6 Elimination Filter
The elimination filter (Algorithm 6) attempts to eliminate
candidates by identifying any contradictions that would

Fig. 3: An example template and world for which the
neighborhood filter plays a role in eliminating candidates.

Filters run

statistics,
topology,

repeated-sets

statistics,
topology,

repeated-sets,
neighborhood

Candidates for A 1, 3, 4 1, 4
Candidates for B 1, 3, 4 1, 4
Candidates for C 3, 4 3
Candidates for D 2, 5, 6 5

TABLE 5: Candidates per template node for the problem
shown in Figure 3 after various filters have been applied.

result from them being assigned. For each template node-
candidate pair (vt,vw), we do a one step lookahead. We
assign vw to vt and iterate over all other filters until conver-
gence. If this results in one or more template nodes having
no candidates, then vt cannot be mapped to vw and we
eliminate vw as a candidate for vt.

Algorithm 6 Elimination Filter
1: Input template Gt, world Gw, candidate set D(vt) for

each vt ∈ Vt
2: S ← copy(D) . Save the candidate sets
3: for template node vt ∈ Vt
4: for candidate vw ∈ D(vt)
5: D(vt)← {vw} . Assign vw to vt

6: Iterate all filters to convergence
7: if D(ut) is empty for any ut ∈ Vt
8: Remove vw from D(vt) in S

9: Reset candidate sets to S
10: Output updated candidate set D(vt) for each vt ∈ Vt

As the elimination filter is a very expensive operation,
scaling with the number of remaining candidates, we re-
strict its use until all other filters have converged and no
further candidates can be removed by other means. In
certain contexts, the elimination filter can be impractical to
use. However, in others, it can greatly reduce the number
of candidates. A simple example where elimination filter
proves useful can be seen in Figure 4, where we have three
cycle graphs consisting of 3, 4 and 5 nodes respectively. We
also assume that each edge is bidirectional and there is only
one channel.

Suppose we use Graph A as the template graph and
Graph B as the world graph. After applying the node-level
statistics, topology, and neighborhood filters, every node
in Graph B remains a candidate of every template node
in Graph A. By including elimination filter, we are able to

8

NC

N4 2 3 6

A 0 1 0
B 0 1 0
D 1 0 1

TABLE 6: Biadjacency matrix of B used in the matching
problem between the neighborhoods of template node C
and world node 4.

Fig. 4: Subgraph matching problems consisting of Graph A,
B and C.

correctly tell that there is no valid signal for this problem.
A more difficult problem arises when we use Graph B as
the template graph and Graph C as the world graph. In this
case, the node-level statistics, topology, and neighborhood
filters do not get rid of any invalid candidates. Only after
additionally applying the elimination filter can we conclude
that there is no valid signal existing in Graph C.

In practice, the elimination filter that iterates over node-
level statistics, topology, and repeated-sets filters is often
sufficient, since iterating over neighborhood filters is expen-
sive. However, in situations like the second example posed
above, we might need to apply all of the existing filters to
determine the solution. In particular, the elimination filter is
useful in many synthetic and real-world datasets, especially
in some of the examples discussed in Section 4.4.

3 SOLVING THE PROBLEMS

We present the details of how to solve the SICP and MCSP
using the filters from Section 2 as a subroutine. The SIP and
SMP can be solved with similar methods to SICP, and the
SNSP can be solved with a similar method to MCSP.

3.1 Isomorphism Counting

After applying the filters described in Section 2, some
template nodes may have exactly one candidate. Template
nodes that still have multiple candidates we refer to as
unspecified nodes. When an edge exists between two unspec-
ified nodes, we have to enforce that a corresponding edge
exists between the two candidates we choose for them. As
this makes counting isomorphisms computationally com-
plex, we start by finding a set of unspecified nodes that, if
specified, would cause the remaining unspecified nodes to
have no edges between them. This set is called a node cover,
and the smallest such set is called the minimal node cover.

For example, in Figure 2, if all three template nodes have
multiple candidates, the minimal node cover would be {C}.

Since the minimal node cover is expensive to compute in
general, we settle for a small node cover [4].

Next, we iterate through all possible choices of candi-
dates for nodes in the node cover. For each choice, we
reapply the topology and repeated-sets filters so we can be
sure that any remaining candidates belong to signals. Since
the remaining unspecified nodes have no edges between
them, it is much simpler to count the ways to choose their
candidates. The only constraint is that the same candidate
cannot be chosen for more than one node, which is simply
the alldifferent constraint satisfaction problem [51].

Algorithm 7 Isomorphism Counting
1: function ISOCOUNT
2: Input template Gt, world Gw, candidate set D(vt) for

each vt ∈ Vt, unspecified node cover NC
3: if NC = Ø
4: Nisos ← CountAllDiff(D)
5: else
6: Nisos ← 0
7: vt ←NC.pop()
8: S ← copy(D) . Save the candidate sets
9: for world node vw ∈ D(vt)

10: D(vt)← {vw} . Assign vw to vt

11: Apply filters
12: Nisos ← Nisos + IsoCount(Gt,Gw, D,NC)
13: Reset candidate sets to S
14: Output number of isomorphisms Nisos

Simple modifications can be made in order to solve the
SIP and SMP. For the SIP, the algorithm exits and returns
true once a solution is found, i.e. once CountAllDiff re-
turns a nonzero result. For the SMP, replace CountAllDiff
with an algorithm that returns a list of all solutions to
the alldifferent problem, and instead of adding the counts
together, combine the two lists of solutions.

3.2 Validation

A simpler problem than listing or counting all isomor-
phisms (SMP or SICP) is the minimal candidate sets problem
(MCSP) of Definition 1.7. Here, we refer to the procedure for
solving the MCSP as validation, in which we seek to identify
all template node-candidate pairs that participate in at least
one isomorphism. An algorithm for validation is as follows
(Algorithm 8). First, pick an unvalidated pair of a template
node and its candidate. Next, make assignments until an
isomorphism is found, running filters after each step and
backtracking as necessary. If all possible assignments fail,
then the pair is invalid; remove the pair from the set of
possible candidates. Otherwise, validate every assignment
made as part of the isomorphism, including the initial one;
these pairs have been validated as taking part in at least
one isomorphism. Repeat this process until all pairs have
been validated or removed from candidates. This ensures
that every candidate-template node pairing remaining after
validation is valid i.e. participates in at least one signal. This
is because in order to pass validation, it must participate in
at least one isomorphism that was found, and in order to
fail, there must not exist an isomorphism containing it.

9

An optimization for Algorithm 8 when using the node
cover approach in Section 3.1 is that if the node cover
has been assigned, the topology and repeated-sets filters
have been run to convergence, and the problem has thus
been reduced to an alldifferent problem. Then, instead
of attempting to find a single solution to the alldifferent
problem, all possible candidate pairs corresponding to the
alldifferent problem can be simultaneously validated. This is
because all remaining candidate pairs passed the repeated-
sets filter, which enforces GAC(AllDiff): thus, there must
exist a solution for each pair, and thus an isomorphism since
edges were previously enforced by the topology filter.

