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HETEROCLINIC ORBITS AND CHAOTIC DYNAMICS IN PLANAR
FLUID FLOWS*
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Abstract. An extension of the planar Smale-Birkhoff homoclinic theorem to the case of a heteroclinic
saddle connection containing a finite number of fixed points is presented. This extension is used to find
chaotic dynamics present in certain time-periodic perturbations of planar fluid models. Specifically, the
Kelvin-Stuart cat’s eye flow is studied, a model for a vortex pattern found in shear layers. A flow on the
two-torus with Hamiltonian Ho (27r)- sin (2rx) cos (27rx2) is studied, as well as the evolution equations
for an elliptical vortex in a three-dimensional strain flow.
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1. Introduction. Organized vortex structures in two-dimensional fluid flows can
often be viewed as planar dynamical systems with multiple heteroclinic saddle connec-
tions. We wish to study how such saddle connections break up under small perturba-
tions. In the homoclinic case, the Smale-Birkhoff Theorem and Melnikov’s method
are two useful tools for studying the onset ofchaos and mixing in planar flows possessing
a simple homoclinic orbit. We extend the planar homoclinic theorem to the case of a
heteroclinic orbit connecting a finite number of saddle points, enabling us to analyze
fluid models to which the original homoclinic theory does not apply.

We present three planar fluid models that exhibit heteroclinic saddle connections.
The Kelvin-Stuart cat’s eye flow is a well-known model for a pattern found in shear
layers. This flow is a planar dynamical system possessing an infinite number of
heteroclinic saddle connections involving two fixed points each. We also study a planar
lattice flow in which we find groups of four saddle points linked by heteroclinic orbits.
The lattice flow is an interesting model for certain convection patterns as well as for
nonlinear Taylor vortex flow. In the unperturbed case, these flows are steady solutions
to the inviscid Euler equations and thus have a direct Hamiltonian formulation. We
apply the simplified Hamiltonian form of Melnikov’s method to find chaotic motion
and mixing occurring in time-periodic perturbations of these two planar flows.

The third application of Melnikov’s method presented here is of a somewhat
different nature from the first two. We examine the evolution equations for an elliptical
vortex in an imposed strain. These equations have a Hamiltonian form based on a
dimensionless time parameter. The most physically interesting perturbations are based
on real time and so we are forced to study a non-Hamiltonian dynamical system with
a homoclinic orbit. We apply the non-Hamiltonian version of Melnikov’s method to
find chaotic dynamics occurring in the case of periodic stretching of the straining flow
in a third dimension.

2. Extension of the homoclinic theorem and Melnikov’s method. The ideas for the
homoclinic theorem were first laid out by Birkhoff [5] and were developed by Smale
[26]. We consider a planar diffeomorphism q possessing a hyperbolic saddle point p
whose stable and unstable manifolds intersect transversely at a point q. A result of
this theorem is that p possesses a subsystem equivalent to a shift on two symbols. We
extend this theorem to the case ofN fixed points joined by transverse saddle connections
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1272 A.L. BERTOZZI

(see Fig. 2.3 for the case N 3). The homoclinic theorem is proved by constructing
the horseshoe map and showing that it possesses the shift as a subsystem (Moser 19]).
We must then show that possesses the horseshoe map as a subsystem. Keeping in
mind Moser’s proof of the homoclinic theorem, we construct the generalized horseshoe
map, and present a sketch of the heteroclinic theorem. For the complete details the
reader is referred to [4].

2.1. The horseshoe map and the shift on two symbols. We first define the horseshoe
map used in the homoclinic case. The horseshoe map is a topological mapping of the
unit square Q into the plane such that q(Q)(q Q has two components U1 and U2. The
pre-images of U1 and U2 are denoted by V q-l(Ui), i= 1, 2. V1 and V2 are vertical
strips connecting the upper and lower edges of Q (see Fig. 2.1). The iterates k of p
are not defined in all of Q, so we construct the invariant set

I= N -(Q),

in which all iterates k are defined. Associated with each point p of I is a bi-infinite
sequence (... s_, So; s, s2" ’), sie {1,2} of ones and twos, where -k(p) e Vsk or

i’1 k(vsk).

On the set S of all such sequences, we define a map tr by (trs)i si+. Under the map
o-, all the elements of s are shifted over by one. This provides a mapping -:I S with
’qll o-- as long as " is invertible. We introduce a topology on S as follows: Given
s* (.’., s*2, s*, So*; s*, s2*,’" ") e S then U {s e SIsk S’k, (Ikl <j)} form a neigh-
borhood basis for s*. We see that the horseshoe map possesses periodic orbits of
arbitrary period, as well as an orbit that comes arbitrarily close to all points of L This
last orbit is obtained by constructing a sequence that contains all possible finite strings
of ones and twos.

FIG. 2.1. The horseshoe map.

2.2. A generalization of the horseshoe map. Consider a set of N disjoint squares
Qi in the plane and a map p:U Qi RE such that p(Qi)f’)Qi is a horizontal strip in
Qi and p(Qi)fq Qi+l(modn) is a horizontal strip in Q+lmodn. Here it is not impoant
how each square Q is oriented with respect to the other squares, only that (U Q) Q
are horizontal strips in Q (see Fig. 2.2). Our invariant set thus will be

I= M -k Q
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Q4 Qz

Q3

We will associate with each point p I a bi-infinite sequence (. , S_l, So; s, s2 ")
S’ of N consecutive symbols where

S’={slsi{1,...,N}, si+=si or si+=si+l (modN)}

such that c-k(p) Qsk- Under the appropriate conditions there is a one-to-one corre-
spondence between points of I and sequences s S’. For the precise details of the
above construction as well as a proof of the fact that I and S’ are topologically
isomorphic, the reader is referred to [4].

