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Higher-Order Feature-Preserving Geometric Regularization∗
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Abstract. We introduce two fourth-order regularization methods that remove geometric noise without de-
stroying significant geometric features. These methods leverage ideas from image denoising and
simplification of high contrast images in which piecewise affine functions are preserved up to in-
finitesimally small transition zones. We combine the regularization techniques with active contour
models and apply them to segmentation of polygonal objects in aerial images. To avoid loss of
features during the computation of the external driving forces we use total variation–based inverse
scale-space techniques on the input data. Furthermore, we use the models for feature-preserving
removal of geometric texture on surfaces.
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1. Introduction. Geometric partial differential equations (PDEs) are very powerful and
widely used ingredients for modeling and solving problems that involve “shapes” as free vari-
ables [10, 34, 33]. Such PDEs can be modeled directly or emerge from variational methods
by deriving either the formal Euler–Lagrange equations or the corresponding gradient descent
(see [50, 17, 51]). One prominent example is the problem of image segmentation, which is
often modeled in terms of the boundary of the unknown segment. In particular, the well-
known class of active contour models [14, 23, 49, 13, 38] model a geometric evolution problem,
which evolves an initial curve toward the boundary of the segment. Naturally, the main com-
ponent that influences the segmentation process is the external data, which can be images
of any kind, such as photographs or magnetic resonance images. Since images can contain a
very large amount of information and in addition be corrupted by noise, it is often crucial
to mitigate nonuniqueness by imposing a restriction on the complexity of the solution. This
reduction of the solution space by penalization is referred to as regularization and is often
achieved by adding smoothness to the evolving geometry. In this context, a common problem
is to find a good balance between the smoothing process and external driving forces. Our aim
in this paper is to exploit prior knowledge to devise feature-preserving smoothing methods
that help to avoid oversmoothing at sharp corners. In particular, these methods facilitate the
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22 MARC DROSKE AND ANDREA BERTOZZI

segmentation of objects with only a piecewise smooth boundary by avoiding oversmoothing.
Let us first describe some of the most important classic approaches for boundary-based

segmentation. Consider, for example, the pioneering work of Kass, Witkin, and Terzopoulos
[37], which introduced active contours [14] (also known as snakes) as parametrized curves or
surfaces that evolve according to both local properties of the curve and image-dependent forces
that are directed toward significant features. The classical image snake method computes
minimizers of the functional

(1.1) E[c] =
α

2

∫ 1

0
‖cz(z)‖2dz + β

2

∫ 1

0
‖czz(z)‖2dz − 1

2

∫ 1

0
‖∇u0(c(z))‖2dz

to segment boundaries for the input image u0 : Ω → R on the image domain Ω ⊂ R
d. The

functional E is defined on closed curves given by a parametrization c : [0, 1] → Ω, and α, β are
positive weights of the respective energy contributions. The first two, the membrane energy
and the thin-plate energy, control the fairness of the curve and constitute the internal energy.
The last integral defines the external energy, i.e., models the image feature driven dependence
of the curve: the lower the gradient of u0 is in magnitude, the stronger is the penalization
of the curve. In a gradient-flow minimization method, the external energy is responsible for
evolving the curve so that it eventually stops at a boundary, whereas the internal energy
smoothes rough edges. However, if the internal energy (regularization) does not reflect our
expectations on the shape of the object (e.g., segmentation of smooth shapes versus polygons
or objects with a fractal or fuzzy boundary), the balancing of the energies is a difficult trade-
off. Ideally, the regularization energy should penalize only implausible shapes. Naturally,
plausibility depends highly on the context. In medical image segmentation, a smoothness
assumption is perfectly valid; in this paper, however, we would like to devise a regularization
energy which treats “piecewise” smooth shapes, such as smooth approximations to polygons,
as plausible.

Active contour models, including all their variants, are commonly used in the literature and
successfully applied to a wide range of segmentation problems, especially in medical imaging
(cf., e.g., [57, 18]). Even though parametric models have serious difficulties with topology
changes, they are numerically appealing because they can be solved very efficiently. In many
applications the topology is known a priori, and hence no splitting or merging is required.

Due to the vast amount of research in image segmentation, a comprehensive overview is
beyond the scope of this article. We briefly review some well-known segmentation methods.
Caselles, Kimmel, and Sapiro [15] introduced a geodesic active contour model by minimizing
the related energy

(1.2) Eg[c] = α

∫ 1

0
‖cz(z)‖2dz +

∫ 1

0
g(‖∇uσ0 (c(z))‖)2dz

in which uσ0 denotes a regularized version of u0 and σ > 0 plays the role of a scale parameter.
It turns out that the minimization of this energy is equivalent to finding geodesics with respect
to a space-dependent isotropic metric g, by minimization of the energy

(1.3) Ẽg[c] = 2α−2

∫ 1

0
g(‖∇uσ0 (c(z))‖)2‖cz(z)‖dz =

∫
Γc

g dA.
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HIGHER-ORDER GEOMETRIC REGULARIZATION 23

In contrast to (1.1), this functional is completely intrinsic; i.e., the energy does not depend on
the specific parametrization of the contour but only on the geometry of the curve itself. The
notion of equivalence of the minimization of (1.2) and (1.3) has been made precise by Aubert
and Blanc-Féraud [2], who derived that under some mild conditions on g, for all piecewise C1

Jordan-curves, there exists a neighborhood in which the steepest descent direction of (1.2) also
decreases (1.3) and vice versa. Hintermüller and Ring introduced a Newton-type optimization
technique of this problem in [33]. An extension of the geodesic contour model, which aligns
the contour with the morphology of the input image in the sense of the Hildreth–Marr edge
detector, was introduced by Kimmel and Bruckstein [39]. The energy (1.3) allows us to
formulate the segmentation problem by modeling the metric factor g. Despite its conceptual
attractiveness, this model does not directly address preservation of features, since g does
depend only on extrinsic factors and not on the local geometry.

A technique due to Mumford and Shah [43] involves minimization of the energy

(1.4) EMS [u,Γ] :=

∫
Ω
(u− u0)2 dx + β

∫
Ω\Γ
‖∇u‖2 dx + αH d−1(Γ),

where H d−1 denotes the (d − 1)-dimensional Hausdorff measure. This method combines
edge-preserving image denoising with segmentation in such a way that the discontinuity set Γ
of the reconstructed function u divides the image into separate homogeneous regions. Since
then the regularization term H d−1(Γ) has been extended to also take into account the cur-
vature (Mumford–Shah–Euler and Mumford–Shah–Nitzberg) [44]. Chan and Vese [16] have
formulated a piecewise constant variant of this model [44], in which the discontinuity set is
represented by a level set function.

All of these methods incorporate curve regularization via length measurement (possibly
nonhomogeneously weighted in space); hence none of them directly addresses the problem
of segmenting objects with geometric features: the internal energy will always result in a
smoothing of sharp angles of the boundary contour.

It would appear natural to leverage formal descriptions of anisotropies from materials
science, where crystalline structures are expressed by so-called Wulff-shapes [59]. If a descrip-
tion of the local morphology, in terms of normals and anisotropy, is known at each point of
the image, the minimization of an anisotropic area functional could be guided by prescribing
a Wulff-shape [22]. Numerical methods have already been developed for problems such as
anisotropic mean curvature flow [24, 5], the anisotropic Rudin–Osher–Fatemi model [31], or
surface diffusion [25, 11, 19]. However, since the automatic detection of Wulff-shapes is a dif-
ficult problem, we focus on automatic feature preservation that is guided by the geometry of
the shape variable itself, allowing the curve to adjust itself to features without prior knowledge
of the morphology.