Algorithm 8 Validation
1: Input template Gt, world Gw, candidate set D(vt) for

each vt ∈ Vt
2: D′(vt)← Ø for each vt ∈ Vt . Valid candidates
3: for template node vt ∈ Vt
4: for candidate vw ∈ D(vt)rD′(vt)
5: S ← copy(D)
6: S(vt)← {vw} . Assign vw to vt

7: Attempt to find an SI f using S . Solve the SIP
8: if isomorphism found
9: D′(ut)← D′(ut) ∪ {f(ut)} for each ut ∈ Vt

10: else
11: Remove vw from D(vt)

12: Output minimal candidate set D′(vt) for each vt ∈ Vt

This algorithm can also be modified to solve the SNSP. If,
instead of adding the tuple (ut, f(ut)) to validated, only
the element f(ut) is added, then the algorithm will validate
only which world nodes participate, without respect to
which template nodes they are candidates for.

4 EXPERIMENTS

All experiments were run on an HP Z8 G4 Workstation with
two 12-core 6136 3.0 2666MHz CPUs, using version 0.2.0
of the python code available on GitHub (https://github.
com/jdmoorman/uclasm/tree/v0.2.0) [44]. The node-level
statistics, topology, and repeated-sets filters run in under
a minute for all datasets and under a second for most.
The elimination filter takes longer, between minutes and
hours, depending on the dataset. Validation, if used, can
also take hours or longer. The combinatorial complexity of
the solution space is largely responsible for the long time
needed for the elimination, counting and validation.

4.1 Sudoku
The puzzle game of Sudoku involves a 9x9 grid that is
partitioned into nine 3x3 blocks. Each cell of the grid must
be filled with a digit 1-9 so that each row, column, and block
contains each digit 1-9 exactly once. A Sudoku puzzle begins
with some of the cells pre-filled with digits so that there is
exactly one correct solution (Figure 5).

One algorithm for solving Sudoku is Donald Knuth’s
dancing links algorithm [33], which models Sudoku as an
exact cover problem. This is a backtracking tree search
with refinement on a sparse boolean matrix, using doubly
linked lists for efficiency. Sudoku can also be modeled as a

Fig. 5: Sudoku grid with initial clues.

constraint satisfaction problem [56], see e.g. Peter Norvig’s
constraint propagation algorithm [47]. Here, the two con-
straints propagated are that cells in the same row must
contain different digits and that every cell must have a digit.
After these constraints have been iterated, the algorithm
uses a depth first backtracking search to find the solution.

The constraint satisfaction problem to solve Sudoku has
much in common with subgraph isormorphism algorithms;
here we show that Sudoku can be written in multiple
ways as a subgraph isomorphism problem. We chose this
example to test our algorithms primarily because constraint
propagation is considered state of the art for Sudoku. Here,
our goal is to validate the reasonable use of our code on this
problem, rather than trying to beat the best Sudoku solvers.

4.1.1 9x9 Representation
Sudoku is equivalent to a single-channel subgraph isomor-
phism problem using the following correspondence: con-
sider the cells as nodes of the template, two cells in the
template are linked if they are in the same row, column,
or 3x3 block. We consider the world as a set of 81 nodes,
each corresponding to a digit. Each digit is locked to a
particular 3x3 block, leading to nine sets of nine digits each,
having values 1-9. And here, two nodes are linked if they do
not have the same value. This graph has the same number
of nodes, but more edges than the template, so this is a
subgraph isomorphism problem. To represent known digits
(to start the puzzle), we can restrict the initial candidates.
This can be done simply: if a cell is filled in with a value,
we identify which 3x3 block the cell is in, find the digit
in the world that corresponds to that block and has the
matching value, and say that the only candidate for the cell
is that digit. The Sudoku puzzle is thus a semi-supervised
version of the subgraph graph isomorphism problem and is
designed to have a unique solution, unlike the unsupervised
examples in our other experiments.

4.1.2 9x9x3 Representation
One can also assign different edge types (i.e. row, column
or block correspondences) to different channels, along with
another channel that identifies which cells are the same.
The template has three nodes for each cell, a row-node,
a column-node, and a block-node. All three are linked
by edges in a special ”same-cell” channel. Otherwise, the

https://github.com/jdmoorman/uclasm/tree/v0.2.0
https://github.com/jdmoorman/uclasm/tree/v0.2.0

10

three channels are completely separate: row-nodes are only
linked to other row-nodes in the same row, column-nodes
to column-nodes, etc. The world is then three channels of
nine digits each, so there are once again the same num-
ber of world nodes as template nodes. In each channel,
sets of nine digits are identified as being in the same
row/column/block, and in these channels, there are the
same number of edges as there in the template. However,
for the ”same-cell” channel, we add an edge between any
two nodes that could represent the same cell. Since each 3x3
block only intersects three rows and three columns, these
edges are restricted. Similar to before, we add an additional
initial restriction that a row-node in the template can only
have the nine row-digits in the world corresponding to its
row as candidates, and the same for columns and blocks.

4.1.3 Results
To test our filters, we use the sets of Sudoku puzzles
obtained from Peter Norvig’s GitHub [48], including those
from Project Euler problem 96 [50]. Though our code is
not specialized for the task, and is thus slower, it solves
all Sudoku examples in the dataset. Overall, it appears that
9x9 works best on the easier puzzles, but 9x9x3 is faster
on harder puzzles. On the hardest puzzles, 9x9 is faster on
average; this is primarily due to outliers for which the 9x9x3
takes much longer.

101 102 103

9x9 time (s)

101

102

103

9x
9x

3
tim

e
(s

)

y=x
easy50
top95
hardest

Fig. 6: Solving Sudoku puzzles as special case of a multiplex
subgraph isomorphism problem using the 9x9 and 9x9x3
representations. Scatter plot of solution times (seconds) on
the Sudoku puzzles from Peter Norvig’s GitHub [48], in-
cluding those from Project Euler problem 96 [50]. A black
line along y = x aids in comparison. Average solution time
for 9x9 is 8.33 seconds on the 50 easy puzzles, 116.7 seconds
on the top 95 puzzles, and 43.4 seconds on the hardest
puzzles. Average solution time for 9x9x3 is 11.24 seconds
on the 50 easy puzzles, 95.4 seconds on the top 95 puzzles,
and 179.4 seconds on the hardest puzzles.