2.3. A heteroclinic theorem.
THEOREM 2.3.1. If a diffeomorphism q.2_>2 possesses N fixed points

P, P2, , PN that are nondegenerate hyperbolic saddle points, and there exist points qi

at which the unstable manifold WU(pi) intersects the stable manifold WS(pi+l(modN))
transversely for all i, then possesses an invariant set I on which some iteration qk is
homeomorphic to the shift on S’, the set of hi-infinite sequences ofN consecutive symbols
(as described in the preceding section).

We provide an outline of the proof. For details, the reader is referred to [4]. We
want to show that q possesses a subsystem satisfying the requirements for the general-
ized horseshoe map of 2.2. The stable and unstable manifolds are depicted in Fig.
2.3 (for the case N 3).

CLAIM. We can choose an integer k and neighborhoods Ui of p such that the
following conditions are satisfied (see Fig. 2.4)"

Pl

q3

FIG. 2.3
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FIG. 2.4

(1) There exists a local coordinate system in Ui so that p is linear, and Ui is the
unit square.

(2) qi 6 pk(Ui) and qi 6 (p-k(U+l(modV)) for all i.
(3) For R (.k( Ui [,-) (-k( Ui+l(modN)), we have (#-k(R ("1 WS(pi+(modN))) inter-

sects qgk(Ri_(modN) ") WU(pi_(modN))) transversely in exactly one point.
We choose U so that (1) is satisfied for all i. Note that if we shrink each U, (1)

will still hold. Given any U satisfying (1), by the definition of stable and unstable
manifolds, there exists a k such that (2) is satisfied. Note that k depends on the sizes
of the U, which we will continue to shrink until all the above conditions are satisfied.
By the h-lemma of Palis [23], q-k(Ri[’l WS(pi+l(modN))) approaches W(p) and
pk(R_l(modS f’l W(Pi_l(modS)) approaches W(p) as k-. Thus for k sufficiently
large and the Ui sufficiently small, (3) is satisfied. Transversal intersection results
because W(p) and W(p) intersect transversely at pi. Once (3) isachieved, we can
find U sufficiently small so that -k(Ri) is a vertical strip and k(Ri_l(modS)) is a
horizontal strip in U. Thus, p2k possess a subsystem equivalent to the generalized
horseshoe map, which in turn possesses a subsystem topologically equivalent to the
shift on N consecutive symbols.

This last subsystem is termed "chaotic" because of the interesting properties it
exhibits under iterations of pk. We have orbits of arbitrary period greater than N as
well as dense orbits. The bi-infinite sequence corresponding to a dense orbit is formed
by concatenating all possible finite sequences of consecutive symbols. We further note
the unpredictability of this subsystem. Any two orbits with sequences that agree for
some finite length may have completely different sequences further on. Physically we
will find these orbits near each other under a finite number of iterations of pk, yet
the orbits diverge as we proceed past the point where their sequences agree. Thus,
knowing where a point will be for a fixed finite time in no way predicts where it will
be at later times.

2.4. Melnikov’s method. Melnikov 18] devised a method for finding the transverse
intersection of stable and unstable manifolds given a time-periodic perturbation of a
system with a saddle connection. We present the theorem without proof.

Consider the following planar dynamical system:

(A) =f(x)+eg(x,t), xR2, g(x,t)=g(x,t+T), O<-_e<<l,

where for e 0 we have a saddle connection F0 between two nondegenerate hyperbolic
saddle points Pl and P2 (see Fig. 2.5). The unstable manifold W)(pl) of pl and the
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FIG. 2.5

stable manifold W(p2) of p2 coincide. Here we include the homoclinic case where
Pl P_. Associated with (A) is the suspended system

(B) =f(x)+eg(x,O), (x,O)2xS (S’=R/T).
For e sufficiently small, (B) possesses a Poincar6 map: P’’Eto E, where

{(x, O)xSIO= to} is a global cross-section of the flow. Let FT(xo, to) be the flow
map of (B) on R2x S. po is obtained by a projection onto the first factor: P’p(x)=
(F(x, to)) where ((x, 0))= x. Here P’p is a map from 2 to .

Our assumptions imply that for e 0, Po(x) has fixed points at p and P2 and so
the suspended system has circular orbits =p x S, 2=pzx S with stable and
unstable manifolds W() and W() coinciding to form a "cylinder" Fox S. Such
saddle connections are quite unstable and thus are expected to break under small
peurbations.

We define the Melnikov function

(IoM(to) d(q(t to)) g(q(t- to), t) exp tr Df(q(s)) ds dr,

where qO(t) is the solution to the unpeurbed equation (A) staing at to on the saddle
connection Fo. We define the wedge product by a b ab-bla.

In the case where the unpeurbed system is Hamiltonian, we have tr Df(q) 0
and the Melnikov function becomes

M(to) f(q(t- to)) g(q(t- to), t) dt.

The examples of 3 and 4 are both Hamiltonian systems. Two useful forms for
computation are

(fo )M(to) f(q(t)) g(q(t), + to) exp tr Df(q(s)) ds dt

in the non-Hamiltonian case and

M(to) ff(q(t)) g(q(t), t+ to) dt

in the Hamiltonian case. We note that M(to) is itself a periodic function in to. Using
the second form, we have that

M(to+ T)= f(q(t)) g(q(t), t+ to+ T) exp tr Df(q(s)) ds dt

f(q(t))g(q(t),t+to)exp trDf(q(s))ds dt

M(to),

since g(x, + T) g(x, t).
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MELNIKOV’S THEOREM. Given the above conditions, and e sufficiently small, if
M(to) has simple zeros, then W(p) and We (p) intersect transversely. IfM(to) has
no zeros in to [0, T] then WS p (q W(p).u

For a concise proof of the homoclinic case, the reader is directed to Guckenheimer
and Holmes [8]. The heteroclinic proof is an obvious generalization. For details, the
reader is referred to [4].