Our approach is motivated by low-curvature image simplifiers (LCISs) originating in a
paper by Tumblin and Turk [56] and further developed by Bertozzi and Greer, who have
developed a well-posedness theory and devised a Laplacian limiting scheme (see [6] for details).
The key observation is that the fourth-order PDE

(1.5) ut + div(g(Δu)∇Δu) = 0
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24 MARC DROSKE AND ANDREA BERTOZZI

produces solutions that dynamically smooth noise while preferring locally linear shapes, re-
sulting in regions of constant slope separated by small regions of rapidly changing curvature.
In particular they were able to prove that (1.5) has globally smooth solutions from smooth
initial data in one dimension for the specific functional g proposed by Perona and Malik [45],

g(s) = (1 + s2

η2
)−1, using nonlinear entropy estimates motivated by related equations from

lubrication theory. Since the results were proved for a periodic geometry it is natural to
consider a geometric variant of this model for a self-evolving closed curve in the plane. We
note that global well-posedness depends on details of the nonlinearity in g and there are some
subtleties that are discussed in this paper and in [7]. Furthermore, the influence of the surface
metric makes it difficult to transfer the results to the geometric case. Nevertheless our point
here is to use the fact that (1.5) has been shown to be a highly effective denoising model for
piecewise linear signals, to motivate a geometry-based curve evolution model that is effective
for segmenting objects with corners (the geometric analogue of a piecewise linear function).

The solution u is smooth; hence the notion of corners is understood in an infinitesimal
sense. The dynamics can be combined with a basic L2 fidelity term, leading to very effective
denoising of piecewise linear data. In contrast, second-order adaptive filtering techniques such
as Perona–Malik [45] diffusion filtering or total variation (TV)-based techniques like Rudin–
Osher–Fatemi (ROF) filtering [47] typically develop some staircasing in the resulting image
which can be undesirable in continuous nonconstant regions. We note that (1.5) is a gradient
flow of a nonquadratic energy functional on Δu and preferably smoothes in regions of low
curvature, while strong kinks, which are indicated by a large Laplacian, lead to a small energy
contribution. In this paper we show how to adapt this dynamics to geometric objects. In
the context of variational processing of surfaces, the question of which notion of curvature to
penalize naturally arises. Elsey and Esedoḡlu recently discovered that the minimization of the
L1-norm of the Gaussian curvature leads to a geometric analogue of the ROF denoising model
[30]. In this paper, we will focus on mean curvature–based models that arise as analogues of
LCISs and as weighted Willmore flow. We develop algorithms rather than rigorous theory. It
would be interesting in future work to develop analysis for these methods, along the lines of
[6] for the LCIS problem.

This paper is organized as follows. In section 2 we introduce two approaches for corner-
preserving regularization of contours. Aiming at regularization strategies for a wider class
of problems, we will consider both an evolution-type approach and a variational approach,
which is based on a general functional depending on the mean curvature. We will extend the
Willmore functional and its variation to a general mean curvature–dependent integrand in
order to obtain a suitable weak formulation that can be split into two interdependent second-
order equations. In section 3 we will describe in detail how the continuous equations can
be discretized with a finite element scheme. In section 4 we describe a multiscale strategy
based on inverse scale-space techniques which are especially suitable for generating coarse scale
representations that contain the main geometric features and apply them to segmentation of
aerial images. Finally, we will present and discuss results for surface denoising.

2. Feature-preserving geometric evolution equations. Unlike in the Euclidean case,
there exists no estimator for sharp corners on manifolds that is given by first-order derivatives
only (with respect to its local coordinates). This is due to the fact that the first derivatives



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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of the parametrization characterize the first fundamental form, which is an intrinsic property.
In the following we propose geometric analogues of (1.5). We will give an overview of two

different possibilities that appear naturally in the higher-order case, namely,
• an evolution equation that is motivated by the surface diffusion equation, which is

obtained by a weighted H−1 metric for the area functional, and
• a gradient flow equation of a convex energy depending on the curvature of the moving

contour, which resembles a generalized Willmore flow.

2.1. Basic geometric notation. Let us first describe the basic differential geometric set-
ting. For the sake of a more compact presentation we consider smooth closed manifolds Γ
embedded in R

d+1, d = 1, 2. Given a countable atlas {(xα,Ωα)}α with reference domains
Ωα ⊂ R

d, and the corresponding coordinate map xα : Ωα → Γ, the vectors ∂
∂ξαi

, i = 1, . . . , d,

span a basis of the tangent space TpΓ at the point p ∈ Γ.
Tangent vectors can be interpreted as linear functionals on C∞(Γ):

(2.1)
∂

∂ξαi
(x)f :=

∂f(xα)

∂ξαi
(ξ), x = xα(ξ).

On the tangent bundle TΓ, the metric g : TpΓ× TpΓ → R for all p ∈ Γ can be defined from
the embedding and subsequent identification of tangent vectors with vectors in R

d+1 as

(2.2) gij = gΓ

(
∂

∂ξαi
,
∂

∂ξαj

)
:=

∂xα

∂ξαi
· ∂x

α

∂ξαj
.

Since this equation describes the metric on the atlas, it also defines the entire metric g. The
components of the inverse g−1

Γ are as usual denoted by (gijΓ )ij .
Due to countability of the atlas, the existence of a partition of unity allows us to define

the integration of a function f on Γ by aggregation. Here, the volume element dA is given
by
√
det gΓdξ. This leads to a straightforward definition of the scalar products on C0(Γ) and

C0(TΓ):

(2.3) (f, g)Γ :=

∫
Γ
fg dA and (v,w)TΓ :=

∫
Γ
gΓ(v,w) dA.

The total differential of a function f ∈ C1(Γ) is a linear functional df , i.e.,

(2.4)

〈
∂

∂ξi
, df

〉
:=

∂

∂ξi
(ξ)(f) :=

∂f ◦ x
∂ξi

(ξ), x = xα(ξ).

The gradient ∇Γf is the representation of df in the metric g, implicitly given by

(2.5) gΓ

(
∇Γf,

∂

∂ξi

)
=

〈
∂

∂ξi
, df

〉
, i = 1, . . . , d.

For a vector field v we define the divergence divΓv as the dual operator of the gradient with
respect to g:

(2.6)

∫
Γ
divΓv ϕdA := −

∫
Γ
gΓ(v,∇Γϕ) dA ∀ϕ ∈ C∞(Γ).

Furthermore, the Laplace–Beltrami operator is given by ΔΓ := divΓ∇Γ. The scalar mean
curvature is denoted by h := tr(S).
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2.2. Weighted surface diffusion. We obtain a straightforward geometric variant of (1.5)
by replacing the differential operators by their corresponding intrinsically geometric counter-
parts and by choosing the coordinate immersion x : Γ→ R

d+1 of the active contour Γ as the
free variable. We arrive at the evolution equation

xt + divΓ(g(h)∇ΓΔΓx) = 0,(2.7a)

x(0, ·) = x0,(2.7b)

which is very similar to the equation which describes the evolution of surfaces under surface
diffusion, where the Perona–Malik weighting function g(s) = (1 + s2

η2
)−1 is used as a mobility

that depends on the scalar mean curvature h:

xt + divΓ(g(h)∇Γh)n = 0,(2.8a)

x(0, ·) = x0.(2.8b)

Here, n denotes the outer normal of Γ. Note that we use gΓ for the metric and g for the
nonlinearity throughout this paper.

Like regular surface diffusion, this weighted variant (2.8) preserves volume and decreases
area, which is a desirable combination of properties for geometric regularization: since the
volume is preserved, the area decrease is not achieved by uniform shrinkage but by suppressing
local oscillatory components in the curve. This is in contrast to length penalty functionals
that are commonly combined with an external force term as described in the introduction.
The competetion of the regularization term and the driving forces would introduce a bias even
for a simple shape as a circle. Due to the divergence structure, the derivation is the same as
in the unweighted case (v corresponds to the velocity field).

