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1. Introduction1

Consider the aggregation equation

∂ρ

∂t
+ div(ρv) = 0, v = −∇N ∗ ρ, (1.1)

where N is the Newtonian potential in R
d for d ≥ 2. For more general interaction2

kernels K, this problem has been a very active area of research in the litera-3

ture.?,5,7,9,10,12,14–21,25,28,30–32,38,39,45–49,56,57,65–67 These models arise in a number4

of applications including aggregation in materials science,39,59,60 cooperative con-5

trol,38 granular flow,26,27,67 biological swarming models,55,56,65,66 evolution of vor-6

tex densities in superconductors1,2,35,36,54 and bacterial chemotaxis.?,15,16,19 A body7

of recent work has focused on the problem of finite time singularities and local ver-8

sus global well-posedness in multiple space dimensions for both the inviscid case9

(1.1)7,9–13,17,25,32,40,45 and the cases with various kinds of diffusion.4,13,15,46,47 The10

highly studied Keller–Segel problem typically has a Newtonian potential and linear11

diffusion. For the pure transport problem (1.1), of particular interest is the transi-12

tion from smooth solutions to weak and measure solutions with mass concentration.13

In two space dimensions, Eq. (1.1) with the Newtonian potential arises as a14

model for the evolution of vortex densities in superconductors,1,2,35,36,50–52,54,62,6315

and also in models for adhesion dynamics.59,60 These problems are known to develop16

finite time singularities and several papers have considered the existence of solutions17

with measured initial data.1,35,60 Among others, our paper develops a complete the-18

ory of weak solution in arbitrary dimension for the case where the density function19

ρ is bounded, compactly supported and has mixed sign. Our theory includes sharp20

well-posedness for L∞ data including the maximal time interval of existence.21

1.1. Description of the problem and well-posedness theory22

Here we use the convention that ∆N = δ, with this convention the interaction
kernel is attractive for positive ρ. Using the fact that div v = −∆N ∗ ρ = −ρ,
Eq. (1.1) can be rewritten

∂ρ

∂t
+ ∇ρ · v = ρ2, v = −∇N ∗ ρ (1.2)

and therefore the values of ρ satisfy the ODE ẏ = y2 along the “characteristics”
defined by

d

dt
Xt(α) = v(Xt(α), t), X0(α) = 0. (1.3)

Solving ẏ = y2 gives the formulas

ρ(Xt(α), t) =
(

1
ρ0(α)

− t

)−1

and ρ(x, t) =
(

1
ρ0(X−t(x))

− t

)−1

, (1.4)
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where X−t : R
d → R

d is the inverse of the mapping Xt. It is clear from (1.4) that
if ρ0 is strictly positive somewhere, then the first blow-up occurs at time

t =
1

supx∈Rd ρ0(x)
.

On the other hand, if ρ0(x) ≤ 0 for all x, the values on every characteristic converge
to zero as t → +∞ and no blowup occurs. These argument will be made rigorous
in Sec. 2, where we prove the existence and uniqueness of compactly supported
bounded solutions of mixed sign on the time interval [0, T ] with

T < (sup ρ0)−1.

If the initial data is negative, then (sup ρ0)−1 = +∞ and therefore solutions exist1

for all t > 0. The theory is first carried out in Lagrangian variables for functions2

ρ that are Hölder continuous, using the classical Picard theory on a Banach space,3

thus proving both existence and uniqueness. Then we prove the existence for L∞
4

functions by passing to the limit in smooth approximations, also using Lagrangian5

variables for the passage to the limit. However, the resulting solution is a classical6

solution in the sense of distributions, in Eulerian variables. Uniqueness of L∞ solu-7

tions is proved using well-known H−1 energy estimates for the Eulerian form of the8

problem, we do not include the proof but rather refer the reader to the extensive9

literature using these techniques, dating back to the seminal paper of Yudovich68
10

for L∞ vorticity for the 2D Euler problem.11

We use the term “aggregation equation” in a generalized sense. While non-12

negative solutions collapse on themselves in finite time,10,25 nonpositive13

solutions spread. The second case is equivalent to the first case with the14

evolution backward in time. The reader should keep this in mind when15

reading Sec. 3, which is devoted to nonpositive “spreading” solutions.16

1.2. Aggregation patches17

We now discuss aggregation patches, solutions of (1.1) with initial data

ρ0(x) = cχΩ0(x),

where c is a (possibly negative) constant and χΩ0(x) is the characteristic func-
tion of the bounded domain Ω0 ⊂ R

d. Note that such initial data are compactly
supported and belong to L1 ∩ L∞ therefore the well-posedness theory from Sec. 2
applies. These solutions are analogues of the famous vortex patch solutions of the 2D
incompressible Euler equations.6,23,29,33,34,69 However, for the aggregation problem,
the patch solutions exist in any dimension. From (1.4) we see that