3. Kelvin-Stuart cat’s eye flow. Consider the following flow in the plane:

a sinh y
2=

a cosh y + x/a2-1 cos x’
x/a2-1 sin x

)=
a cosh y + x/a2-1 cos x

This is a Hamiltonian system with Ho log (a cosh y / x/a2 1 cos x). It is a model for
a pattern found in shear layer flow (see [27], 12]). The parameter a controls the shape
of the cat’s eye with a larger a corresponding to wider "eyes." Here we consider only
a > 1. Streamlines are constants of Ho (see Fig. 3.1).

FIG. 3.1

We have fixed points at (27rN, 0) that satisfy the conditions for Melnikov’s method.
Consider the upper trajectory (Xo(t), yo(t)) from (0, 0) to (27r, 0). Along this trajectory
we have Xo satisfying the equation

2o a + 1 -cos Xo a2

This implicitly defines Xo by

I ot= (a+x/a2-1) dx a cosx--I -1.
a2 x/a2-1

By changing variables to s--1-cos x, this integral becomes

j t-cs’ ((aa__i + 1)/s /(s+x/a,22a__,l,)(2-s))ds.
This can be solved exactly to yield

cos Xo 1
a + x/a2- e3’t + [3 + e-’/t

7 fl=2a+a2 1 1 a +/a2-1
along the upper saddle connection from (0, O) to (2rr, 0).
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3.1. Periodic stretching of the cat’s eye flow. Instead of examining a general
perturbation g(, t), consider a perturbation of the parameter a. If we take a to be a
time-varying parameter of the form ao+ eb(t), where b(t) is periodic with period T,
we get a phase diagram where the "cat’s eyes" are periodically stretched and compressed
by an e amount. This corresponds to a time-dependent solution to the Euler equation
with external force.

To first order in e, our perturbed equation is

ao sinh y eb(t) sinh y cos x

ao cosh y+x/a- 1 cos x x/ao- l(ao cosh y+/ag- 1 cos x)2’

/ao 1 sin x
)= +

ao cosh y + /ao 1 cos x

eb(t) sin x cosh y

/ao’- l(ao cosh y+/a- 1 cos x)2"

Thus the driving force for our perturbation is

eb’(t)
e-2Hdx,y) (-sinh y cos x.

sin x cosh y !

The perturbed Hamiltonian for this system is

eb(t) (/a- l cosh y+ aocos)H H+/a2-- \-oo-L y +/ao-1 cos

Ho+ H1.
Along all streamlines of the unperturbed flow,

HI oc b(t)(x/ao 1 cosh y + ).ao cos x

Since the saddle connections are streamlines of the unperturbed flow, how they break
up under a perturbation depends only on the perturbation at the points of the saddle
connection. Thus, the Melnikov function for the above perturbation is identical to the
one corresponding to the simpler perturbation

H eb(t)(/a2-1 cosh y + a cos x ).
If we let b(t) have the form cos (kt), then this perturbation corresponds to the
superposition of four waves:

a- 1 cosh y(ei(Z-k’) + ei(Z+kt))+ a(ei(x-kt) + ei(X+kt)).
Here z is the third coordinate and we take the cross-sectional flow in the plane z 0.
The wavelength of the perturbation is exactly equal to the length of one of the cat’s
eyes. The wave speed is allowed to vary.

3.2. The Melnikov function for periodic stretching. Consider the upper trajectory
(Xo(t), yo(t)) from (0, 0) to (2r, 0) for the unperturbed system.

The Melnikov function for this trajectory is

M(to) I_ Cl[(ao sin Xo(t) cosh yo(t) sinh yo(t)

+ x/ag- 1 sinh yo(t) cos Xo(t) sin Xo(t)b(t + to))] dt,

which can be reduced to

M(to) f_ C(sin Xo(t) sinh Yo( t)b(t + to)) dt
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where

1

C2=/a 1 (ao + x/ao 1) 2.

Here we have exploited the fact that

ao cosh yo(t)+/ao 1 cos Xo(t) ao+x/a- 1.

We expand b(t) into its Fourier series:

b(t) Y (ak sin kt + bk cos kt).

The above Melnikov integral then becomes

2 C2sinxo(t) sinhyo(t)(aksink(t+to)+bkcosk(t+to))dt

2 (akCOSkto-bksinkto) Csinxo(t) sinhyo(t)sin(kt)dt

where we define

((ak COS (kto)-bk sin (kto))Mo(k)),

Mo(k) Ca - cos Xo(t) sin (kt) dt,

C3 (ao +/a 1)C2

We have used the fact that sin Xo(t)sinh yo(t) is an odd function in t. Thus,.

Mo(k) C4 (e vt + flo+ e--Yt) 2
sin (kt) dt,

8ao

Evaluation by residues (see Appendix A) yields, for k O,

27r 2 sin a 1- e-lml2/] sn a

rn=--, a=cos 0<c<7r/2.
Y

Whether or not M(to) has simple zeros depends on the values of ak and bk. For
instance, if b(t) is of the form cos kt, then we see that M(to) has simple zeros for
almost all k. A similar analysis shows that the lower trajectory has a Melnikov function
that is just the negative of the one for the upper trajectory. Since both trajectories
break up under the same perturbation to yield the transverse intersection of stable and
unstable manifolds, we have satisfied the requirements for the heteroclinic theorem
(Theorem 2.3.1) with N 2. Our perturbed system has a chaotic subsystem topologically
equivalent to a shift on two symbols.
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3.3. Mixing in the perturbed cat’s eye flow. By exploiting the symmetry of this
model, we see that this perturbing function breaks up all trajectories transversely. In
fact, we can view both the perturbed and unperturbed cases as flows on the cylinder.
Here we take x E/27r, y E. All of the saddle points are identified and we obtain
two homoclinic orbits to a single saddle point. We can now use the standard homoclinic
theorem to find a shift on two symbols.

Based on the proof of the theorem from the second section, we expect mixing to
occur at least within the region around the fixed point. We know that there exists a
neighborhood U of the fixed point (0, 27rN) on which the Poincar6 map for this system
acts like a version of the horseshoe map (see Fig. 3.2).