Volume preservation:

d

dt
|Ω(t)| =

∫
Γ(t)

v dA = −
∫
Γ(t)

divΓ(g(h)∇Γh) dA =

∫
Γ(t)

g(h)gΓ(∇Γh,∇Γ1) dA = 0.

Area decrease (energy dissipation):

d

dt
|Γ(t)| = −

∫
Γ(t)

vhdA =

∫
Γ(t)

divΓ(g(h)∇Γh)hdA = −
∫
Γ(t)

g(h)gΓ(∇Γh,∇Γh) dA ≤ 0.

Unfortunately, the preservation of volume is not guaranteed for the evolution under (2.7).
However, in our experiments (2.7) and (2.8) behave very similarly, as indicated in Figure 1:
the top row of Figure 1 shows the behavior of weighted surface diffusion (2.8), whereas the
bottom row shows the evolution under (2.7). The curve develops corners early by accentuating
the high-curvature areas, but still retains infinitesimal regularity and eventually converges to
a circle. Note that the circle is stationary for both equations, whereas second-order models
usually continue to shrink, since the underlying functionals penalize area. This justifies using
(2.7) in the context of geometric regularization. The preservation of features plays a much
more important role and is already a substantial improvement. In the computations we have
used η = 1 and approximated the curve by a polygon with 512 segments.
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Figure 1. Evolution of a simple initial geometry without external forces. Top row: weighted surface diffusion
at times 0, 2.1079e-05, 4.30717e-05, 8.72062e-05, and 0.000174442 solving (2.8a). Bottom row: simplified ver-
sion of surface diffusion (2.7a) at times 0, 1.81354e-05, 3.63744e-05, 7.25345e-05, and 0.000138453. The curve
evolution is almost identical. The initial shape is parametrized by x : [0, 2π] → R

2, t �→ r(t)(cos(t), sin(t))T ,
r(t) = 1

2
+ 1

10
sin(15t).

Furthermore, solving the exact surface diffusion equation numerically is a quite com-
plex task, since additional equations have to be introduced to convert vectorial quantities to
scalar quantities and vice versa. Furthermore, the system is numerically solved by a Schur-
complement approach. The evaluation of the operator that has to be inverted in every time
step involves an inversion of a discrete second-order differential operator, which makes the
computation by using an iterative solver prohibitively expensive. In this paper, we are only
interested in this equation for the sake of qualitative comparisons and refer to [4] for details
on the isotropic case. We will see later (see section 3) that (2.7) is much easier to implement
and is less computationally expensive.

To use the evolution equation (2.7) in a snake evolution context, we consider

(2.9) xt = −divΓ(g(h)∇ΓΔΓx) + γ fext(x),

where fext : Ω → R
d stands for the external driving force. As described before, the extrinsic

force is responsible for moving the curve toward the object boundaries. Its modeling and
computation highly depend on the type of input image and are a subject on their own.
Frequently, such forces are designed to point toward image features such as edges. Ideally
the force is zero only on the boundary of the object to be segmented, which in practice is
not achievable (or the segmentation problem would already be solved), so it introduces a
dependency of the computed solution to the initial curve configuration. In section 4.1 this
will be described in more detail.

Only normal movements have an influence on the shape of the evolved curve, but the
external force field may point in any direction. Hence, tangential shifts may result in an
undesirably uneven distribution of points along the discretized curve. In analogy to the
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variational approach, where it is sufficient to consider the normal variations of the energy, we
rule out tangential shifts by replacing the external force in (2.9) by its projection in normal
direction:

xt = −divΓ(g(h)∇ΓΔΓx) + γ (n⊗ n)fext(x).(2.10)

Note that we have dropped the lower-order regularization term, since the regularization is
dominated by the higher-order term.

2.3. Energies with mean curvature–dependent densities. It is often not convenient to
solely have a flow equation available. For instance, optimization techniques and step-size
control rules usually require the evaluation of the full regularized functional. Furthermore,
all three fundamental segmentation models mentioned in the introduction are variational
methods. To fill this gap, we now consider the energy

(2.11) W [Γ] =

∫
Γ
G(h) dA.

For quadratic G the above energy corresponds to the so-called Willmore energy [40, 41, 42, 53,
52, 58, 28, 19, 20]. Spheres are minimizing critical points of the Willmore energy with value
16π.1 Intuitively, W [Γ]− 16π describes how much Γ deviates from a sphere by measuring the
amount of bending.

The energy is entirely intrinsic, since integration takes place over Γ and the integrand
depends only on an intrinsic geometric quantity. We will see later (section 2.4.2) that, for
closed Γ, the variation of W is given by

(2.12) 〈W ′[x], ϑ〉 =
∫
Γ

(
− divΓ(G

′′(h)∇Γh)−G′(h)|S|2 +G(h)h
)
ϕdA

for variation vector fields ϑ with scalar normal part ϕ, where S denotes the Weingarten map
of Γ. Hence, the corresponding evolution by gradient descent is described by the equation

(2.13) ∂tx(t) =
(
divΓ(G

′′(h)∇Γh) +G′(h)|S|2 −G(h)h
)
n.

To obtain a sensitivity with respect to high curvatures we choose

G(s) := ηs arctan

(
s

η

)
− 1

2
η2 log

(
1 +

s2

η2

)
.(2.14)

Note that G′′(s) = (1 + s2

η2 )
−1 = g(s) and that the highest-order term is the same as in the

weighted surface diffusion equation (2.8a). However, due to further contributions in non-
divergence form, we can no longer expect volume preservation. In the vicinity of zero, G is
close to quadratic and has a regularizing effect similar to that of Willmore flow. For s→∞,
G becomes almost linear, which leads to the preservation of strong features, since varying the
argument affects the energy only marginally. This is analogous to smooth approximations
of the TV functional, in the form of a Huber functional of ‖∇u‖ used to obtain piecewise

1Note that h denotes the sum of principal curvatures, not the average.
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Figure 2. Evolution of a simple initial geometry without external forces under gradient flow of the weighted
Willmore functional at times 0, 0.6.37621e-06, 1.28998e-05, 2.58389e-05, and 5.16116e-05.

constant approximations [7]. Figure 2 shows that the qualitative properties of the evolution
are very similar to those of (2.8a).

A simple but useful advantage of the weighted Willmore approach is that it can easily be
incorporated into a geometric shape minimization approach. Using the above energy, one could
for instance include a higher-order regularization term into the Mumford–Shah functional,
which would allow one to represent discontinuity sets with sharp corners by choosing β small:

(2.15) ÊMS[u,Γ] :=

∫
Ω
(u− u0)2 dx + α

∫
Ω\Γ
‖∇u‖2 dx + βH d−1(Γ) +

1

γ

∫
Γ
G(h) dA.

As described in section 4.1 we will use the following piecewise constant version of this model
for some of our numerical experiments:

(2.16) Epw
MS[c0, c1,Γ] := γ

∑
i=1,2

∫
Ωi

(ci − u0)2 dx +
∫
Γ
G(h) dA,

where Ω̄ = Ω̄1 ∪ Ω̄2, Ω1 ∩ Ω2 = ∅, and Ω̄1 ∩ Ω̄2 = Γ.

In general, we observed in our experiments that the denoising properties of weighted
surface diffusion, the simplified variant (2.7a), and gradient flow of the weighted Willmore
functional are very similar. Local oscillatory components are very quickly smoothed out,
whereas the global shape is preserved for a longer time.