4.2 Multiplex Erdős-Rényi

To test the scalability of our algorithm, we perform ex-
periments on randomly generated multiplex Erdős-Rényi
networks, where each edge in each channel has the same
probability p of occurring. For the templates, pt = 0.5. For
the worlds, the probability

pw = 1− 1− |C|
√
1− pt + p2t
pt

is scaled up as the number of channels increases to maintain
a fixed probability of length |C| edge vectors matching

P(Et(ut,vt) ≤ Ew(uw,vw)) = 0.75

for all template nodes ut, vt and world nodes uw, vw.
Templates are generated with 10 nodes, while worlds are
generated with sizes ranging from 10 nodes to 300 nodes.
We cap the algorithm runtime at 10000 seconds per instance.

To measure the difficulty of each instance, we count the
number of search iterations (recursive calls to IsoCount)
taken by Algorithm 7 to solve the SIP and SICP. For the
SIP, the counting is terminated after a single isomorphism is
found, or once the entire search space has been checked and
no isomorphisms are found. We observe similar difficulty
scaling for one, two, and three channel instances (Figure 7).

25 50 75 100 125 150 175 200
Number of World Nodes

100

101

102

103

M
ea

n
Nu

m
be

r o
f I

te
ra

tio
ns

Mean Number of Iterations for SIP/SICP
SIP 1 channel
SICP 1 channel
SIP 2 channels
SICP 2 channels
SIP 3 channels
SICP 3 channels

Fig. 7: Mean number of search iterations (recursive calls to
IsoCount) taken by Algorithm 7 to solve the SIP and SICP
with one, two, and three channels as a function of world
size. Results are averaged over 500 trials.

For the SIP, there is an initial sharp rise in search it-
erations with a peak around 100 iterations, followed by a
decline back to a constant level of 10 iterations. This pattern
is partially due to the SIP being easier when SIs are either
extremely likely or extremely unlikely [41]. When SIs are
unlikely, as when the world is small, filtering often rules out
all SIs before reaching the bottom of the search tree. When
SIs are common, as when the world is large, every branch of
the search tree is likely to have one, so the number of search
iterations converges to the number of template nodes, 10.

For the SICP, the average number of search iterations
scales monotonically with the number of world nodes. This
is to be expected, as the expected number of SIs to be
counted also scales monotonically with the number of world
nodes, and the effort taken to count the SIs is closely related
to the number of SIs.

4.3 Real-World Examples

We apply the algorithms to three real-world examples. From
each dataset, we extract a small subgraph as our template
and try to locate its matching subgraphs in the world graph.
Table 7 summarizes the sizes and filtering results.

4.3.1 Great Britain Transportation

The Great Britain Transportation Network [20] combines the
public transportation dataset available through the United

11

Dataset
Template World

Channels Number of
isomorphisms Filters Problems solved

Nodes Edges Nodes Edges

Britain Transportation 53 56 262,377 475,502 5 N/A S, T, R, E SIP
Britain Transportation (3km) 53 56 262,377 475,502 5 3.76× 107 L, S, T, R, E SIP, SNSP, MCSP, SICP
Higgs Twitter 115 2,668 456,626 5,367,315 4 1.03× 1014 S, T, R SIP, SNSP, MCSP, SICP
Commercial Airlines 37 210 450 7,177 37 3.65× 109 S, T, R SIP, SNSP, MCSP, SICP

TABLE 7: Sizes and filtering results on real-world examples in Sections 4.3.1, 4.3.2 and 4.3.3. The last column records the
types of problems stated in Section 1.1 that we are able to solve. The names of the filters have been abbreviated: L = Node
Label; S = Node-level Statistics; T = Topology; R = Repeated-Sets; N = Neighborhood; E = Elimination.

Fig. 8: All candidates for the Great Britain Transportation
dataset: blue nodes represent template nodes and red nodes
represent candidates for the SIP. An interactive map of the
template can be found at [26].

Fig. 9: Candidate count for each node in the Great Britain
Transportation template after applying the node-level statis-
tics, topology, repeated-sets and elimination filters; without
node label filtering.

Fig. 10: Candidate count for each node in the Great Britain
Transportation template after applying the node label filter
with a 3km radius in addition to the node-level statistics,
topology, repeated-sets, and elimination filters.

Kingdom open-data program [63] with timetables of domes-
tic flights in the UK to obtain a multiplex time-dependent
network that reflects the transportation network in the UK.
There are six channels representing different transportation
methods, including air, ferry, railway, metro, coach, and
bus. This dataset has 262,377 nodes and 475,502 edges.
The original dataset can be found at [21]. We also created
an online interactive map [26] for users to visualize the
template.

To test our algorithm, we first create a template. We
identify a small set of locations that interact with each other
through all channels (excluding airlines, since this channel is
very sparse). If a location involves all five non-air channels
in the network, we assume that it is important. There are
only three nodes that interact in these 5 channels, and we
randomly chose one of them as our template center, which
is Blackfriars Station in London. Starting from this node, we
use a random walk to create a template, which has 53 nodes
and 56 edges. The results are shown in Figure 9.

We can improve this result using the node label filter;
the result is shown in Figure 10. In Figure 8, we see that
the remaining candidates after filtering are geographically
distributed across the UK. As previously mentioned in
Section 2.1, these nodes are actually transportation stops
with given latitude and longitudes. If we know a priori that

12

a certain node should be confined in a region, say a radius
of 3 km, then we can apply the node label filter. Node labels
help reduce the size of the world before we apply filtering.
Without the node label filter, even after the elimination filter,
there are still too many candidates to count. However, if
we apply geographical information before we run other
filtering algorithms and restrict the candidates to be within
3 km from the coordinates of the template node, then we
reduce the size of remaining candidates to a tractable level.

4.3.2 Higgs Twitter
The Higgs Twitter dataset [16] records Twitter activities
from July 1-7, 2012, during and after the discovery of
the Higgs boson particle. It can be formulated into a di-
rected, multi-edge network with four channels, representing
retweets, replies, mentions and friend/follower relation-
ships. The world graph contains 456,626 nodes (Twitter
users) and 15,367,315 edges (interactions), and the user iden-
tities have been aligned across all channels. To demonstrate
how our filtering algorithm performs on detecting a small,
relatively dense template, we select a group of 115 Twitter
users frequently involved in retweets or replies during the
week, and whose induced subgraph is connected, has multi-
edges and contains edges in all four channels. The template
has a total of 2,668 edges.

Fig. 11: Candidate count for each node in the Higgs Twitter
template after applying the node-level statistics, topology,
and repeated-sets filters.

We apply our filtering methods to the world graph and
the template. Our methods narrow down the candidates
significantly and find exact matches for 102 out of the
115 template nodes (Figure 11). For the template nodes
that have multiple remaining candidates, many of these
candidates do belong to a valid subgraph isomorphism. We
proceed to compute the number of subgraph isomorphisms,
totalling 1.03×1014 valid isomorphisms. Our method works
particularly well in detecting signals that exist across differ-
ent channels and have multi-edges, as these graph proper-
ties provide us with enough information to remove invalid
candidates.