(a)

yak (u)nu

(b)

U INTER-
SECTS
ITSELF IN
HORIZONTAL
STRIPS.

FIG. 3.2. (a) The cat’s eye flow on the cylinder. (b) Perturbed cat’s eye flow. Here the top and bottom
layers are mixed into the cat’s eyes region and eventually into each other.

Viewed as a flow on the plane, we see that the perturbed system has a geometric
structure similar to that of Holmes’s perturbed sine-Gordon equation [11, 3]. We
show that the perturbed cat’s eye flow has a subsystem isomorphic to the shift on the
symbols "+" and "-," where the "+" corresponds to traveling "downstream" along
an upper trajectory and the "-" corresponds to traveling "upstream" along a lower
trajectory (see Fig. 3.3). This provides a mechanism for fluid inside one cat’s eye to
travel both upstream and downstream. This mechanism does not exist for the un-
perturbed case, since flow within an "eye" will remain there for all time. In the
perturbed system, all saddle connections are broken up to give us transversal intersec-
tion of stable and unstable manifolds. The heteroclinic theorem tells us that at each
fixed point p, (27rn, 0), there is a neighborhood U,, a unit square in local coordinates,
such that for some fixed time T*, the flow qT* maps Ui to intersect Ui_l and Ui/l in
horizontal strips. A simplified model of the dynamics present is pictured in Fig. 3.4.
Here each Ui is intersected by the horizontal strips H_I, (U_I) f3 U and H+I,
( u,+,) n u,.
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+ +

FIG. 3.3

(u_). (u)

ui

(ui) (ui+,)
FIG. 3.4

By the symmetry of the flow and its perturbation, we can choose each Ui so that
Ui+2r Ui+l and p(Ui)+2zr p(U+I). Our invariant set is

I= CI p-k U (H,+I.UH-I.,)

I can be decomposed into disjoint sets I U f’)/. For any given i, we have a one-to-one
correspondence between I and S+/-, the set of all bi-infinite sequences of "+" and "-":

7.. [i-.> S+/-,

[’(X)]l + if q’(x) U==+l(x) U/,

if l(x) U==l+l(x) U_.
Thus there is a set S of sequences corresponding to each L. We see that there

is a mechanism for pieces of fluid to move rather chaotically both upstream and
downstream as well as for fluid within each "eye" to mix with fluid in other "eyes."
This mixing and chaotic motion was not present in the unpcurbed cat’s eye flow.
The fact that the peurbation cos kt leads to such chaos for almost all k indicates that
such mixing may be rather common in the actual shear layers.

4. Planar lattice flow. We consider the following flow:

=-sin (2x) sin (2x), =-cos (2x) cos (2x)

a Hamiltonian system with Ho (2)- sin (2x)cos (2x) (see Fig. 4.1). This is a
model for axisymmetric Taylor voex flow as well as for many convective flows. If
we take x to be a moving coordinate, these equations model the Rossby waves of
geophysical fluid dynamics (see [24, p. 84]). This flow is obviously doubly periodic,
yielding a flow on the torus T=/F where F is the lattice {(n, n); hi,

Viewed as a flow on the torus T, we obtain a system with hetcroclinic orbits
connecting four saddle points. Melnikov’s theory can then be applied to peurbations
of this flow.
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(0,

FIG. 4.1. F’ is represented by the dashed line.

We can also map this flow onto a "smaller" torus T’=Ia/F where F’= {(1/2(n- n2),
1/2(n+n2))} (see Fig. 4.1). Here we have exploited the periodicity in the variables
(x-x2), (x + x2) as well as in x and x2. The flow on T’ has only two heteroclinic
saddle points. By examining perturbed flows on T’, we can look for a subsystem that
is a shift on two symbols. This horseshoe-like structure will result if all heteroclinic
orbits are broken up so that stable and unstable manifolds intersect transversely.

4.1. Time- and space-dependent perturbations. We consider two types of perturba-
tions, ones that are functions of time only and ones that have an added space
dependence. In the purely time-dependent case, we have el(t) as a perturbation to
the velocity field, with f(t)= f(t + T). This corresponds to an external driving force
F ef’(t) that is uniform in space at any given moment. This is physically reasonable
as an approximation to an external force that is time-periodic and has an average
space variation much larger than the periodic lattice structure of the flow. For the
vertical saddle connections, the Melnikov function for this perturbation is

Mo(to) +j cos (27rx2(t))f(t+ to) dt

since sin (27rx) 0 for these trajectories. Likewise for the horizontal orbits, cos (2rx2)
0 and so

Mh(to)= + I_oo sin (27rx1(t))f2(t+ to) dt.

We see that the vertical and horizontal components of f are decoupled. We will
show by symmetry properties that f and f2 must satisfy the same conditions in order
for Mo and Mh to have simple zeros. For this space-independent perturbation, the
F’-lattice symmetry is preserved and chaotic motion can be reduced to a subsystem
isomorphic to the shift on two symbols. The following example presents a spatially
dependent perturbation that breaks up the F’ symmetry.

In general, a perturbing velocity of the form

e
/.)2(Xl, t)



1282 A.L. BERTOZZI

constitutes a solution to the two-dimensional Euler equation with external force

F= (Ov,(x2, t)/Ot
OV2(Xl, t)/Ot]

A particularly interesting perturbation of this form is

v2 sin (2zrxl cos kt

This has a stream function

cos kt[sin (2wx2)-cos (2rxl)],
2r

which can be viewed as a superposition of linear waves traveling along coordinate axes"

_(ei(2Xl+kt) + ei(2x,-kt))_ i(ei(2x2+kt)_ ei(2rx2-kt)).

This perturbation is geometrically interesting because it breaks up the F’ symmetry
and we are forced to consider heteroclinic orbits joining four points instead of two
points. We shall show that for almost all k, the saddle connections break up to yield
a subsystem topologically equivalent to the shift on four consecutive symbols.