2.4. Variation of the weighted Willmore functional. In this section we will compute the
variation of the functional W and formulate a weak formulation that is suitable for a spatial
finite element discretization.

2.4.1. Differential geometric tools. We will need the following lemmas. The proofs can
be found in [26], which primarily addresses the anisotropic case.

Lemma 2.1. Let xε = x + εϑ + O(ε2) be a variation of x ∈ Γ in direction of the variation
vector field ϑ = φn + Dx(v), and let hε be the mean curvature of the perturbed surface xε.
Then

∂εhε

∣∣∣
ε
= −ΔΓϕ− |S|2ϕ+ gΓ(gradΓ h, v).(2.17)
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Lemma 2.2 (derivation of the area element). Let xε = x+ εϑ+O(ε2) be a variation of x ∈ Γ
in direction of the variation vector field ϑ = φn+Dx(v). Let gΓε be the fundamental form of
the perturbed surface. Then the derivation of the area element is given locally by

(2.18) ∂ε
√

det gΓε dξ = divΓϑ
√

det gΓ dξ.

Lemma 2.3 (tangential and normal components of ΔΓϑ). Let ϑ = ϕn +Dx(v) be a pertur-
bation vector field on Γ; then the following identity holds:

(2.19) ΔΓϑ =
(
ΔΓϕ− ϕ|S|2

)
n︸ ︷︷ ︸

∈Dx(TΓ)⊥

+2Dn(∇Γϕ) + ϕDx(∇Γh)︸ ︷︷ ︸
∈Dx(TΓ)

+ΔΓDx(v),

where the normal component of the last term is given by

(2.20) 〈ΔΓDx(v), n〉n = − (gΓ(v,∇Γh) + 2 tr(S∇·v))n.

Here, ∇·v ∈ End(TpΓ) denotes the Riemannian connection. For further details we refer
the reader to [27]. The short notation ϑ = ϕn+Dx(v) stands for the decomposition of ϑ into
the scalar normal factor ϕ and the tangential component Dx(v).

2.4.2. First variation. From now on we will consider an immersion x : Γ → R
d and

formulate the energy W in terms of x instead of Γ. Let

(2.21) W [x] =

∫
Γ
G(h) dA.

Recall that we assume that Γ is a closed manifold, in order to avoid several boundary integrals.
Let us now derive the first variation of W at x in a perturbation vector field ϑ:

〈W ′[x], ϑ〉 = d

dε
W (xε)

∣∣∣
ε=0

(2.18)
=

∫
Γ
G′(h)∂εhε dA+

∫
Γ
G(h)divΓϑ dA

= −
∫
Γ
G′(h)

(
ΔΓϕ+ |S|2ϕ− gΓ(gradΓ h, v)

)
dA

+

∫
Γ
G(h)divΓϑ dA

(2.22)
= −

∫
Γ
G′(h)

(
ΔΓϕ+ |S|2ϕ− gΓ(gradΓ h, v)

)
dA

+

∫
Γ
divΓ(G(h)v) −G′(h)gΓ(gradΓ h, v) +G(h) div(ϕn)︸ ︷︷ ︸

ϕh

dA

=

∫
Γ

(−G′(h)
(
ΔΓϕ+ |S|2ϕ)+ divΓ(G(h)v) + ϕG(h)h

)
dA,

where we have used the relation

divΓ(G(h)v) = G(h)divΓv + gΓ(gradΓG(h), v)

= G(h)divΓv +G′(h)gΓ(gradΓ h, v).(2.22)
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The first term becomes

−
∫
Γ
G′(h)ΔΓϕdA = −

∫
Γ
G′(h)divΓ(∇Γϕ) dA

=

∫
Γ
gΓ(∇ΓG

′(h),∇Γϕ) dA

= −
∫
Γ
divΓ(∇G′(h))ϕdA

= −
∫
Γ
divΓ(G

′′(h)∇Γh)ϕdA,

and we obtain

(2.23) 〈W [x]′, ϑ〉 =
∫
Γ

(−divΓ(G′′(h)∇Γh)−G′(h)|S|2 +G(h)h
)
ϕdA.

Lemma 2.4 (first variation, preliminary weak form). Let xε = x + εϑ + O(ε2) be a variation
of x ∈ Γ in direction of the variation vector field ϑ = ϕn+Dx(v). Then the first variation of
the weighted Willmore functional can be written as

〈W ′
g[x], ϑ〉 =

∫
Γ

〈−G′(h)n,ΔΓϑ
〉
dA− 2

∫
Γ
G′(h)Dx(∇Γn) : Dx(∇Γϑ) dA(2.24)

+

∫
Γ
G(h)Dx(∇Γx) : Dx(∇Γϑ) dA.

Proof.

〈W ′
g[x], ϑ〉 =

∫
Γ
G′(h)∂εhε

∣∣
ε=0

dA+

∫
Γ
G(h)divΓϑ dA

=−
∫
Γ
G′(h)

(
ΔΓϕ+ |S|2ϕ− gΓ(∇Γh, v)

)
dA

+

∫
Γ
G(h)Dx(∇Γx) : Dx(∇Γϑ) dA.

We know from the proof of Theorem 71 in [26] using γ(n) = ‖n‖ and hence aγ = � : TΓ→ TΓ
that

(2.25) Dx(∇Γn) : Dx(∇Γϑ) = ϕ|S|2 + tr(S∇·v).

Using this and Lemma 2.3 we obtain〈−G′(h)n,ΔΓϑ+ 2nDx(∇Γn) : Dx(∇Γϑ)
〉
=−G′(h)(ΔΓϕ− ϕ|S|2)

+G′(h)gΓ(v,∇Γh)

+ 2G′(h)tr(S∇·v)

− 2G′(h)|S|2
− 2G′(h)tr(S∇·v)

=−G′(h)(ΔΓϕ+ ϕ|S|2)
+G′(h)gΓ(v,∇Γh),
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which is the desired result.
Theorem 2.5 (first variation, weak form). Let xε = x+ εϑ+O(ε2) be a variation of x ∈ Γ in

direction of the variation vector field ϑ = ϕn +Dx(v). Then, using the variable substitution
w = −G′(h)n, the first variation of the weighted Willmore functional can be written as

〈W ′
g[x], ϑ〉 =

∫
Γ
Dx(∇Γw) : Dx(∇Γϑ) dA− 2

∫
Γ
〈nlDx(∇Γwl), niDx(∇Γϑi)〉 dA

+

∫
Γ
G(h)Dx(∇Γx) : Dx(∇Γϑ) dA.

Proof. We further analyze the following terms from Lemma 2.4:∫
Γ

〈
G′(h)n,ΔΓϑ

〉
dA+

∫
Γ

〈
G′(h)n, 2nDx(∇Γn) : Dx(∇Γϑ)

〉
dA =: (I) + (II).

By integrating by parts, we obtain

(I) =

∫
Γ

〈
G′(h)n,ΔΓϑ

〉
dA

= −
∫
Γ
gΓ(∇Γ(G

′(h)nk),∇Γϑk).

The second term can be transformed in the following way:

(II) = 2

∫
Γ
G′(h)Dx(∇Γn) : Dx(∇Γϑ) dA

= 2

∫
Γ
gΓ(〈n,G′(h)n〉∇Γn,∇Γϑ) dA

= 2

∫
Γ
gΓ(∇Γ(G

′(h)ni),∇Γϑi) dA

− 2

∫
Γ
gΓ(nl(∇ΓG

′(h)nl)ni,∇Γϑi) dA

− 2

∫
Γ
gΓ
(
(∇Γnl)G

′(h)nlnk,∇Γϑk
)︸ ︷︷ ︸

=0

dA.

Remark. Observe that the combination of the terms leads to a change in sign of the term∫
Γ
gΓ(∇Γ(G

′(h)nk),∇Γϑk) dA.