4.3.3 Commercial Airlines
We also test our filtering methods on a commercial airlines
dataset [8]. This dataset contains a multiplex airline network

in Europe which consists of 37 channels, each representing
a different airline. Compared with the other real world ex-
amples above, its world graph has a smaller scale, only con-
taining 450 nodes (airports) and 7177 directed, unweighted
edges (flights).

Fig. 12: Candidate count for each node in the commer-
cial airline template after applying the node-level statistics,
topology and repeated-sets filters.

We construct a template that has 37 nodes and 210 edges
by taking the induced subgraph of 20 core nodes and intro-
ducing some additional periphery nodes and edges. When
creating the template, we also ensure that it has nodes and
edges across all channels to fully test the capability of our
algorithm. Due to the small size of the dataset, our filtering
algorithm is able to return the final candidate lists of all tem-
plate nodes within a second, the result of which can be seen
in Figure 12. The node-level statistics filter alone manages
to find the exact match candidate of 10 templates, while
the topology filter increases the number of exact matches
to 28 nodes. Our counting algorithm further concludes that
there exist around 3.6 million subgraph isomorphisms in
the world graph. By using just the topological properties
of the multiplex airline network, our algorithm is able to
effectively identify the exact locations of most of the target
airports as well as the potential locations of the remaining
ones.

4.4 Adversarial Activity
We apply our filtering methods to a series of datasets
developed for the DARPA MAA program [17], [66]. This
program uses networks to represent adversarial activities
(e.g., human trafficking, financial transactions, email com-
munication, phone calls, distribution of narcotics). Because
these activities can be covert, they may not be detectable
through a single activity type. Multiplex networks provide
a mathematical structure for identifying related network
modalities for such complex adversarial actions. Thus, an
important area of research is to match like patterns from
an activity template to part of a larger dataset of multiplex
actions. Here, we present some results on datasets created
by three different teams: (1) Pacific Northwest National
Laboratory (PNNL), (2) the Graphing Observables from
Realistic Distributions In Activity Networks (GORDIAN)

13

team, and (3) IvySys Technologies. These datasets consist
of a large-scale world graph with one or more roughly 100-
node templates, that simulate a scenario of activities by a
specific group of agents.

Table 8 summarizes the sizes and filtering results of each
dataset. In each instance, there is one world graph with an
embedded signal that is isomorphic to the template. We
identify the signal with our filtering methods, and when
there are multiple matching signals, we perform counting
or validation to understand the solution space. For all of
the datasets, node-level statistics and topology filters have
been applied to eliminate the number of candidates. When
the candidate counts remain high, the neighborhood and
elimination filters are applied to further narrow down the
solution.

4.4.1 PNNL Version 6
PNNL Version 6 [15] has 12 instances, each consisting of
one world and two templates. The worlds have around 23k
nodes and over 12 million edges each. The templates have
74 to 81 nodes and 1200-1650 edges.

By filtering based on node-level statistics, topology and
repeated-sets, we identify the signals for most of the given
templates. However, there remain templates (e.g., instances
B1-S1, B7-S1 according to Table 8) that we cannot fully solve
by applying the previous filters. Under such circumstances,
we additionally apply the elimination filter, which narrows
down the candidate counts significantly.

Figure 13 gives an overview of how different filters
gradually reduce the number of candidates for each tem-
plate node in instance B1-S1. In the bottom histogram, we
observe that after node-level statistics and topology filters,
around 5000 world nodes still remain candidates of at least
one template node. However, the subsequent application of
elimination filter reduces the number of candidate world
nodes to roughly 100. Figure 14 shows the comparison of
filtering results on instance B1-S1 before and after adding in
the elimination filter. The sharp contrast in their respective
candidate counts shows that the elimination filter, in some
cases, reduces the size of the candidate domain significantly.
After applying all levels of filtering, we observe in Figure 14
that some sets of the template nodes are permutable and
share the same candidates, which lead to 1,152 signal iso-
morphisms in this graph.

The experiments on different instances of the PNNL
Version 6 dataset demonstrate the efficacy of node-level
statistics and topology filters for solving subgraph match-
ing problems. The filtering results on the more difficult
instances also display the potential of the elimination filter,
especially in tackling problems that initially appear resistant
to the node-level statistics and topology filters.

4.4.2 PNNL Real World
This dataset was created by PNNL from a social media
dataset collected by Matteo Magnani and Luca Rossi [12],
[39]. It involves friend/follower relationships on three social
media platforms, each of which corresponds to a channel.

After applying all of the filters, we identify unique
candidates for 20 template nodes. Many of the remaining
template nodes have hundreds of candidates. By addition-
ally applying validation to solve the MCSP, we verify that all

Fig. 13: (Top): The number of candidates for each template
node after different levels of filtering are applied to PNNL
Version 6 B1-S1. (Bottom): The number of template nodes
for which each world node is a candidate.. Note that the
Validation histogram perfectly overlaps the Elimination his-
togram and the Neighborhood histogram perfectly overlaps
the Topology histogram.

of the remaining candidates participate in at least one signal.
This suggests that the filters have the potential to reduce the
candidates all the way to the solution of the MCSP.

Both histograms in Figure 16 demonstrate how candi-
dates get eliminated as different filters are applied. All filters
are able to reduce the number of candidates. In the top
histogram, the number of remaining candidates after the
elimination filter entirely overlaps with that after validation,
confirming that the result after the elimination filter is
essentially the solution to the MCSP, identifying all world
nodes that correspond to each template node in at least one
signal. In the bottom histogram, we can clearly observe how
each filter eliminates the candidacy of world nodes in stages.

4.4.3 GORDIAN Version 7
GORDIAN Version 7 [31] has two instances: Batch-1 and
Batch-2. Despite the distinction in sizes and structures of
their respective templates, both instances can be solved
with node-level statistics, topology and repeated-sets filters.
For example, in Batch-1, even without applying the more
advanced elimination and neighborhood filters, we manage
to find the exact match for 129 template nodes out of 156.
In Figure 17, we plot the largest connected component of in-
stance Batch-1, in which we can clearly see that the majority
of the template nodes are matched with their single candi-
date. These filtering results again demonstrate the potential
of our basic filters (node-level statistics, topology, repeated-
sets) in narrowing down the solution to subgraph matching
problems. The small number of remaining candidates also
enables us to apply validation and verify that all remaining
candidates participate in some signal. We further compute

14

Dataset Instance
Template World

Channels Number of
Isomorphisms Filters Problems

SolvedNodes Edges Nodes Edges
B0-S0 74 1,620 22,996 12,318,861 7 1,152 S, T, R SIP, SNSP, MCSP, SICP, SMP
B5-S0 64 1,201 22,994 12,324,975 7 1,152 S, T, R SIP, SNSP, MCSP, SICP, SMP
B1-S1 75 1,335 22,982 12,324,340 7 1,152 S, T, R, E SIP, SNSP, MCSP, SICP, SMP