4.2. Explicit calculation of the Melnikov functions. Along an unperturbed horizon-
tal saddle connection, we have

21 +sin (2’xl), 2 =0

and along a vertical connection

2 +cos (2rrx2), 1 0.

In the case of the connection from (1/2,-) to (0,-14), we have 1 =-sin (2rrx,). This has
a solution xl (l/or)tan-1 (e-2’), which by symmetry properties of the flow yields

sin (2rrx,)=+

along all horizontal connections and

cos (2rrx) +

along all vertical ones.

2e -2rrt

1 + e-4wt

+ e--4rrt

For a spatially independent perturbation, the Melnikov function of 4.1, for either
saddle connection, is of the form

Mi( to)
1 -k- e -4rt

fi( + to) dt.

If we expand f into its Fourier series

f(t) , Ak COS + Bk sin

we find that

M(to) A cos +B sin dt
=-m 1 + -4t

COS
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Evaluation by residues reveals

Mi (to) , Ak COS
1 ’k/2T)(2rkTt)+B,sin(2kTt))(e_/_r+ e

Whether or not Mi(to) has simple zeros depends on the respective values of Ak and
Bk. For example, if f/= Ao+ A1 cos (27rkt/T), we require

IAol < IAll e-k/2T+ ek/2r

for Mi(to) to have simple zeros. Now we see that the class of perturbing functions
f=(Acos(t),Bsin(t)) yields My(to) and Mh(to) with simple zeros for all saddle
connections. Applying the results of 2, we obtain a shift on four symbols as a
subsystem of the perturbed flow on T, and a shift on two symbols as a subsystem of
the perturbed flow on T’.

For the spatially dependent perturbation

(cos(x) cos t)e
\sin (27rxl) cos kt

we find that, up to a change of sign, the Melnikov function for either a vertical or
horizontal saddle connection is

e -4,n-t

M(to) 4 COS (kto)
1 + e -4,n-t) 2

COS kt dt

which we evaluate via residues (using the procedure outlined in Appendix A for the
calculation of the integral in 3) to be

M(to)=cos kto
4" sinh (k/4)

cos ktoMo(k).

Mo(k) is nonzero for almost all k so that the Melnikov function will have simple zeros
and we have a subsystem topologically equivalent to the shift on four consecutive
symbols.

4.3. Mixing in the perturbed lattice flow. Under both perturbations, we expect
some sort of mixing to occur that was not present in the unperturbed case. In the
perturbed systems, all connections are broken up to yield transverse intersection of
stable and unstable manifolds. As in the cat’s eye model, at each fixed point Pn, n2--
(1/2ill, 1/2r2+-), nl, n2 7/, we have neighborhoods U,,,,,2 that intersect each other in
horizontal strips under some fixed time mapping of the flow (see Fig. 4.2). In the case
of the first perturbation studied, we can exploit the T’ symmetry to obtain a subsystem
topologically equivalent to the shift on two symbols. The perturbed and unperturbed
systems are both flows on the torus T’. Under this symmetry, we can identify all
clockwise rotating cells with each other and likewise all counterclockwise rotating cells
with each other (Fig. 4.3). In the unperturbed case, these patches of fluid do not mix.
The perturbation satisfies the conditions of the heteroclinic theorem with two fixed
points, yielding a subsystem of the flow topologically equivalent to the shift on two
symbols. In the perturbed case we see mixing patterns similar to those present in the
cat’s eye flow.

In the case of the second perturbation, we do not have the T’ symmetry. The cells
break up into two different clockwise and counterclockwise rotations (see Fig. 4.3).
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FIG. 4.2

(b)
FIG. 4.3. (a) Flow on T’. All clockwise rotating cells are identified, as are all counterclockwise rotating

cells. (b) Flow on T. There are two types ofclockwise rotations as well as two types ofcounterclockwise rotations.

On the torus T we have four fixed points in the heteroclinic orbit and our system
breaks up to yield a subsystem topologically equivalent to the shift on four consecutive
symbols. In the previous case we have symbols 1 and 2 identified with 3 and 4,
respectively. This is analogous to identifying the two clockwise rotations with each
other and likewise the two counterclockwise rotations with each other. Again we expect
similar mixing patterns to occur.

In the cat’s eye flow, we found a mechanism for traveling up- and downstream
randomly within the cat’s eyes. This corresponded to a shift in the symbols "+" and
"-." In the lattice flow, we find a mechanism for traveling all over the plane, along
the F’ lattice. We find that the perturbed lattice flow has a subsystem isomorphic to
the shift on the four symbols "n/," "n_, p/," "p_." Here, n+ corresponds to a
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translation by +(-1/2, 1/2) along the lattice. Likewise p+ corresponds to a translation by
+(1/2, 1/2) (see Fig. 4.2).

In the neighborhood U.,. of each fixed point P-,-2, we find that for some fixed
time T*, the flow qT* maps U.,. to intersect U.,-1..2 and U.,+1..2 for nl + n2 odd, or
U.,..2_ and U.,..2+ for n + n2 even, in horizontal strips (see Fig. 4.2).

These strips are mapped to smaller strips in U.,_.2_1, U.1/1..2_,
U.,+..2/1, by a second iteration of qT*. Thus q2T* maps U.,. to intersect
Un,+l.n2_l, Unl_l,n2+l Unl+l.n2+l, in horizontal strips.

For convenience, we now refer to 02T* as o. Thus our invariant set is

(N (-k
k= rll,n

where I can be decomposed into the disjoint sets 1.,. U.,. N L For any given pair
(nl, n2), there is a one-to-one correspondence between 1.1. and the set of bi-infinite
sequences on the symbols p+, p_, n+, n_:

r: I.,.2--> S

[r(x)]=p+ ift(x)

[-(x)], =p_

[(x)],=n+

[-(x)],=n_

/+l(x) t U.,+l,.2+l

if q(x) e U,,,.2::e,qt+(x)e Un,_l,.2_l,

if o(x) e U,,l,,2=:>ot+(x)e
if ql(x) e U.,.2=,l+(x) e U,,,+.,,2_.