The forward diffusion of the highest-order operator is hence “hidden” in the term involving
the normal projection.

3. Numerical approximation. In this section, we will describe the numerical schemes
that we have used for the discretization of the previously introduced geometric evolution
equations. Both variants lead directly to weak formulations that allow the discretization by a
finite element method.
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3.1. Discretization in space. We consider a finite element discretization with a Lagrange
basis of piecewise affine elements on the discrete interface Γh and define the following general
forms of mass and stiffness matrices:

Mh[ω] :=

(∫
Γh

ωIh(Φi Φj) dA

)
1≤i≤n,1≤j≤n

,(3.1)

L[ω] :=

(∫
Γh

ω∇ΓΦi · ∇ΓΦj dA

)
1≤i≤n,1≤j≤n

,(3.2)

L[A] := (L[Aij ])1≤i≤d,1≤j≤d .(3.3)

Here, Ih : C0(Γh) → Vh stands for the nodal interpolation operator, which implies that the
so-called lumped mass matrix Mh is diagonal and can easily be inverted [55]. In order to
calculate the elements of the stiffness matrices, we consider for each triangle T a reference
triangle T̂ ∈ R

d. For d = 2, we choose ξ0 = (0, 0), ξ1 = (1, 0), and ξ2 = (0, 1). The local
chart X is then given by a simple affine map from T̂ onto T , which maps the nodes ξi onto
the corresponding nodes P i ∈ T , and hence the local first fundamental form is given by

(3.4) gij =
∂X

∂ξi
· ∂X
∂ξj

,
X

∂ξi
= P i − P 0.

From the definition of the gradient (2.5), we deduce the local representation

(3.5) ∇Γh
Φl =

∑
i,j

gij
∂Φl

∂ξj
(P i − P 0),

(
∂Φl

∂ξ1
∂Φl

∂ξ2

)
=

(−1
−1
)
,

(
1

0

)
,

(
0

1

)

if we consider nodal basis functions Φl ∈ Vh. For weights ω which are constant for each
triangle, e.g., functions depending on the gradient of a function fh ∈ Vh, the entries of the
stiffness matrix (3.2) are given by

(3.6) L[ω]ij = |T |ωT ∇Γh
Φi · ∇Γh

Φj.

3.2. Discretization of Variant I. In the following, we will describe a simple discretization
scheme for the one-dimensional case of problem (2.7). We observe that (2.10) can be written
as a coupled system of two equations

xt = divΓ(g(h)∇Γy) + γ(n⊗ n)fext(x),
y = −ΔΓx

which yields the weak formulation(
xt, ϑ

)
Γ(t)

+
(
g(h)∇Γy,∇Γϑ

)
TΓ(t)

= γ
(
(n⊗ n)fext(x), ϑ

)
Γ(t)(

y, ψ
)
Γ(t)

=
(∇Γx,∇Γψ

)
TΓ(t)

for all ϑ, ψ ∈ C∞(Γ(t)).
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For the discretization in time we consider a first-order difference quotient approximation
of xt, i.e.,

xt ≈ xk+1 − xk
τ

with xk := x(kτ).(3.7)

We choose a semi-implicit scheme in time and obtain(
xk+1 − xk, ϑ)

Γ(t)
+ τ
(
g(hk)∇Γy

k+1,∇Γϑ
)
TΓ(t)

= τγ
(
(nk ⊗ nk)fext(xk), ϑ

)
Γ(t)

,(
yk+1, ψ

)
Γ(t)

=
(∇Γx

k+1,∇Γψ
)
TΓ(t)

,

again for all test functions. As usual we now restrict the problem to the finite-dimensional
space Vh and denote the discrete representations of continuous functions, obtained, for exam-
ple, by projection, by capital letters. The coordinate vector of y is given by Ȳ = LX̄. Note
that the mean curvature lags behind from the previous time step. The dependence of the
differential operators on the metric is also treated explicitly. In terms of matrix and vector
representations, this can be written as

(3.8) (Mh + τL[g(Hk)]M−1
h L)X̄k+1 = MhX̄

k + τγMh[N
k ⊗Nk] ¯Fext(X

k).

For one-dimensional contours, this system can be solved directly by a combination of the
Sherman–Morrison method and Thomas’s algorithm for banded matrices on periodic domains.
In the case of surfaces, one can choose an iterative method such as an SSOR-preconditioned
conjugate gradient solver, since the matrix on the left-hand side is symmetric positive definite.

3.3. Discretization of Variant II: Weighted Willmore flow. Let us now describe the dis-
cretization of the gradient flow of the weighted Willmore functional using the weak formulation
of Theorem 2.5.

Following the approach for the discretization scheme of Rusu [48] for isotropic Willmore
flow and the implementation of Diewald [26] in the anisotropic case, we treat the term which
depends on the normal of the surface explicitly and the other terms at least semi-implicitly.
We especially want to treat the highest-order term implicitly by solving a Newton iteration
or semi-implicitly by solving a single Newton step during each time step. We will treat the
coefficient G(h) of the second-order term explicitly.

More precisely, we apply the following time-stepping scheme:∫
Γ

xk+1 − xk
τ

dA =−
∫
Γ
Dx(∇Γ(w

k+1)) : Dx(∇Γϑ) dA

+ 2

∫
Γ

〈
nlDx(∇Γw

k
l ), niDx(∇Γϑi)

〉
dA

−
∫
Γ
G(hk)Dx(∇Γx

k+1) : Dx(∇Γϑ) dA.

Note that wk+1 = −G(hk+1)n depends nonlinearly on xk+1. After a straightforward lineariza-
tion we obtain, thanks to sufficient smoothness of G, the following Newton iteration scheme
for wk+1:

wk+1
j+1 = −G′′(hk+1

j )(hk+1
j+1 − hk+1

j )n︸ ︷︷ ︸
=:wk+1

j+1,1

−G′(hk+1
j )n︸ ︷︷ ︸

=wk+1
j,2
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for j = 0, . . . and hk+1
0 := hk. Let us now express wk+1

j+1,1 and wk+1
j,2 in a weak sense:

∫
Γ

wk+1
j+1,1 ϑ

G′′(hk+1
j )

dA =

∫
Γ
−(hk+1

j+1 − hk+1
j )n dA =

∫
Γ
(ΔΓx

k+1
j+1 −ΔΓx

k+1
j ) dA

= −
∫
Γ
Dx(∇Γ(x

k+1
j+1 − xk+1

j )) : Dx(∇Γϑ) dA ∀ϑ ∈ H1(Γ,Rd),∫
Γ
wk+1
j,2 ψ dA =

∫
Γ
−G′(hk+1

j )nψ dA ∀ψ ∈ H1(Γ,Rd).

After restricting the problem to the discrete finite element space, the two equations are
given in matrix form as follows:

W̄ k+1
j+1 = −(Mh[G

′′(Hk+1
j )−1]

)−1
LX̄k+1

j+1 +
(
Mh[G

′′(Hk+1
j )−1]

)−1
LX̄k+1

j + W̄ k+1
j ,(3.9)

MhX̄
k+1
j+1 = −τLW k+1

j+1 − τL[G(Hk)]Xk+1
j+1 +MhX̄

k + τ2L[Nk ⊗Nk]W k.(3.10)

Here Nk denotes the normal of the discrete configuration Γk. By substituting (3.9) into (3.10)
and shifting all explicitly treated terms to the right-hand side, we obtain the following discrete
system:

(3.11) MhX̄
k+1
j+1 + τL

(
Mh[G

′′(Hk+1
j )−1]

)−1
LX̄k+1

j+1 + τL[G(Hk)]X̄k+1
j+1

= MhX̄
k+1
j + τL

[(
Mh[G

′′(Hk+1
j )−1]

)−1
LX̄k+1

j − W̄ k+1
j

]
+ τ2L[Nk ⊗Nk]W̄ k.