ρ(x, t) =
(

1
c
− t

)−1

χΩt(x), (1.5)
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where Ωt = Xt(Ω0) is a time evolving domain and the mapping Xt : R
d → R

d is
defined by (1.3). As mass is conserved, we necessarily have

|Ωt| = (1 − ct)|Ω0|.

where |Ωt| stands for the Lebesgue measure of Ωt. Therefore positive patches (i.e.
c > 0) collapse to a domain of Lebesgue measure 0 at time t = 1/c. In contrast,
the Lebesgue measure of negative patches (i.e. c < 0) is increasing linearly in time.
The simplest patch solutions are the circular patches

ρ(x, t) =
(

1
c
− t

)−1

χΩt(x), Ωt = B(0, R(t)), R(t) = R0(1 − ct)1/d. (1.6)

They are explicit self-similar solutions to (1.1). In Sec. 3 we show that in the case
of negative L∞ spreading solutions, these self-similar circular patches are global
attractor of the dynamics. Moreover we prove that the convergence rate toward
these global attractors is given by

‖ρ(·, t) − Φ(·, t)‖L1 ≤ Ct−λ, λ =
1

2d−1

where ρ(x, t) is a negative solution and Φ(x, t) is a spreading negative circular patch.1

Note in particular that this give a convergence rate in 1/
√

t in two dimensions.2

In Sec. 4 we give an explicit formula for an elliptical patch in two dimensions. In
the collapsing case, the finite time singularity results in convergence to a weighted
measure along an interval of length 2(a0 − b0) where a0 is the length of the semi-
major axis of the initial data and b0 is the length of the semi-minor axis (Theorem
4.1). We then show that the L1 difference between an elliptic spreading patch and
a circular one decays like 1/

√
t (Theorem 4.2), therefore proving the sharpness of

our convergence rate in 2D. The remainder of Sec. 4 is devoted to a numerical
study of the different patch evolutions in 2D and 3D for both the spreading and
collapsing problem. The 3D solutions shown are axisymmetric which allows for a
reduction of the computational complexity to that of the 2D problem. In both cases
we reduce the numerical simulation to a self-deforming curve in the plane by using
a contour dynamics formalism, similar to what has been done for vortex patches
in 2D. Indeed, for patch solutions, by integrating by parts we can express v as a
boundary integral:

v(x, t) = −
(

1
c
− t

)−1

∇N ∗ χΩt(x) =
(

1
c
− t

)−1 ∫
∂Ωt

N(x − y)n(y)dσ(y).

Therefore we just need to compute the motion of the curve ∂Ωt deforming according3

to the above velocity field.4

Whereas an elliptical patch collapses toward a singular measure supported on5

a line segment, more general 2D aggregation patches are observed numerically to6

converge toward singular measures supported on more complex domains, also of7

codimension one, often consisting of the union of several curves. We refer to this8
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union of intersecting curves as the skeleton of the patch at the collapse time. How-1

ever this shape is not the topological skeleton of the initial data. In 3D, aggregation2

patches typically converge toward singular measure uniformly distributed on the3

union of intersecting surfaces, see Fig. 6.4

In the spreading case we numerically observe a “pinching” phenomena in which5

the solution clearly converges in L1 to the circular patch solution as predicted by6

the analysis, however the boundary does not necessarily converge to a circle. For7

some initial data the boundary “pinches”, creating defects which consist of slits8

cutting into the circular shape, see Fig. 3. These defects may not disappear in9

the long run. For 3D toroidal initial data the spreading problem deforms to fill10

a sphere in 3D, while preserving the toroidal topology of the initial data. In this11

case there is a natural slit that forms related to the preserved topology of the12

torus.13

1.3. Relationship with the existing literature14

In an earlier paper, two of the authors11 have shown that the problem considered15

here reduces to the inviscid Burgers equation for the case of radially symmetric data16

in any space dimension. This observation has been made for the one-dimensional17

problem in earlier papers, but not for multiple dimensions. The connection to Burg-18

ers equation allows us to understand many features of this problem via exact solu-19

tions with radial symmetry. The general theory of the equations, considered here,20

has roots in many previous papers in the literature. Section 2 is largely inspired by21