Thus, fluid particles within one cell can travel randomly around the plane in the
perturbed case. In the unperturbed case, this sort of mixing is not allowed since fluid
within one cell will remain there for all time.

5. Motion of an elliptical vortex in a strain field. An important part. of fluid
mechanics is the study of vortices, their structure, and how they interact with one
another. In 3 and 4 we examined two well-known two-dimensional planar fluid
models. Since organized vortex structures are observed frequently, we would like to
find a simple model for a vortex affected by a field of neighboring vortices. As the
examples of 3 and 4 indicate, the presence of multiple vortices in stationary planar
fluid flow often results in fixed points of the flow, between vortex structures, that can
be modeled as hyperbolic saddle points in a planar dynamical system. In a neighbor-
hood of such saddle points, the velocity field is roughly linear and can be locally
approximated by a simple strain. Thus it is physically reasonable to model certain
vortex interaction locally as a single vortex in a straining flow. Moore and Saffman
[20], as well as Neu [21], describe vortex interaction that can be modeled in such a way.

We study the motion of an elliptical vortex in a three-dimensional imposed strain.
We see that the evolution of such a vortex can be characterized as a planar dynamical
system that has interesting Hamiltonian and non-Hamiltonian formulations involving
the aspect ratio r/= a/b and the angle 0 of rotation of the ellipse. Here a and b
correspond to the major and minor axes of the ellipse. We apply Melnikov’s method
to the evolution equations of the vortex to show chaotic dynamics occurring in the
presence of three-dimensional periodic stretching of the imposed strain. The actual
analysis differs somewhat from what was done in the previous sections in that we study
chaos occurring in the evolution equation of the shape and orientation of the ellipse
as opposed to chaos occurring in the flow pattern of an actual fluid model.
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5.1. Hamiltonian formulation of exact Euler solution. The Hamiltonian
formulation presented below is due to Neu [22] and represents a three-dimensional
generalization of the exact solutions of an elliptical vortex in a two-dimensional
straining flow (described by Kida [14]). First consider a planar vortex region in the
shape of an ellipse with constant vorticity in the interior. The points on the boundary
of the region are solutions to the equation xE/a2+y2/b2=constant. Following a
potential theory calculation described in Lamb 15], we see that the velocity field inside
the ellipse is linear:

l(a’ b’ O)=-
t

R(O) aO) R(O)"

Here a and b correspond, respectively, to the major and minor axes of this elliptical
cross-section and 0 is the angle of the major axis with respect to the x-axis. R(O) is
the rotation matrix

(cos0 -sin0)sin 0 cos 0

In three dimensions we have a cylindrical vortex region whose cross-section in
the xy-plane is the above velocity field. We add an irrotational straining field the
velocity of which is given by v (3"x,-3"y, y"z) where 3"-3,+ 3’"=0 is required for
incompressibility. The combination of vortex and strain yields a fluid velocity that, in
the xy-plane, has the form U(a, b, O)(x, y)r where

-a+-- R(O) R(O)+
0 -3"

The velocity field inside the vortex is again linear and the path of a fluid particle on
the boundary must satisfy the equation of an ellipse which we write in matrix form:

(Xy) E(a,b, O)(x y)=constant,

E(a,b,O)=R(O)(a
-:z O)0 b_

R(O).

Differentiating the ellipse equation, we obtain

.fTEX .4g- XTjX .qt_ XTE.f 0

where X is the vector (x, y). Since U(a, b, O)X, we have the matrix evolution
equation

+ UrE + EU=O,
which we can write out explicitly in terms of a, b, and 0 to give us the evolution
equations for the elliptical vortex:

ti + (y sin 0 3" cos2 0)a 0,
/ + (3’ cos2 0 3" sin 0) b 0,
wab 1 a2 d- b2

O
a + b )-- -- 3" + 3"’) a2 b2sin20.

These evolution equations have the following Hamiltonian formulation: let ab
be the aspect ratio and r be a dimensionless time defined by dr/dt to’/z/(T2-1).
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Then the evolution equations become

dr OH
dr oO

dO OH r/ 1

r/- cos 2 0,

dr Or/ r/(l+r/)
1 + sin 2 0,

2 to

H log(l+r/): 1 Y+Y’( )r/- sin 2 0.
2 to

We consider 3’, 3", and to to be, in general, time-dependent parameters in this
equation. The total circulation of the vortex is F 7rabto, which we know to be constant
by the Kelvin Circulation Theorem (see [6, p. 28]). The evolution equations imply that

so that

which in turn yields

d(ab)
dt

-(y’-y)ab

ab aoboe(y’-y)t,

to =tooe

Thus, when 3’" 0, 3"- 3’ + 3’"= 0 implies that 3’ 3". Our Hamiltonian system is
autonomous if and only if 3’"= 0, % 3" are both constant. We will consider the case
where this autonomous Hamiltonian system is perturbed by a periodic stretching of
the strain where we set 3’"= eg(t).

In the autonomous case, we have 3’= 3", and are interested in the dynamics
indicated in the phase portrait for 0 < 3’/to < 0.15 (see Fig. 5.1). There are no heteroclinic

REGIME (t} 0
y/o 0.1000

REGIME (2)

7"/ 0.t227

REGIME (3)

Y/( 0.1429

FIG. 5.1
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orbits in the phase portrait for y/to >.15. The three interesting regimes are depicted
in Fig. 5.1"

(1) For 0 < yto .1227, there are oscillating regions (bubbles close to the log rt 0
axis) as well as rotating regions between the bubbles and the outer saddle connections.

(2) At y/to --.1227 we have a bifurcation where saddle connections between three
fixed points exist for this value of 3’/to only.

(3) For 3’/to between .1227 and .15, we have homoclinic saddle connections, the
interior of which represents an ellipse oscillating about the ray 0- r/4.

The importance of the bifurcation is that in regimes (2) and (3) we no longer have
the possibility of a rotating ellipse.