4. Numerical experiments. In this section we will describe two application scenarios,
namely, image segmentation and surface denoising.

4.1. Segmentation of objects with sharp corners. We have applied the proposed reg-
ularization to segmentation of Kanizsa’s triangle and real-world satellite images, aiming at
the segmentation of manmade objects with sharp corners, such as buildings. Figures 3 and 4
show the segmentation of two such objects.

In real-life applications the external forces usually give rise to a serious nonconvexity
of the problem. A natural approach to overcoming this problem is to consider multiscale
techniques for the generation of the external forces in addition to the internal regularization.
A common multiscale approach for the regularization of variational problems is a coarse-to-
fine strategy, which can be understood as a choice criterion for picking a meaningful solution
of the large space of local minima. One first computes the solution to a modified problem in
which the nonconvexity is strongly regularized and then aims to follow the path of solution
as more detail is added. Even though this technique usually does not give any guarantees
on computing the global minimum, the solutions that are computed in this way have a very
good chance of attaining a significantly lower energy value than that of the original problem.
Naturally, it is crucial to approach the unregularized problem iteratively. This avoids having
to chose a fixed-scale parameter for preprocessing, which would always lead to loss of fine-scale
information.
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4.1.1. Inverse scale-space techniques. One of the most basic coarse-to-fine scale-space
techniques consists of applying a linear filter such as linear diffusion on the initial image and
then successively refining the scale. Even though one can get rid of most of the irrelevant and
undesirable background patterns, strong features marked by edges will be blurred equally. We
consider inverse scale-space techniques that are motivated by the Bregman-type iterations of
the ROF regularization with an L1 fidelity term [12]. In case of the TV-L1 denoising model,
the Bregman iteration leads to a sequence uk by successively computing

(4.1) uk = argmin
u

‖u‖BV + λ‖vk−1 + f − u‖L1 , k ≥ 0,

where f = uk+vk and v0 = 0. By interpreting the change of v as an approximation to the time
derivative vt, Burger et al. [12] obtained a relaxed continuous inverse scale-space formulation,
which, for the TV-L1 denoising model, leads to the following evolution of the coupled system:

(4.2) ut = div

( ∇u
|∇u|

)
+ λ(sign(f − u) + v) , vt = α sign(f − u).

This flow yields a natural inverse scale, which starts at a very coarse scale—typically the mean
of the initial image—and eventually converges back to the original image. However, already
on coarse scales, the edges are remarkably well preserved and are thus a very suitable choice
for the input of the segmentation process. We have chosen λ = 104 and α = 103 for our
experiments.

4.1.2. Ambrosio–Tortorelli approximation of the edge map. The generation of a suitable
external source term is a topic unto itself. We will rely on a multiscale approach for the
generation of the edge map as well, since the regularization of the external force leads to a
rounding effect on the corners of the objects. On the other hand, the energy landscape on the
coarse initial scale has a much smaller set of local minima.

We considered the phase-field approximation of the Mumford–Shah functional of Ambrosio
and Tortorelli [1] for the computation of an edge map wε : Ω→ [0, 1], which is close to zero on
edge sets and 1 elsewhere. More precisely, we follow the finite element discretization approach
of Bourdin and Chambolle [9] to minimize the energy

EAT [u,w] =
λAT
2

∫
Ω
(u− uISS(t))2 dx + 1

2

∫
Ω
(w2 + kε)‖∇u‖2 dx(4.3)

+
νAT
2

∫
Ω

(
ε‖∇w‖2 + (1− w)2

4ε

)
dx ,

where the weight λAT > 0 controls the fidelity of u to uISS, the solution of (4.2). The parameter
νAT controls the phase-field approximation of the length term H d−1(Γ), while ε controls the
width of the profile of the phase-field function w. We have set λAT = 104 and νAT = 2. This
allows us to pursue the minimization using coarse-to-fine edge indicators by initially choosing
a large value for epsilon and reducing it until it is in the order of the grid size. The small and
positive parameter kε ensures strong ellipticity of the coupled system. The negative gradient of
the phase-field function can then be used as the external driving force for the snake evolution
equation.
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4.1.3. Iterative procedure for controlling sensitivity to high curvature. In the early
stages of the segmentation, the edge-preserving property of the segmentation process is not
yet important. It could even be misleading, since the contour should ideally first capture
only the approximate shape of the segment. Using a very low sensitivity with respect to
the curvature in the beginning and a higher sensitivity during the final stage has in our
experiments been shown to lead to better results in the overall segmentation process.

In the iterative segmentation procedure we aim to choose an appropriate coupling for
the curvature sensitivity, the scale of the input image, and the phase-field parameter ε. The
iteration is summarized in Algorithm 1.

Algorithm 1. Iterative multiscale segmentation.

1: Choose initial curve Γ0.
2: Choose initial scale parameters, i.e., a time t0 for the inverse scale-space flow, ε0 for the

Ambrosio–Tortorelli approximation of the edge map, an initial sensitivity η0, and set
k = 0.

3: repeat
4: Compute the solution uISS(tk) of (4.2).
5: Set up the external forces, e.g., by first computing the phase-field approximation of

the edge map wεk of uISS(tk) and extracting the negative gradient vectors.
6: Compute a stationary solution Γk of the segmentation model.
7: Set k ← k + 1.
8: Refine scale parameters tk, εk, and ηk. The other parameters, such as ν, μ, and λ, are

kept constant.
9: until stopping criterion fulfilled

The external force computation in line 5 is only one example of possible approaches. This
step opens a wide range of modeling possibilities, including interactive tools to influence the
flow in complicated problem scenarios, where an automatic segmentation may fail.

Figure 3 shows an example on which we perform the scale-space procedure. Figure 3(a)
shows the original image, 3(b) the TV-L1 filtered image, and 3(c) the initial edge map, followed
by different stages of the evolution with (Figures 3(d) and 3(e)) and without (Figure 3(f))
curvature-dependent weight. Let us describe the whole process in more detail. As already
mentioned above, the interactive segmentation process starts by computing the evolution of
the relaxed inverse scale-space equation (4.2) until the main features of the desired object
are clearly visible. Then we choose an initial ε = 0.1 (the image domain is scaled to have a
unit edge length) and compute the minimum of the energy (4.3) (see Figure 3(b)). At that
stage we are mainly interested in driving the contour toward an attracting regime that is
close enough to the correct boundaries of the object such that the scale can safely be refined
without risking the computation of a false local minimum.

In this phase we keep the contour smooth until it hits interesting features and starts
evolving according to (2.10) by choosing a large sensitivity value of η (= 25 in our test cases;
see (2.7) for the role of η). Once we have reduced ε and reached a fine scale, in which corners
become significant, we reduce η to a value around 1. To demonstrate that the formation of
corners is truly due to the curvature-dependent weight and not only due to the multiscale
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(a) original image (b) applying TV-L1 ISS filtering

(c) initial edge map, ε = 0.1 (d) intermediate stage of evolution

(e) final result, ε = 0.002, η = 2 (f) result without curvature weight

Figure 3. Segmentation of a satellite image of a depot building using (2.10). Original image c©Aerowest.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HIGHER-ORDER GEOMETRIC REGULARIZATION 39

generation of the external potential, we have increased η at the final segmentation shown in
Figure 3(e) and recomputed the new stationary point. We observe that the contour flips back
to an overly smooth approximation of the boundary as shown in Figure 3(f).