Chaps. 4 and 8 of the book on Vorticity and Incompressible Flow53 however some22

of these ideas and other ideas have been used to study this aggregation problem23

in prior papers. The C0,γ Hölder results are also proved in a recent manuscript.3724

Lin and Zhang50 have studied our problem for spreading case (corresponding to25

negative sign initial data in our model) in two dimensions and develop general exis-26

tence theory for data a measure of a fixed sign. Their techniques are similar to27

the ones we use for the existence of L∞ solutions of mixed sign and come from28

well-known methods in incompressible fluid dynamics. Our work generalizes their29

existence results to the mixed sign problem in general dimension and also con-30

siders asymptotic behavior of the spreading problem in general dimension. Nieto,31

Poupaud, and Soler59 consider our problem in general dimension for data that is in32

W 1,∞(Rd) — these results being most relevant to our existence theory for Hölder33

continuous solutions. They also consider L∞ data for the spreading problem in34

general dimension and for the collapsing problem in one space dimension — corre-35

sponding to the case of Lipschitz solutions of the inviscid Burgers equation. For the36

spreading problem, they use methods involving entropies and energy estimates in37

Eulerian variables — these methods are best applied to the spreading problem. Our38

results for L∞ data involve solutions with mixed sign, and the existence theory is39

done mainly in Lagrangian variables using uniform estimates for the particle paths.40

Masmoudi and Zhang54 consider a closely related problem, where the sign of the41
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density changes the sign of the velocity field. They establish well-posedness theory1

in W 1,p, p > 2, and in Cγ for 0 < γ < 1. Mainini52 considers our problem in L∞
2

but without collapse and uses optimal transport theory. Another very related prob-3

lem is the Chapman–Rubinstein–Schatzman model1,2 which involves an interaction4

kernel that is the fundamental solution of (I−∆) on a bounded domain with Dirich-5

let boundary condition. That literature makes extensive use of optimal transport6

theory.7

Regarding the global attractor for the spreading problem, Caffarelli and8

Vazquez24 recently consider the dynamics of fractional diffusion, which can be9

written in our formulation, only with more singular potentials corresponding to10

(−∆)−s where 0 < s < 1 (our problem corresponds to the case s = 1). Note11

that the corresponding kernel operators are of the form |x|−p where p = d − 2s.12

For these more singular kernels there is a gain of regularity in the solution as the13

problem is diffusive going forward in time. It has some properties similar to the14

porous media equation. They prove convergence to the global attractor for these15

more singular kernels using entropy methods. Compared to this work, we prove16

convergence to the global attractor via a direct estimate on the size of the support17

of the solution and we obtain a convergence rate in L1. In the case of radial symme-18

try, the problem reduces to Burgers equation11 and thus can be understood using19

classical scalar law theory. For an attractive–repulsive problem37 that is equiva-20

lent to ours after a change of variables, one can prove convergence to the patch21

solution for initial data with radial symmetry using an explicit computation along22

characteristics.23

Models of vortex patches date back to the classical example of the Kirchoff24

ellipse43 which has been extensively studied in straining flows.8,42,58 Numerical25

simulations of the general vortex patch problem date back to work of Zabusky,26

Hughs, and Roberts69 and resulted in speculation about the global regularity of27

the vortex patch boundary23,34 which was finally settled analytically by Chemin29
28

and reproved using potential theory estimates by Bertozzi and Constantin.6 To the29

best of our knowledge, the numerical simulation of the aggregation problem and the30

observation that aggregation patches collapse to complex skeletons of codimension31

one are new.32

Finally we remark that a flow with related properties, but different bound-33

ary conditions, is considered in the context of a level set method used to34

solve an elliptic obstacle problem.2235

2. General Well-Posedness Theory for Compactly Supported36

L∞ Solutions of Mixed Sign37

To avoid complications at infinity, for which we know of no physically inter-38

esting cases, we simplify the problem by considering compactly supported data,39

so that the data is also automatically in L1 due to the essential supremum40

bound.41
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2.1. Well-posedness theory for Hölder continuous1