5.2. Real time forrnulatioa of evolutioa equations. In order to apply Melnikov’s
method to the above Hamiltonian system, we would need to consider time-periodic
perturbations of the dimensionless time -. This is not a reasonable physical model,
since a periodic perturbation of the straining flow would be periodic in real time, and
not in the dimensionless time -. Note that the evolution equations written in terms of
the orientation, aspect ratio and real time are

dO tort 1 rt2 + 1

d-- (rt +1)-------- (y+ y’)
rt-1 sin 20,

drt (y+ y’)rt cos 20.
dt

Since (rt, 0) and (,/-1, 0+ r/2) correspond to the same ellipse, we can parameterize
the evolution equation in terms of r= log rt, q 20, and yield a polar coordinates
formulation for these equations in which there is a one-to-one correspondence between
ellipses and points in the phase space (r, o). The evolution equations become

(,+ ,’) cos ,
2toe e2r / 1

(e +1)2 "Y+Y"e2r-1 sin"

From the Hamiltonian formulation, we know that trajectories correspond to constants
of

H=log[(l+er)2]e 2to
er- e-r) sin o.

This can be verified by calculating dH! dt 0 for the real time t. These equations seem
to blow up for r 0. Fortunately, we see that this blow-up is due to the coordinates
we are using and not the equations themselves. Polar coordinates are not well defined
at r 0 so we convert the equations to Cartesian form by x r cos 0, y r sin o. The
evolution equations become:

X
2

(Y + Y’)
x2 + y2

f=(y+y,)
xy +

X
2 / y2

2toye

2toxe

(e+ 1)2

+ (’)’ + 3")
e2+ 1 y2
e2"/Trg- 1 x/x2 + y2’

_(y+ y,)
e-+ 1 xy

e2- 1 x/x2+y2"

We see that as r 0, the first and third terms in appear to blow up. Using Taylor



HETEROCLINIC ORBITS IN PLANAR FLOWS 1289

REGIME (t) ’/ 0.t000

REGIME (2) 7’/m 0.t227

REGIME (:5) )"/o 0.1429

FIG. 5.2

expansion techniques, we see that the third term can be approximated by

(7 + Y’)
y2

xE+y (1 + ’(r))

for r small. Thus, -> y + y’ as r- 0. In a similar fashion, we see that 3- 0 as r-> 0.
The phase portrait (Fig. 5.2) for the real time formulation has a much simpler

form than that of the Hamiltonian one we first introduced (Fig. 5.1). We see that for
(y + y’)/2to < .15, there is a homoclinic loop with hyperbolic fixed point corresponding
to the largest root of er(er-1)=((y+’y’)/2to)(e:Zr+l)(er+l). We see that the
bifurcation at 3,/to .1227 is represented by the loop crossing the origin.

5.3. Periodic stretching of an elliptical vortex. In general, our perturbed system
will have the form

f Co cos q + eg(r, q, t),

2tOoer e2 + 1
(o

(er + 1)2 Co e2----_1 sin o + eg(r, q, t).

Here g and g are periodic in time, Co (3,o + Y).
For 0<Co/tOo<0.15, the unperturbed system has a hyperbolic fixed point

Po at q r/2, r=ro where ro corresponds to the largest real root of the cubic
e3r+e2r(1-B)+er(l+B)+l=O where B (1/2Cotoo) -1. This fixed point has a homo-
clinic saddle connection Fo as depicted in Fig. 5.2. If we consider a perturbation
involving a periodic stretching by an amount ey"(t), then our perturbation has the form

g- Cl(t) cos

2C2( t)e e2r+l
g2

(e + 1)------Cl(t) e2r_ 1
sin

Here C1 and C2 are periodic in time with period T. We consider the symmetric case
where the oscillation of y" puts equal and opposite oscillations on y’ and y while
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maintaining the incompressibility condition 3"- 3’ + 3"" 0. Thus, 3’ + 3" stays constant
even though 3’- 3" oscillates with 3’". This implies Cl(t)= 0 so that our perturbation
has the simpler form

2C2(t)e
gl =0, g2

(e + 1)2.

If we parameterize Fo by (r(t), (t)), the Melnikov function for the perturbed system
can be calculated using the non-Hamiltonian form. There are two ways of doing the
Melnikov function calculation. We can view Fo as a trajectory in the (r, ) coordinate
system, which has the advantage of a simpler formulation. Since these coordinates
break up at r 0, we cannot treat the case where Fo contains the point r 0. This
occurs only at the value 3,/to .1227. For any other value of ),/to, we can find a C
vector field (fl (r, ), f2(r, )) so that

f=fl(r, tp), b =f2(r, )
is a planar differentiable dynamical system in the coordinates (r, ) with a saddle
connection identical to Fo in its real time parameterization. We have f Co cos ,
f2 2tooe/(e + 1)2 Co sin (e2 + 1)/(e2r 1) in a neighborhood of the curve Fo. This
new dynamical system is suitable for Melnikov’s method and in a neighborhood of Fo
has dynamics identical to that of the original system.

Alternatively, we can treat the evolution equation as a dynamical system in the
(x, y) coordinates. This allows us to show that chaos will also occur in the degenerate
case of T/to .1227. Both calculations are presented.

The Melnikov function in (r, ) coordinates. For this we need to know
exp ( tr Df(Fo(s)) ds). We have

e2r + 1 -f(e2r + 1
tr Df -Co e2r--’_ COS q9

e2r- 1

This gives us

exp tr Df(ro(s)) ds
er(t(e"- e-r)

e2r(t)- 1

This yields a Melnikov function

f

_
e2r cos q9

M(to) C3 (e A- 1)2(e2r- 1)
C2( + to) dt,

C3 Co( ero- e-o).