PNNL
Version 6

B7-S1 81 1,373 23,011 12,327,168 7 3.13× 108 S, T, R, E SIP, SNSP, MCSP, SICP
PNNL
Real World 35 158 6,407 74,862 3 2.12× 1012 S, T, R, N, E SIP, SNSP, MCSP, SICP

Batch-1 156 3,045 190,869 123,267,100 10 4.27× 1015 S, T, R, E SIP, SNSP, MCSP, SICPGORDIAN
Version 7 Batch-2 44 715 190,869 123,264,754 10 1.35× 1016 S, T, R, E SIP, SNSP, MCSP, SICP
IvySys
Version 7 92 195 2,488 5,470,970 3 N/A S, T, R, N, E SIP

IvySys
Version 11 103 387 1,404 5,719,030 5 N/A S, T, R, E SIP

TABLE 8: Overview of the sizes and filtering results of different DARPA datasets. For each instance of the datasets, the table
records its basic statistics, which filters have been applied, and the number of isomorphisms. The last column concludes the
types of problems stated in Section 1.1 that we can solve for each instance. The names of the filters have been abbreviated:
L = Node Label; S = Node-level Statistics; T = Topology; R = Repeated-Sets; N = Neighborhood; E = Elimination.

(a) Without elimination filter. (b) With elimination filter.

Fig. 14: Candidate count for each node in the PNNL Version 6 B1-S1 template after applying the node-level statistics,
topology, and repeated-sets filters, with and without additionally applying the elimination filter.

Fig. 15: Candidate count for each node in the PNNL Real
World template after solving the MCSP using validation.
Edge colors correspond to their channels.

the number of isomorphisms to be 1.51 × 1012, and the
enormous number here is a direct result of the permutability
of some template nodes.

4.4.4 IvySys Version 7

IvySys Version 7 [3] has three channels corresponding to
financial, communication and logistics transactions. Due
to the sparse structure of the template, we are unable to
identify any template nodes with unique candidates after
applying different levels of filtering methods, as seen in
Figure 18. However, after our filtering methods reduce the
size of the search space, we find that there are in fact
many signals in the world graph, some of which are almost
completely disjoint from each other. It is their existence
that leads to the abundance of candidates for each template
node. Our approach allows us to easily solve the subgraph
isomorphism problem (SIP) for IvySys Version 7, which is
finding just one valid signal. However, the enormity of the
solution space makes it unreasonable to proceed to solve the
rest of the variants, like SICP, SNSP and MCSP.

15

Fig. 16: (Top): The number of candidates for each template
node after different levels of filtering are applied to PNNL
Real World. (Bottom): The number of template nodes for
which each world node is a candidate. Note that the Vali-
dation histogram almost perfectly overlaps the Elimination
histogram.

Fig. 17: Candidate count for each node in the GORDIAN
Version 7 Batch-1 template after applying the node-level
statistics, topology, repeated-sets, and elimination filters.

Fig. 18: (Top): The number of candidates for each template
node after different levels of filtering are applied to IvySys
Version 7. (Bottom): The number of template nodes for
which each world node is a candidate.

4.4.5 IvySys Version 11

IvySys Version 11 contains one instance with five channels.
It is somewhat similar to that of IvySys Version 7, as illus-
trated in Figure 19. Even after the application of all of our
existing filters, we can only identify exact matches for 13
out of the 103 template nodes. The majority of the template
nodes still have a considerable number of candidates. A
closer examination of Figure 19 shows the existence of per-
mutable sets of template nodes. This suggests the possibility
that we might have already reduced the graph to the point
where almost all of the remaining candidates serve as part
of a valid signal.

5 CONCLUSION

We have introduced a series of effective filtering methods
that can be used to solve subgraph isomorphism prob-
lems within a large-scale multiplex network. The filter-
ing approaches reduce the search space using node la-
bels/attributes, node-level statistics, topology, and alldiffer-
ent constraints. When applied iteratively until convergence,
our filtering methods can significantly narrow down the
search space. We also implement a more computationally
expensive isomorphism counting approach, which can be
applied after filtering to solve the Subgraph Isomorphism
Counting Problem (Definition 1.5). We can also proceed
with a validation step that checks whether each world node
participates in at least one subgraph isomorphism, hence
solving the Signal Node Set Problem (Definition 1.6).

We have applied our methods to multiple types of
networks: Sudoku puzzles, three real-world datasets, and
synthetic datasets created by PNNL, GORDIAN and IvySys
as part of the DARPA MAA program. In all of these
experiments, our methods have greatly narrowed down

16

Fig. 19: Candidate count for each node in the IvySys Version
11 template after applying the node-level statistics, topol-
ogy, repeated-sets, and elimination filters. The colors of the
edges correspond to their different channels.

the candidates of the template nodes and provided us
with an understanding of the size of the solution space.
When applied to the Higgs Twitter network, the commercial
airline network, PNNL Version 6, PNNL Real World and
GORDIAN Version 7, our methods are capable of solving
most, if not all, of the proposed subgraph isomorphism
problems. However, even in more difficult settings such
as the Great Britain Transportation and IvySys Versions 7
and 11, our methods reduce the search space to a much
smaller scale. Our results show that further narrowing down
the candidates of template nodes is often hindered by an
abundance of subgraph isomorphisms existing in the world
graphs. Under such circumstances, leveraging more node
attributes such as geospatial coordinates or timestamps can
assist in making further progress.

6 FUTURE WORK

It would be interesting to explore when each filter is suffi-
cient to solve a problem, and on what types of graphs are
various filters required. Different types of filters perform
differently depending on the template and world graphs,
and characterizing these graphs would be useful for deter-
mining whether a filter should be run or omitted for time. In
a similar vein, exploring generally which types of template
and world graphs are easier or harder to solve would also
be useful.

Templates with a large amount of symmetry, as in IvySys
Version 11 (Section 4.4.5), can lead to a huge number of sub-
graph isomorphisms (SIs) that differ very little. However,
these SIs can often be summarized using the concept of
structural equivalence to group similar SIs together [46]. In
the future, we aim to incorporate the concept of equivalence
into our algorithm to improve performance and provide
additional insight into the structure of the solution space.

Another performance improvement would be to incor-
porate parallelization into our code. Counting can be easily

parallelized with respect to different choices of candidates
for the same node, and many of the filters can be parallelized
with respect to individual nodes/edges. Though our code
does not currently take advantage of this, we hope to
implement more efficient parallel versions in the future.

Another possible direction is the noisy or inexact case
of the subgraph matching problem. From the application
standpoint, one could consider datasets with missing edges
or nodes from the template or world graphs, while the goal
is to find the closest possible matches to the template. There
are various possibilities for the noisy case—missing edges,
missing nodes, extra edges, extra nodes. Approaches that
deal with the noisy case frequently relax the original discrete
matching problem to a continuous problem, allowing for
the use of methods based on gradient descent or convex
optimization [18], [34], [37], [60], [70].