densities Cγ
0 (Rd)2

In this section we derive the well-posedness theory for densities ρ ∈ Cγ
0 (Rd), func-

tions that are Hölder continuous, and that have compact support. We note that the
problem is studied in Ref. 59 for the case of W 1,∞ densities, which would suffice
for our purposes here. However, for completeness we present an argument in Hölder
spaces and will use this, including the compact support, to prove well-posedness of
general L∞ solutions and also to prove a result on long time behavior, which require
estimates on the support of the solution. The proof uses ODEs on Banach spaces
in Lagrangian coordinates. The ODE (1.3) defining the particle path t �→ Xt(α)
can be written as

d

dt
Xt(α) = −

∫
Rd

∇N(Xt(α) − y)ρ(y, t)dy.

The change of variables y = Xt(α′) gives

d

dt
Xt(α) = −

∫
Rd

∇N(Xt(α) − Xt(α′))ρ(Xt(α′), t) det(∇αXt(α′))dα′.

However, note that if we define Q(α, t) = det(∇αXt(α)), then Q satisfies

d

dt
Q(α, t) = divv(Xt(α), t)Q(α, t) = −ρ(Xt(α), t)Q(α, t).

But since d
dtρ(Xt(α), t) = ρ(Xt(α), t)2 we see that ρ(Xt(α), t)Q(α, t) is constant in

time. Using the fact that Q(α, 0) = 1 we obtain the following Lagrangian formula-
tion of (1.1):

d

dt
Xt(α) = −

∫
Rd

∇N(Xt(α) − Xt(α′))ρ(α′, 0)Q(α′, 0)dα′

= −
∫

Rd

∇N(Xt(α) − Xt(α′))ρ0(α′)dα′. (2.1)

We then define the Banach space on which to work:

B = {X : R
d → R

d such that ‖X‖1,γ < ∞}, (2.2)

‖X‖1,γ = |X(0)| + ‖∇αX‖L∞ + |∇αX |γ , (2.3)

where |·|γ stands for the standard Hölder semi-norm. We write our problem as

d

dt
Xt = F (Xt), X0 = Id, (2.4)

where F : B → B is defined by

F (X)(α) = −
∫

Rd

∇N(X(α) − X(α′))ρ0(α′)dα′. (2.5)

Theorem 2.1. (Local existence and continuation of C1,γ particle paths) Consider3

an initial density ρ0 that is Hölder continuous and with compact support. Then the4
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initial value problem (2.4)–(2.5) has a unique solution on a maximal time interval1

of existence [0, T ∗). Either T ∗ is infinite or the Banach norm (2.3) blows up as2

t → T ∗.3

Remark 2.1. Although we prove well-posedness of the problem in the Lagrangian4

formulation, this result implies the existence of a solution to the problem in original5

Eulerian variables (1.1). This is discussed in detail for the Euler problem in Chap. 46

of Ref. 53 and is proved rigorously for the weaker case of L∞ data in the next7

subsection.8

Proof. The proof is similar to the local existence proof of the vorticity formulation
of Euler equation in Chap. 4 of Ref. 53 and therefore here we just discuss a few key
points. In order to apply the Picard theorem on a Banach space, the hardest part
is to show that F : B → B is Lipschitz. We focus on the calculation of the first
variation with respect to X . That results in a linear operator which we write as

δF

δX
Y :=

d

dε
F (X + εY )|ε=0

= − d

dε

∫
∇N(X(α) − X(α′) + ε[Y (α) − Y (α′)])ρ0(α′)dα′|ε=0

= −
∫

D2N(X(α) − X(α′))[Y (α) − Y (α′)]ρ0(α′)dα′.

Following the arguments in Chap. 4 of Ref. 53 (see, for example, Proposition
4.2) we obtain ∥∥∥∥ δF

δX
Y

∥∥∥∥
1,γ

≤ C(‖X‖1,γ)‖ρ0‖γ‖Y ‖1,γ , (2.6)

where ‖X‖γ = ‖X‖L∞ + |X |γ . This show the Lipshitz continuity of F . We refer the9

reader to Chap. 4 of Ref. 53 for the details of this calculation.10

Define |·|max and |·|min as follows:

|f |max = sup
x∈Rd

f(x) and |f |min = − inf
x∈Rd

f(x). (2.7)