Using the fact that the integral represents a convolution with an odd function, for
C2 cos kt, we have

f

_
e2r COS q9

M(to) C3 sin kto (e A- 1)2(e2r 1)
sin kt dt

sin ktoMo(k).
Since cos p c t:(t), we can see that the above integral is the sine transform of an L
function.

e2r cos q9

(er+l)2(e2r--1)
dt=2 fo e2r cos

(er+l)2(e2r--1)
dt

C3 f r(c3) e2r
Co dr(O) er A" 1)2(e2r- 1)

dr< o.
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We know by the properties of the Fourier transform on LI(R) ([13, pp. 120-131]) that
M0(k) is a uniformly continuous function of k that is not identically zero. Thus there
exists some interval kl =< k =< k2 such that Mo(k) is nonzero. For these values of k,
M(to) has simple zeros.

The Melnikovfunction in (x, y) coordinates. We now consider the dynamical system

2wr sin qer
=(y+y’)cos2q-

(er+l)2

e2r + 1
+ (y + y’) r sin2 , r 0,

e2r- 1

(3’ + Y’) cos sin q +
2wr cos qge e2r + 1

(er+ 1)2
(y + y’) .e2.r_ 1

r sin q cos q, r0,

i=y+y’, p=0,

for r=0. Here r=x/x2+y2, =tan-(y/x). We have the time-periodic perturbation

eC2( t)rer (-sin qIif(t, x, y):i cos q/"

The following analysis is for the case y+ y’=.1227; the nondegenerate case can be
studied in a similar fashion. We have

re )f^g=(y+y’)coscpC2(to) (e;])2
1

tr Df= (3, + Y’) cos
e2r d- 1)e2r 1

r 0,

=0, r=0,

eJ tr Dfds 2 r(t) e r(

e2r(t)- 1

For C2(t) cos kt, our Melnikov function is

M( to) fo sin kto( t) sin kt
r2e2r

(e2-l)(er+l)2dt

sin ktoMo(k).

Again we see that Mo(k) is a sine transform of an L function"

i.(t)r2e2r

(e2- 1)(e+ 1)2
r(oo) r2e2r

dt=
r(o) (e2- 1)(e + 1)2

dr

(oo) r2 e2r
(e2r- 1)(e + 1)2

dr

This is because r2e2r/(e2r--1)(er+ 1)2 is bounded on the interval (0, r(c)]. We see
that Mo(k) is again the sine transform of an odd L function so that there exists an
interval kl <-- k <_- k2 so that Mo(k) is nonzero, giving us a Melnikov function with simple
zeros.
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Under such a periodic stretching, we find chaotic dynamics occurring in the phase
portrait of the evolution equations for the ellipse. This indicates a sort of randomness
in the evolution of the vortex. The phase portrait includes a horseshoe as a subsystem
that, as we know from 2, indicates somewhat erratic behavior on an invariant set.
Assuming the inability to make completely precise measurements, we can only predict
what will happen to the vortex for a finite time; after this time we have no knowledge
of how it will evolve.

Appendix A. We present the details of the calculation of the following integral
from 3 via residues"

f -o e/t e-/t
Mo(K)

(eV, + + e_Vt)2 sin kt tit,

which by a change of variables z yt becomes

y (e --)2 sin mz dr,

where m k y. Consider the meromorphic function

e3z eZ)e imz

(e2Z-e+l)2"
The denominator has roots

which we can write as

-e

since we know that 0</3 <2. Here, a =cos-1 (fl/2), which gives us 0< a < r/2. Thus,
the function

(e3Z_eZ)e,.,
(eZ_e")2(eZ_e-i,)2

has double poles at z +ia +2,a’iN, N 7/. Let r= z-(ia +2,n’iN). The integral is
clearly odd in m. Thus we need only consider the case rn > 0. We have that

1 f e3r- e
Im J ei, dr

y (e2+fle+l)2

lira Im
I [(2N+l) e3 e

r-oo Y a-(2N+l), (e2 + fie + 1)2
ei’" d’r

[ ( e3z-ez )lim Im
1 1

Res imz- 3, 27ri 0<y<(2N+l)’n" (e2 + fie + 1)2
e

e3’ e im,r

zl=(2N+l)r,y>O (e2r-l-/3e + 1)2
e dr

The last integral goes to zero as N--> oo so that for m > 0, we wish to calculate

[2,rri (e3::-e )]Im Res
(e2 )2

eim
3’ y>o + fie + 1



HETEROCLINIC ORBITS IN PLANAR FLOWS 1293

Thus we need to calculate the residues of the function in the upper half-plane. We
can calculate the coefficients of the Laurent expansion of the function by first consider-
ing the expansion of its components in the neighborhood of ia +27tiN. Writing
r z (ia + 27riN), we have

e3z eTM 1 + 3r +- +..

eZ= ei (l + r+l- r2+ ")2

r2 +eZ e - 1 + imr
2

(e ei)2= e2i(r + r +...),

(e-e-")2= -4 sin2 a +4i sin aesir+ ..
We write the function in the form

r c + dr +
which has the Laurent expansion

-r + r- +...,
C

so that the residue at r 0 is b/c da/c. Here

a (eTM ei)e--,
b e--[im(e3i ei) +3e3i

c ei(-4 sin ),

d e (4ie sin 4 sin ).

Let R denote the residue at the point x. Then,
--2mN

ei+2iN
2 sin

R-2NmNotice that R+- A similar calculation shows that
-2mN

R_i+2iN
2 sin a

We add the residues in the upper half plane to obtain M(m) for m > 0, and exploit
the fact that M(m) is odd in m to obtain M(m) for m <0. Thus for m 0, our
integral becomes

M(m)=--2[me-’l msinhlm e-11 ]2 sin sin 1- e-11

elegets. I would like to credit Prof. Andrew Majda of Princeton
University for originally suggesting the idea of extending the Melnikov theory to study
the onset of chaos in fluid flows with heteroclinic orbits. I would also like to thank
him for the guidance he has given me on my A.B. thesis, from which this paper stems.
I would like to thank AT&T Bell Laboratories at Murray Hill, New Jersey, where I
spent the summers of 1987 and 1988, for supplying me with the diagrams.
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