Additionally, the use of more edge attributes will also
help narrow down the solution of the subgraph matching
problem. We have considered approximated location infor-
mation in the Great Britain Transportation. In the case of
social media, email traffic, or financial transactions, times-
tamps can also serve as additional attributes. This type of
information is considered in [38].

ACKNOWLEDGMENTS

This material is based on research sponsored by the Air
Force Research Laboratory and DARPA under agreement
number FA8750-18-2-0066. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Air Force Research Laboratory
and DARPA or the U.S. Government.

This work was also supported by NSF DMS-2027277.
Moorman was supported by NSF DGE-1829071. We thank
Jamie Atlas, Omri Azencot, Zachary Boyd, Jeremy Budd,
Yoni Dukler, Matthew Jacobs, Blaine Keetch, Hao Li, Kevin
Miller, Mason A. Porter, Bao Wang, Yotam Yaniv, and
Baichuan Yuan for helpful discussions. We thank the anony-
mous reviewers for their valuable suggestions.

REFERENCES

[1] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield. Efficient
graphlet counting for large networks. In 2015 IEEE International
Conference on Data Mining, pages 1–10, Nov 2015.

[2] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C.
Sahinalp. Biomolecular network motif counting and discovery
by color coding. Bioinformatics, 24(13):i241–i249, 07 2008.

[3] K. O. Babalola, O. B. Jennings, E. Urdiales, and J. A. DeBardelaben.
Statistical methods for generating synthetic email data sets. In
2018 IEEE International Conference on Big Data (Big Data), pages
3986–3990, Dec 2018.

[4] R. Bar-Yehuda and S. Even. A local-ratio theorem for approximat-
ing the weighted vertex cover problem. In Analysis and Des. of
Algorithms for Combinatorial Problems, pages 27–45. Elsevier, 1985.

[5] B. Bentley, R. Branicky, C. L Barnes, Y. Chew, E. Yemini, E. T
Bullmore, P. E Vértes, and W. R Schafer. The multilayer con-
nectome of caenorhabditis elegans. PLoS Computational Biology,
12(12):e1005283, 2016.

17

[6] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang. Efficient subgraph
matching by postponing cartesian products. In Proceedings of the
2016 International Conference on Management of Data, pages 1199–
1214. ACM, 2016.

[7] V. Bonnici, R. Giugno, A. Pulvirenti, D. Shasha, and A. Ferro. A
subgraph isomorphism algorithm and its application to biochem-
ical data. BMC bioinformatics, 14(7):S13, 2013.

[8] A. Cardillo, J. Gómez-Gardeñes, M. Zanin, M. Romance, D. Papo,
F. del Pozo, and S. Boccaletti. Emergence of network features from
multiplexity. Scientific Reports, 3:1344, 2013.

[9] V. Carletti, P. Foggia, A. Saggese, and M. Vento. Introducing
VF3: A new algorithm for subgraph isomorphism. Graph-Based
Representations in Pattern Recognition, pages 128–139, 2017.

[10] V. Carletti, P. Foggia, A. Saggese, and M. Vento. Challenging the
time complexity of exact subgraph isomorphism for huge and
dense graphs with vf3. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 40(4):804–818, April 2018.

[11] V. Carletti, P. Foggia, and M. Vento. Vf2 plus: An improved
version of vf2 for biological graphs. In International Workshop on
Graph-Based Representations in Pattern Recognition, pages 168–177.
Springer, 2015.

[12] F. Celli, F. M. L. Di Lascio, M. Magnani, B. Pacelli, and L. Rossi.
Social Network Data and Practices: the case of Friendfeed. In
International Conference on Social Computing, Behavioral Modeling
and Prediction, Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2010.

[13] D. Conte, P. Foggia, C. Sansone, and M. Vento. Graph matching
applications in pattern recognition and image processing. In
Proceedings 2003 International Conference on Image Processing (Cat.
No.03CH37429), volume 2, pages II–21, Sep. 2003.

[14] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph
isomorphism algorithm for matching large graphs. IEEE Trans. on
Pattern Analysis and Machine Intell., 26(10):1367–1372, Oct 2004.

[15] J. A. Cottam, S. Purohit, P. Mackey, and G. Chin. Multi-channel
large network simulation including adversarial activity. In 2018
IEEE International Conference on Big Data (Big Data), pages 3947–
3950, Dec 2018.

[16] M. De Domenico, A. Lima, P. Mougel, and M. Musolesi. The
anatomy of a scientific rumor. Scientific Reports, 3:2980, 2013.

[17] J. Douglas, B. Zimmerman, J. Xu A. Kopylov, D. Sussman, and
V. Lyzinski. Metrics for evaluating network alignment. In Proceed-
ings of the Eleventh ACM International Conference on Web Search and
Data Mining, WSDM ’18, New York, NY, USA, 2018. ACM.

[18] A. Egozi, Y. Keller, and H. Guterman. A probabilistic approach
to spectral graph matching. IEEE Trans. Pattern Anal. Mach. Intell.,
35(1):1827, January 2013.

[19] Wenfei Fan. Graph pattern matching revised for social network
analysis. In Proceedings of the 15th International Conference on
Database Theory, ICDT ’12, page 821, New York, NY, USA, 2012.
Association for Computing Machinery.

[20] R. Gallotti and M. Barthelemy. The multilayer temporal network
of public transport in Great Britain. Scientific data, 2:140056, 2015.

[21] R. Gallotti and M. Barthelemy. The multilayer temporal network
of public transport in Great Britain. https://datadryad.org/
resource/doi:10.5061/dryad.pc8m3, 2015.

[22] M. R. Garey and D. S. Johnson. Computers and intractability, volume
174. freeman San Francisco, 1979.

[23] I. P. Gent, I. Miguel, and P. Nightingale. Generalised arc consis-
tency for the AllDifferent constraint: An empirical survey. Artificial
Intelligence, 172(18):1973–2000, December 2008.

[24] W. Han, J. Lee, and J. Lee. Turbo iso: towards ultrafast and
robust subgraph isomorphism search in large graph databases.
In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, pages 337–348. ACM, 2013.

[25] H. He and A. Singh. Graphs-at-a-time: query language and access
methods for graph databases. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pages 405–
418. ACM, 2008.

[26] X. He. Interactive template map. https://hexie1995.github.io/
transportation-on-the-map/global, 2019.

[27] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum
matchings in bipartite graphs. SIAM J. Comput., 2:225–231, 1973.

[28] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent sub-
graphs in the presence of isomorphism. In Third IEEE International
Conference on Data Mining, pages 549–552. IEEE, 2003.