All the proposed formulations lead to entirely intrinsic evolution equations. The condition
of the discrete approximation of the differential operators depends on the spacing of the grid
points on the curve. Even though the projection significantly helps to reduce the effect of
tangential shifts, the implicit time stepping and the movement of the curve into concavities
often lead to an irregular spacing, which we correct by a retriangulation. Furthermore, it is
desirable to maintain a sufficient number of discrete grid points close to the corners to be
able to approximate the geometry well. In the one-dimensional case, retriangulation can be
easily achieved using the arc-length parametrization. For two-dimensional manifolds a simple
volume-preserving mesh regularization technique (see section 4.2) can be used.

In Figure 4 we have experimented with a variational segmentation model on a similar
input image. We have minimized the piecewise constant Mumford–Shah model (cf. (2.16)),
combined with the weighted Willmore functional:

(4.4) E[ci,Γ] =

∫
Γ
G(h) dA+ γMS

∑
i=1,2

∫
Ωi

(ci − u0)2 dx + γAT

∫
Γ
wε dA,

where wε is the phase-field function from the solution of (4.3). In this example we chose
γMS = 108 and γAT = 106, so that the piecewise constant Mumford–Shah term is the dominant
external force contribution.

In order to compute the gradient of the energy functional numerically, integrals over Ω1

and Ω2, i.e., the regions divided by Γ, have to be evaluated. We used an eikonal solver to
compute a signed distance function starting with initial signed distances on the corners of all
cells that are intersected by Γ. These cells are tesselated into triangles to achieve subpixel
accuracy along the interface.

In the experiments, the region-based partitioning has proved quite insensitive to strong
misleading gradients in the image (see the small hole in the roof). This would be difficult to
achieve with only a local feature-based external force term, as, for example, in (1.1).

In Figure 4(f) we again verify the positive impact of the curvature-dependent weighting
term. Also, the beneficial effect of the inverse scale-space method is apparent: even after a
short time the regularized image reflects the main contour of the building very sharply. The
irrelevant smaller objects, which could have a negative influence on the segmentation, are not
yet visible.

Figure 5 demonstrates the benefit of using the weighed Willmore regularization on polyg-
onal shapes: undesirable oversmoothing at corners can be prevented without sacrificing an
overall regularizing effect, which is responsible for avoiding high-frequency perturbations of
the curve due to noisy input data. In this computation, we have not applied any denoising on
the input image.

An indicative test case is the segmentation of Kanizsa’s triangle (Figure 6), which aims
at the detection of subjective contours [36], i.e., the identification of an object which is not
perceptible in its raw form but only through continuation of partially visible boundaries. The
human observer can easily identify the triangle as the most plausible simple geometric object
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(a) original image (b) applying TV-L1 ISS filtering

(c) initial edge map, ε = 0.05 and ini-
tial configuration

(d) intermediate stage of evolution

(e) final result, ε = 0.001, η = 2 (f) dropping the curvature weight

Figure 4. In this example, a piecewise constant Mumford–Shah energy combined with the external force
induced by the phase-field function (4.4) and the weighted Willmore functional has been minimized (cf. (2.16)).
UltraCam imagery courtesy of Vexcel Imaging, GmbH and Microsoft Corporation.
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(a) Steady state for η = ∞. (b) Steady state for η = 1
4
.

Figure 5. The image on the left shows the steady state of (4.4) on a noisy image using Willmore reg-
ularization, which yields oversmoothing especially at sharp angles. The image on the right demonstrates the
advantage of using the weighted Willmore energy on polygonal shapes. The same weight for the fidelity term
(γMS = 107) has been used for both computations.

that fits into the given geometric configuration. Due to the sharp concavities, the object is
a good candidate for feature-preserving regularization. To segment the interior triangle we
proceeded as follows. Since the input image Figure 6(a) is clean and does not contain fine-scale
patterns, we do not need to apply any prefiltering. To obtain an initial edge map in Figure
6(b), we choose the phase-field parameter as ε0 = 0.2 for (2.10). To help the circle shrink
toward an attracting regime, corresponding to the corners of the triangle, we have added a
modest length penalization to compute the first stationary solution Γ0 with η0 set to 100, which
basically turns off the feature preservation (see Figure 6(c)). The curve Γ0 is now sufficiently
close to allow us to switch off the length penalization, which would only unnecessarily smooth
the curve and undo the corner-preserving regularization. We set ε1 = 0.05 and increase the
curvature sensitivity by setting η1 to 10, which computes the solution shown in Figure 6(d).
The steep external force field already pulls the snake very close to the desired triangle shape.
The curvature dependency is not, however, strong enough to avoid the regularization on the
tip of the corners. After further reducing η2 to 1, we finally arrive at the segmentation result
shown in Figures 6(e) and 6(f).

4.2. Surface smoothing. One of the most natural applications of feature-preserving regu-
larization techniques is feature-preserving smoothing. Furthermore, there exists a wide range
of problems that are based on scale-space techniques. We have considered the following two
basic approaches.

4.2.1. Generating a multiscale by computation of initial value problems. Similarly to
PDE-based scale-space approaches in image processing, we can simply evolve the initial input
geometry Γ0 under the evolution equation (2.7) to obtain a family of smoothed surfaces Γ(t).
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(a) initial configuration (b) initial edge map

(c) intermediate step of the segmen-
tation

(d) intermediate step of the segmen-
tation for a finer edge map

(e) final result on top of the finest
edge map used

(f) final result on top of the original
image

Figure 6. Psychovisual segmentation: segmentation of Kanizsa’s triangle.
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A related approach is to consider the gradient flow of the weighted Willmore functional

xt = − gradL2(Γ(t))W [Γ(t))] with Γ(0) = Γ0.(4.5)

Both versions define a scale-space operator S(T ) : Γ0 �→ Γ(T ). By construction we have
S(0) = � and S(T1 + T2) = S(T2) ◦ S(T1) (semigroup property), a fundamental requirement
for the construction of scale spaces. In Figures 7 and 8 we show a comparison of standard
Willmore flow (left column) and the two curvature-dependent evolutions, i.e., (2.7) (middle
column) and weighted Willmore flow (right column). While standard Willmore flow rounds off
all parts of the surface homogeneously, the weighted versions produce a much more appealing
coarse-to-fine scale, in which important geometric features such as smooth creases and tips
are significantly better preserved. The curvature sensitivity parameter has been set to η = 10
in both variants.

The horse mesh contains a fine-level geometric texture. During Willmore flow, this texture
is removed already in the early phase of the evolution, but the creases are unnaturally rounded
off. During the evolution of the weighted Willmore flow, the texture is removed quickly as
well, but the shape of the object on a macroscale is well preserved.

4.2.2. Energy minimization with a fidelity term. Inspired by the setup of the ROF
model, we might also consider the variational problem

(4.6) min
A

∫
Γ
G(h) dA︸ ︷︷ ︸
=W [Γ]

+λ

∫
Γ
d(·,Γ0) dA

for a given initial noisy surface Γ0. In contrast to the Euclidean case, the choice of the fidelity
function d : Rd+1 × R

d+1 → R
+
0 is not straightforward in the case of surfaces. Naturally the

Hausdorff distance would be a good candidate for measuring the fidelity of Γ to the initial
surface; we chose d(x,Γ0) := dist(x,Γ0)

2, which simplifies the minimization process, because
d can be precomputed for a given initial surface. In this model, λ defines a balance between
the regularity of Γ and how close the smoothed surface should be to the original surface. For
fixed λ, the overall functional is minimized.