Let us emphasize that |f |min ≥ 0. Also we obviously have

1
2
(|f |min + |f |max) ≤ ‖f‖L∞ ≤ |f |min + |f |max. (2.8)

Theorem 2.2. Let [0, T ∗) be the maximal time interval of existence of the ini-11

tial value problem (2.4)–(2.5) with Hölder continuous, compactly supported, initial12

density ρ0. Then T ∗ = 1/|ρ0|max.13

Note that if ρ0 ≤ 0 and compactly suported then |ρ0|max = 0 and T ∗ = +∞. The14

rest of this subsection is devoted to the proof of Theorem 2.2. We follow arguments15

1140005-8



1st Reading

December 20, 2011 16:13 WSPC/103-M3AS 1140005

Aggregation via the Newtonian Potential and Aggregation Patches

similar to the classical Beale–Kato–Majda theorem for the 3D Euler equation,3 in1

particular the alternate Hölder space proof from Chap. 4 of Ref. 53.2

Assume that the classical solution ρ(x, t) given by Theorem 2.1 exists on a time
interval [0, T ). Since it is a classical solution it satisfies (1.4) along the particle path.
We therefore see that T cannot be strictly greater than 1/|ρ0|max, otherwise the
solution would blow up and leave the space of continuous functions. This implies
that T ∗ ≤ 1/|ρ0|max. Then we show that if the time interval [0, T ) on which the
solution is defined is such that T < 1/|ρ0|max, then there exists a constant C such
that

‖Xt‖1,γ < C for all t ∈ [0, T ), (2.9)

therefore giving T ∗ ≥ 1/|ρ0|max and concluding the proof.3

We now prove (2.9) under the condition T < 1/|ρ0|max. Define the constant

k = 1 − T |ρ0|max and K = 1 + T |ρ0|min. (2.10)

Clearly 0 < k ≤ 1 and K ≥ 1. Note that because of (1.4) we have the uniform
bounds

|ρ0|max ≤ |ρ(·, t)|max =
(

1
|ρ0|max

− t

)−1

≤ |ρ0|max

k
, (2.11)

|ρ0|min

K
≤ |ρ(·, t)|min =

(
1

|ρ0|min
+ t

)−1

≤ |ρ0|min (2.12)

for all t ∈ [0, T ]. Therefore, from (2.8),

‖ρ0‖L∞

2K
≤ |ρ0|min + |ρ0|max

2K
≤ ‖ρ(·, t)‖L∞

≤ |ρ0|min + |ρ0|max

k
≤ 2‖ρ0‖L∞

k
(2.13)

for all t ∈ [0, T ]. We then prove the following elementary estimate:4

Lemma 2.1. For all t ∈ [0, T )

|ρ(·, t)|γ ≤ |ρ0|γ
k2

‖∇xX−t‖γ
L∞ . (2.14)

Proof. From (1.4), we have:

ρ(x, t) =
ρ0(X−t(x))

1 − ρ0(X−t(x))t
. (2.15)

1140005-9
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Then we write:

|ρ(x, t) − ρ(y, t)| =
∣∣∣∣ ρ0(X−t(x)) − ρ0(X−t(y))
(1 − ρ0(X−t(x))t)(1 − ρ0(X−t(y))t)

∣∣∣∣
≤ 1

k2
|ρ0(X−t(x)) − ρ0(X−t(y))|

≤ 1
k2

|ρ0|γ‖∇xX−t‖γ
L∞ |x − y|γ .

We then need the following potential theory lemma from Ref. 53 (Lemmas 4.51

and 4.6 on p. 144):2

Lemma 2.2. Consider f ∈ Cγ(Rd; Rd), 0 < γ < 1, be a compactly supported
function with supported in the ball of radius R. Then there exists a constant C

independent of R and f such that

‖PV Nij ∗ f‖L∞ ≤ C

{
|f |γεγ + max

(
1, ln

R

ε

)
‖f‖L∞

}
, ∀ ε > 0, (2.16)

|PV Nij ∗ f |γ ≤ C|f |γ . (2.17)

Here PV Nij ∗ f denotes the principal value singular integral of the Hessian matrix3

of the Newtonian potential convolved with f .4

We note that all entries of the convolution kernel Nij have mean zero on spheres5