[29] V. Ingalalli, D. Ienco, and P. Poncelet. Sumgra: Querying multi-
graphs via efficient indexing. In International Conference on Database
and Expert Systems Applications, pages 387–401. Springer, 2016.

[30] A. Jüttner and P. Madarasi. Vf2++an improved subgraph isomor-
phism algorithm. Discrete Applied Mathematics, 242:69–81, 2018.

[31] K. Karra, S. Swarup, and J. Graham. An empirical assessment of
the complexity and realism of synthetic social contact networks*.
In 2018 IEEE International Conference on Big Data (Big Data), pages
3959–3967, Dec 2018.

[32] M. Kivelä, A. Arenas, M. Barthelemy, J. P Gleeson, Y. Moreno, and
M. A Porter. Multilayer networks. J. of Complex Networks, 2(3):203–
271, 2014.

[33] D. E. Knuth. Dancing links. Millennial Perspectives in Computer
Science, pages 187–214, 2000.

[34] A. Kopylov and J. Xu. Filtering strategies for inexact subgraph
matching on noisy multiplex networks. In 2019 IEEE International
Conference on Big Data (Big Data), pages 4906–4912, 2019.

[35] L. Kotthoff, C. McCreesh, and C. Solnon. Portfolios of subgraph
isomorphism algorithms. In International Conference on Learning
and Intelligent Optimization, pages 107–122. Springer, 2016.

[36] J. Larrosa and G. Valiente. Constraint satisfaction algorithms
for graph pattern matching. Mathematical Structures in Computer
Science, 12(4):403422, 2002.

[37] V. Lyzinski, D. E. Fishkind, M. Fiori, J. T. Vogelstein, C. E. Priebe,
and G. Sapiro. Graph matching: Relax at your own risk. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 38(1):60–
73, Jan 2016.

[38] P. Mackey, K. Porterfield, E. Fitzhenry, S. Choudhury, and G. Chin.
A chronological edge-driven approach to temporal subgraph iso-
morphism. In 2018 IEEE International Conference on Big Data (Big
Data), pages 3972–3979, Dec 2018.

[39] M. Magnani and L. Rossi. The ML-Model for Multi-layer Social
Networks. In ASONAM, pages 5–12. IEEE Computer Society, 2011.

[40] C. McCreesh and P. Prosser. A parallel, backjumping subgraph
isomorphism algorithm using supplemental graphs. In Gilles
Pesant, editor, Int. Conf. on Principles and Practice of Constraint
Programming, pages 295–312. Springer Int. Publishing, 2015.

[41] C. McCreesh, P. Prosser, C. Solnon, and J. Trimble. When subgraph
isomorphism is really hard, and why this matters for graph
databases. Journal of Artificial Intelligence Research, 61:723–759, 2018.

[42] J. J. McGregor. Relational consistency algorithms and their appli-
cation in finding subgraph and graph isomorphisms. Information
Sciences, 19(3):229–250, 1979.

[43] Giovanni Micale, Vincenzo Bonnici, Alfredo Ferro, Dennis Shasha,
Rosalba Giugno, and Alfredo Pulvirenti. Multiri: Fast subgraph
matching in labeled multigraphs. arXiv preprint arXiv:2003.11546,
2020.

[44] Jacob D. Moorman, Thomas K. Tu, Qinyi Chen, Dominic Yang, and
Xie He. jdmoorman/uclasm: v0.2.0. Zenodo. https://doi.org/10.
5281/zenodo.4052353, September 2020.

[45] C. Nabti and H. Seba. Compact neighborhood index for subgraph
queries in massive graphs. arXiv preprint arXiv:1703.05547, 2017.

[46] Thien Nguyen, Dominic Yang, Yurun Ge, Hao Li, and Andrea L
Bertozzi. Applications of structural equivalence to subgraph iso-
morphism on multichannel multigraphs. In 2019 IEEE International
Conference on Big Data (Big Data), pages 4913–4920. IEEE, 2019.

[47] P. Norvig. http://www.norvig.com/sudoku.html, 2010.
[48] P. Norvig. https://github.com/norvig/pytudes, 2017.
[49] S. Pilosof, M. A Porter, M. Pascual, and S. Kéfi. The multilayer na-

ture of ecological networks. Nature Ecology & Evolution, 1(4):0101,
2017.

[50] Project Euler problem 96: Su Doku. https://projecteuler.net/
problem=96, 2005.

[51] J.-C. Régin. A filtering algorithm for constraints of difference in
CSPs. In Proc. of the 12th Nat. Conf. on Artificial Intell, Seattle, WA,
USA, July 31 - August 4, 1994, Volume 1., pages 362–367, 1994.

[52] X. Ren and J. Wang. Exploiting vertex relationships in speeding
up subgraph isomorphism over large graphs. Proceedings of the
VLDB Endowment, 8(5):617–628, 2015.

[53] T. Reza, C. Klymko, M. Ripeanu, G. Sanders, and R. Pearce.
Towards practical and robust labeled pattern matching in trillion-
edge graphs. In 2017 IEEE International Conference on Cluster
Computing (CLUSTER), pages 1–12, Sep. 2017.

[54] T. Schank and D. Wagner. Finding, counting and listing all trian-
gles in large graphs, an experimental study. In S. E. Nikoletseas,
editor, Experimental and Efficient Algorithms, pages 606–609, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

https://datadryad.org/resource/doi:10.5061/dryad.pc8m3
https://datadryad.org/resource/doi:10.5061/dryad.pc8m3
https://hexie1995.github.io/transportation-on-the-map/global
https://hexie1995.github.io/transportation-on-the-map/global
https://doi.org/10.5281/zenodo.4052353
https://doi.org/10.5281/zenodo.4052353
http://www.norvig.com/sudoku.html
https://github.com/norvig/pytudes
https://projecteuler.net/problem=96
https://projecteuler.net/problem=96

18

[55] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification hard-
ness: an efficient algorithm for testing subgraph isomorphism.
Proceedings of the VLDB Endowment, 1(1):364–375, 2008.

[56] H. Simonis. Sudoku as a constraint problem. In Proceedings of the
4th International Workshop on Modelling and Reformulating Constraint
Satisfaction Problems., pages 13–27. Citeseer, 2005.

[57] C. Solnon. AllDifferent-based Filtering for Subgraph Isomor-
phism. Artificial Intell., 174:850–864, August 2010.

[58] S. Sun and X. Luo. Scaling up subgraph query processing with
efficient subgraph matching. Proceedings of the 2019 IEEE 35th
International Conference on Data Engineering, 2019.

[59] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient subgraph
matching on billion node graphs. Proc. VLDB Endow., 5(9):788799,
May 2012.

[60] D. Sussman, Y. Park, C. E. Priebe, and V. Lyzinski. Matched filters
for noisy induced subgraph detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 1–1, 2019.

[61] J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM,
23(1):31–42, January 1976.