Even with spatial acceleration structures, such as KD-tree or bounding volume hierarchies,
the on-the-fly computation of the fidelity integral would be costly, because the projection of
a point onto a triangulated surface involves at least a local search. Instead, we compute the
distance function of Γ0 on the bounding box on a uniform grid, in a two-step procedure:

1. Initialize the distance function in the vicinity of Γ0. More precisely, for all triangles
T of the discrete noisy surface Γ0,h, find all cubes CT,i that are intersected by T , and
compute for all nodes of CT,i the distance to T . If this distance is smaller than a
potentially previously computed value, update its value.

2. Now that the values of the distance function are known close to the interface, we can
use a solver for the eikonal equation ‖∇u‖ = 1 to extend the distance function onto
the whole domain (i.e., the enlarged bounding box of Γ0).

In Figure 9 we show the results of this approach applied to the well-known fandisk dataset. We
have compared our functional with the area functional and the Willmore energy and adjusted
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Figure 7. Different multiscales on the armadillo data set. The left column shows the evolution of the
original surface (top) under standard Willmore flow at time steps 1 and 4. In the middle column, the simplified
surface diffusion (2.7) has been computed. The right column shows the weighted Willmore flow. Time steps 1,
3, and 5 are depicted. The time step τ is 10−8 and η = 10. The model is taken from the Stanford 3D Scanning
Repository, compiled by the Stanford University Computer Graphics Laboratory.
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Figure 8. Comparison of different higher-order multiscales on the horse data set. The left column shows
the evolution of the original surface (top) under standard Willmore flow at time steps 1 and 4. In the middle
column, the simplified surface diffusion (2.7) has been computed. The right column shows the weighted Willmore
flow. The time step τ is 10−9 and η = 10. All variants remove geometric texture very rapidly, but the curvature-
dependent flows also preserve important features. The model is provided courtesy of INRIA and IMATI from
the AIM@SHAPE Shape Repository.
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Figure 9. Denoising of the fandisk dataset with fidelity. The top left shows the noisy model. On the
top right the surface is denoised with standard mean curvature flow. The bottom left shows denoising with
Willmore flow. The bottom right shows the denoising result with the weighted Willmore flow. The model is
provided courtesy of H. Hoppe, Microsoft Research. Available from the AIM@SHAPE Shape Repository.

η in each case to obtain visually appealing results to have a somewhat fair comparison. Not
surprisingly the curvature-dependent approach preserves the creases much better than the
other two. In this computation we have set η = 5.

Note that the construction of the signed distance function also introduces some numerical
errors. The result thus cannot be compared with pure mesh-based smoothing techniques. We
also observe that creases do not evolve to perfectly sharp feature lines, an effect which hints
at an analogy to the Euclidean case, in which LCISs overcome staircaising effects.

4.2.3. Remarks. An inconvenient side effect of the movement of vertices during the evo-
lution is that the mesh may degenerate, leading to a very high condition number. Hence,
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depending on the number of steps taken and the initial regularity of the mesh, retriangulation
of the mesh can become unavoidable. We have found the scheme proposed by Bänsch, Morin,
and Nochetto [4] to be very useful, since it is fast and easy to implement and preserves the
enclosed volume of the mesh, which is, particularly for higher-order flows, a desirable property.

Unlike the range of existing feature-preserving surface denoising techniques in the liter-
ature (for instance, the anisotropic geometric diffusion techniques by Clarenz, Diewald, and
Rumpf [21], the subdivision surface discretization Bajaj and Xu [3], the discrete exterior cal-
culus formulation of Hildebrandt and Polthier [32], or the bilateral filtering of Jones, Durand,
and Desbrun [35]), we focused on the different qualitative smoothing which has a “rounding”
effect, in contrast to the “shrinking” effect which is typical for second-order techniques that
are based on the penalization of area. The iterative feature-preserving smoothing of normal
fields (Tasdizen et al. [54]) and fitting for surfaces represented by level set functions have a
similar effect, although it is not, strictly speaking, a fourth-order flow. The variational set-
ting is flexible and easily extends to other applications and variational setups, for instance,
to applying recent developments for cartoon-texture decomposition methods for images onto
surfaces.

Our finite element computations have used the OpenMesh library for the traversal of
elements [8].

5. Summary and conclusion. Motivated by low-curvature image simplifiers in image pro-
cessing, we have presented geometric and fully intrinsic fourth-order feature-preserving regu-
larization techniques by drawing analogies to surface diffusion in a weighted H−1 metric and
a weighted Willmore functional. We observed that a simplified form of the first variant has
very similar qualitative properties, but is much easier to implement and can be computed
much more efficiently. Due to the need for a suitable energy functional for feature-preserving
regularization of geometric variational problems, we extended the finite element formulation
of Rusu to a more general mean curvature–dependent energy functional. We applied the new
regularization methods to segmentation of aerial images and were able to precisely extract
object boundaries with sharp corners. We also compared the different variants in the context
of surface denoising and again verified very similar results, which allows us to choose the
model depending on the problem context. When a flow equation is sufficient, the simplified
variant of surface diffusion is more convenient, since it is easier to implement than weighted
Willmore flow. Both methods smooth out geometric texture quickly without destroying sharp
features.

From our first promising results, we see a large potential for improving the regularization
in a wide range of geometric optimization problems. We can expect further improvement
by extending the isotropic curvature weight by an anisotropic one in the spirit of Clarenz,
Diewald, and Rumpf [21] or Diewald [26].

The recently presented numerical scheme by Dziuk [29] for parametric Willmore flow
completely cancels tangential shifts. The derivation of an analogous weighted formulation
would be an interesting extension for circumventing the mesh regularization steps (and their
associated numerical errors) we currently employ to avoid degenerated elements.

Appendix. As an instructive alternative to the finite element discretization, we present
straightforward spatial finite difference approximations of the geometric differential operators
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that are needed for the numerical solution of (2.7). For a discrete approximation of a Jordan-
curve Γ by a closed polygon with n vertices xi, i = 0, . . . , n− 1, we define

li+ 1
2
:= ‖xi+1 − xi‖ and li :=

li+ 1
2
+ li− 1

2

2

using the convention xi = xi mod n. Then the piecewise constant difference quotient approxi-
mation of ∇Γh

u for u : Γh → R on the segment [xi, xi+1) is given by

∇h,Γh
ui+ 1

2
:=

ui+1 − ui
li+ 1

2

.

Furthermore we approximate the divergence at xi for a piecewise constant function v (corre-
sponding to a one-dimensional vector field) on the polygon segments by

divh,Γh
vi :=

vi+ 1
2
− vi− 1

2

li
.

The discrete approximation of the discrete Laplace–Beltrami operator ΔΓh
is then given

by

ΔΓh
ui := divh,Γh

∇h,Γh
ui =

ui+1−ui

l
i+1

2

− ui−ui−1

l
i− 1

2

li
.

After incorporating the mobility g, we obtain

divh,Γh
(g∇h,Γh

)ui =

gi+ 1
2

ui+1−ui

l
i+1

2

− gi− 1
2

ui−ui−1

l
i− 1

2

li
(A.1)

by evaluating g on the midpoints of the intervals. This approximation corresponds to the finite
element approximation using lumped masses and a barycenter quadrature rule. The relation
(A.1) for all vertices xi can be expressed by a matrix L[g], and hence (2.7) is discretized in
space by

X̄t + L[g] L[1]X̄ = 0, X̄(0) = X̄0,

for every spatial component of Γ, where again X̄ denotes the vector of coefficients. Note that
L[g] is also changing in time, due to the dependence on l.

Even though the scalar part in (2.13) could be discretized similarly, it is not straightforward
to devise a semi-implicit time-stepping scheme for weighted Willmore flow. This is much easier
with a finite element approach using the weak formulation from Theorem 2.5.

In higher dimensions the corresponding analogues of the finite element approximations
lead to discrete exterior calculus (cf. [46] for details).
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