[62] J. R Ullmann. Bit-vector algorithms for binary constraint satisfac-
tion and subgraph isomorphism. Journal of Experimental Algorith-
mics (JEA), 15:1–6, 2010.

[63] United Kingdom’s national public transport data repository. https:
//data.gov.uk/dataset/d1f9e79f-d9db-44d0-b7b1-41c216fe5df6/
national-public-transport-data-repository-nptdr, 2015.

[64] W.-J. van Hoeve. The alldifferent constraint: A survey. CoRR,
cs.PL/0105015, 05 2001.

[65] L. M. Verbrugge. Multiplexity in adult friendships. Social Forces,
57:1286–1309, 1979.

[66] J. Xu, H. Tong, T. Lu, J. He, and N. Bliss. GTA3 2018: Workshop on
graph techniques for adversarial activity analytics. In Proceedings
of the Eleventh ACM International Conference on Web Search and Data
Mining, WSDM ’18, pages 803–803, New York, NY, USA, 2018.
ACM.

[67] X. Yan and J. Han. gspan: Graph-based substructure pattern
mining. In 2002 IEEE International Conference on Data Mining, 2002.
Proceedings., pages 721–724. IEEE, 2002.

[68] Lyudmila Yartseva and Matthias Grossglauser. On the perfor-
mance of percolation graph matching. COSN ’13, page 119130,
New York, NY, USA, 2013. Association for Computing Machinery.

[69] S. Zampelli, Y. Deville, and C. Solnon. Solving subgraph iso-
morphism problems with constraint programming. Constraints,
15:327–353, 07 2010.

[70] M. Zaslavskiy, F. Bach, and J. Vert. A path following algorithm for
the graph matching problem. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(12):2227–2242, Dec 2009.

[71] S. Zhang, S. Li, and J. Yang. Gaddi: distance index based sub-
graph matching in biological networks. In Proceedings of the 12th
International Conference on Extending Database Technology: Advances
in Database Technology, pages 192–203. ACM, 2009.

[72] P. Zhao and J. Han. On graph query optimization in large
networks. Proceedings of the VLDB Endowment, 3(1-2):340–351, 2010.

[73] M. Zitnik and J. Leskovec. Predicting multicellular function
through multi-layer tissue networks. Bioinformatics, 33(14):i190–
i198, 2017.

[74] L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao. gstore: answering
sparql queries via subgraph matching. Proceedings of the VLDB
Endowment, 4(8):482–493, 2011.

Jacob D. Moorman is a Ph.D. candidate in
Mathematics in the Department of Mathematics
at the University of California, Los Angeles. He
received B.S. degrees in Mathematics and Com-
puter Science from the New Jersey Institute of
Technology in 2016. His research interests in-
clude network analysis, linear algebra, stochas-
tic optimization algorithms, pattern recognition,
and high-dimensional data analysis.

Thomas K. Tu is currently working towards a
Ph.D. in Mathematics in the Department of Math-
ematics at the University of California, Los Ange-
les. He received a B.S. degree in Mathematics
and Computer Science from the New Jersey
Institute of Technology in 2016. His research
interests include knowledge graphs, network sci-
ence, stochastic optimization algorithms, ma-
chine learning, and image analysis.

Qinyi Chen is a first-year Ph.D. student at the
Operations Research Center at MIT. She re-
ceived a B.S. degree in Applied Mathematics
and a specialization in computing from the Uni-
versity of California, Los Angeles in 2020. Her
research interests include network science, as
well as online learning and optimization.

Xie He is a Ph.D. student at the University of
North Carolina, Chapel-Hill. She received her
bachelor’s degree in Applied Mathematics from
the University of California, Los Angeles in 2019.
Her research interest include network analysis,
community detection and scientific computing.

Andrea L. Bertozzi, Member, IEEE completed all
her degrees in mathematics at Princeton. She is
an Applied Mathematician with expertise in non-
linear partial differential equations and graphical
models for machine learning. She was an L.
E. Dickson Instructor and an NSF Postdoctoral
Fellow at the University of Chicago from 1991
to 1995. She was the Maria Geoppert-Mayer
Distinguished Scholar with the Argonne National
Laboratory from 1995 to 1996. She was on the
faculty at Duke University from 1995 to 2004, first

as an Associate Professor of mathematics and then as a Professor of
mathematics and physics. She has been on the faculty at UCLA since
2003 where she now holds the position of Distinguished Professor of
Mathematics and Mechanical and Aerospace Engineering, along with
the Betsy Wood Knapp Chair for Innovation and Creativity. She was
elected to the American Academy of Arts and Sciences in 2010 and to
the Fellows of the Society of Industrial and Applied Mathematics (SIAM)
in 2010. She became a Fellow of the American Mathematical Society
in 2013 and the American Physical Society in 2016. In 2018, she was
elected to the U.S. National Academy of Sciences. Her honors include
the Sloan Research Fellowship in 1995, the Presidential Early Career
Award for Scientists and Engineers in 1996, and the SIAM Kovalevsky
Prize in 2009, and the SIAM Kleinman Prize in 2019. She received the
SIAM Outstanding Paper Prize in 2014 with A. Flenner, for her work on
geometric graphbased algorithms for machine learning. She received
the Simons Math + X Investigator Award in 2017. She is a Thomson-
Reuters/Clarivate Analytics Highly Cited Researcher in mathematics in
2015 and 2016.

https://data.gov.uk/dataset/d1f9e79f-d9db-44d0-b7b1-41c216fe5df6/national-public-transport-data-repository-nptdr
https://data.gov.uk/dataset/d1f9e79f-d9db-44d0-b7b1-41c216fe5df6/national-public-transport-data-repository-nptdr
https://data.gov.uk/dataset/d1f9e79f-d9db-44d0-b7b1-41c216fe5df6/national-public-transport-data-repository-nptdr

	Introduction
	Problem Statements
	Related Work
	Ullmann's Algorithm
	VF2
	Constraint Propagation Approaches
	Graph Indexing Approaches
	Multiplex Approaches

	Contributions

	Filtering
	Node Label Filter
	Node-level Statistics Filter
	Topology Filter
	Repeated-Sets Filter
	Neighborhood Filter
	Elimination Filter

	Solving the Problems
	Isomorphism Counting
	Validation

	Experiments
	Sudoku
	9x9 Representation
	9x9x3 Representation
	Results

	Multiplex Erdos-Rényi
	Real-World Examples
	Great Britain Transportation
	Higgs Twitter
	Commercial Airlines

	Adversarial Activity
	PNNL Version 6
	PNNL Real World
	GORDIAN Version 7
	IvySys Version 7
	IvySys Version 11

	Conclusion
	Future Work
	References
	Biographies
	Jacob D. Moorman
	Thomas K. Tu
	Qinyi Chen
	Xie He
	Andrea L. Bertozzi, Member, IEEE