(see e.g. Proposition 2.18 p. 74 of Ref. 53) because they are each exact derivatives6

of ∇N which is homogeneous of degree 1− d. Hence the PV integral is well-defined7

on the Hölder spaces. We also note that the full velocity gradient matrix can be8

expressed in terms of principal value integrals of the form PV Nij ∗ρ plus a constant9

matrix times ρ (see e.g. Proposition 2.17, p. 74 of Ref. 53). This fact will be used10

below in estimating ∇v in both sup and Hölder norms.11

Next we derive a crude estimate on the size of the support of ρ(x, t):12

Lemma 2.3. Suppose that ρ0 is supported in a ball of radius R0. Then for all
t ∈ [0, T ), ρ(·, t) is supported in a ball of radius

R(t) = R0 +
C

k
(‖ρ0‖L1 + ‖ρ0‖L∞)t, (2.18)

where C > 0 is a constant depending only on the dimension13

Proof. This lemma is a direct consequence of a simple potential theory estimate
that gives a bound on the velocity of the particle path:

‖v(·, t)‖L∞ = ‖∇N ∗ ρ(·, t)‖L∞ ≤ C

k
(‖ρ0‖L1 + ‖ρ0‖L∞) (2.19)

for some constant C depending only on the dimension. This potential theory esti-14

mate is proven in the next subsection, see (2.36).15
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Differentiating the particle equation gives

d

dt
∇αX(α, t) = ∇v(X(α, t), t)∇αX(α, t). (2.20)

This equation directly implies

d

dt
‖∇αX(·, t)‖L∞ ≤ ‖∇v(X(·, t), t)‖L∞‖∇αX(·, t)‖L∞ ,

and hence

‖∇αX(·, t)‖L∞ ≤ exp
(∫ t

0

‖∇v(·, s)‖L∞dx

)
. (2.21)

To bound |∇αX(·, t)|γ , we note that Eq. (2.20) implies that

d

dt
|∇αX(·, t)|γ ≤ |∇v(X(·, t), t)|γ‖∇αX(·, t)‖L∞ + ‖∇v(X(·, t), t)‖L∞ |∇αX(·, t)|γ

≤ |∇v(·, t)|γ‖∇αX(·, t)‖1+γ
L∞ + ‖∇v(X(·, t), t)‖L∞ |∇αX(·, t)|γ

≤ C|ρ(·, t)|γe(1+γ)
R t
0 ‖∇v(·,s)‖L∞ds + ‖∇v(·, t)‖L∞ |∇αX(·, t)|γ .

(2.22)

The last estimate is a direct application of (2.17) and (2.21). Using Lemma 2.1
combined with the fact that the inverse characteristic map satisfies d

dtX
−t =

−v(X−t, t), and thus satisfies an inequality like (2.21), we obtain:

|ρ(·, t)|γ ≤ |ρ0|γ
k2

exp
(

γ

∫ t

0

‖∇v(·, s)‖L∞ds

)
. (2.23)

Finally applying (2.16) with ε = (‖ρ(·, t)‖L∞/|ρ(·, t)|γ)1/γ we have

‖∇v(·, t)‖L∞ ≤ C

{
‖ρ(·, t)‖L∞ + max

(
1, ln

(
R(t)|ρ(·, t)|1/γ

γ )

‖ρ(·, t)‖1/γ
L∞

)
‖ρ(·, t)‖L∞

)}
.

Note that due to Lemma 2.3 and (2.13) the logarithm term can be bounded as
follows:

ln

(
R(t)|ρ(·, t)|1/γ

γ )

‖ρ(·, t)‖1/γ
L∞

)
≤ C +

1
γ

ln |ρ(·, t)|γ

for some constants C which depend only on the initial data ρ0 and the time T . And
therefore, using (2.13) again we find

‖∇v(·, t)‖L∞ ≤ c1 + c2 ln |ρ(·, t)|γ (2.24)

for some constants c1 and c2 which depend only on the initial data ρ0 and the time
T . Substituting (2.23) in (2.24) we obtain:

‖∇v(·, t)‖L∞ ≤ c̃1 + c̃2

∫ t

0

‖∇v(·, s)‖L∞ds, (2.25)

where c̃1 and c̃2 are again two constants depending only on the initial data ρ0 and1

the time T . By Gronwall lemma this gives us a bound for ‖∇v(·, t)‖L∞ on the time2
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interval [0, T ), which in turn, from (2.23), gives a bound for |ρ(·, t)|γ on the same1

time interval [0, T ). We can then use these two bounds on ‖∇v(·, t)‖L∞ and |ρ(·, t)|γ2

together with Gronwall lemma to conclude from (2.22) that |∇αXt|γ is bounded3

on the time interval [0, T ).4

Similar but easier estimates can be obtained for the other terms in the Banach5

norm ‖Xt‖1,γ defined in (2.3). This concludes the proof of Theorem 2.2.6

2.2. Existence of L∞ solutions7

This subsection is devoted to the proof of the following theorem:8

Theorem 2.3. Let ρ0 ∈ L1∩L∞(Rd) with compact support and let T be such that :

0 < T <
1

|ρ0|max
. (2.26)

Then there exists a function

ρ ∈ C([0, T ], L1(Rd)) ∩ L∞(Rd × (0, T ))

satisfying Eq. (1.1) in the sense of distribution and satisfying ρ(·, 0) = ρ0(·).
Moreover, for all t ∈ [0, T ] we have the following equalities :∫

Rd

ρ(x, t)dx =
∫

Rd

ρ0(x)dx, (2.27)

|ρ(·, t)|max =
(

1
|ρ0|max

− t

)−1

and |ρ(·, t)|min =
(

1
|ρ0|min

+ t

)−1

. (2.28)

Note that if the initial data is negative, then |ρ0|max = 0 and T can be chosen as
large as we want. Therefore when the equation is “spreading”, we have global exis-
tence. We recall that a function ρ(x, t) satifies Eq. (1.1) in the sense of distribution
if for all φ ∈ C∞

0 (Rd × (0, T )),∫ T

0

∫
Rd

(
∂φ

∂t
(x, t) + v(x, t) · ∇φ(x, t)

)
ρ(x, t)dxdt = 0,

where v(x, t) = −(∇N ∗ ρ(·, t))(x). (2.29)

Let us introduce the norm

� · � = ‖·‖L1 + ‖·‖L∞ .

Since ρ ∈ C([0, T ], L1(Rd)) ∩ L∞(Rd × [0, T ]) we clearly have that

�ρ(·, t)� ≤ C for all t ∈ [0, T ]

and as we will see, from classical potential theory estimates, this implies that the9

velocity field v = −∇N ∗ ρ is bounded on R
d × (0, T ). Therefore Eq. (2.29) makes10

sense.11
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To prove Theorem 2.3 we follow the ideas in Refs. 9, 53 and 68 by approximating1

the initial data by convolving with a mollifier. As usual let η ∈ C∞
0 (Rd) be a positive2

function of mass 1 and define ηε(x) = ε−dη(x/ε).3

Proposition 2.1. Consider a compactly supported initial density ρ0 ∈ L1∩L∞(Rd)4

and let ρε, vε be the corresponding smooth solution of the same evolution equation5

with regularized initial data ρε
0 := ηε ∗ ρ0 on the time interval [0, T ] where T <6

1/|ρ0|max. Then we have the following :7

(i) ρε ∈ C([0, T ], L1(Rd)).8

(ii) There exist constants c1 > 0 and c2 > 0 such that

‖ vε(·, t) ‖L∞ ≤ c1 � ρε(·, t)� ≤ c2 � ρ0 � for all ε > 0 and t ∈ [0, T ].

(iii) There exist functions ρ and v = −∇N ∗ ρ such that

sup
t∈[0,T ]

‖ρε(·, t) − ρ(·, t)‖L1(Rd) → 0 as ε → 0, (2.30)

‖vε − v‖L∞(Rd×(0,T )) → 0 as ε → 0. (2.31)

Proof. By mollifying the initial data at time zero, we consider continuous solutions
of the above problem

ρε(x, t) =
ρε
0(X

−t
ε (x))

1 − ρε
0(X

−t
ε (x))t

, (2.32)

where the particle trajectories satisfy

d

dt
Xt

ε = vε(Xt
ε(α, t), t), X0

ε (α) = α,

and the velocity vε = ∇N ∗ ρε. Recall from the previous section that the function
t �→ ρε(Xt

ε(α), t) det ∇αXt
ε(α) is constant and therefore, using (2.32), we have that

det(∇αXt
ε(α)) = 1 − ρε

0(α)t. (2.33)

As in the previous subsection define the constants 0 < k < 1 and K ≥ 1 by

k = 1 − T |ρ0|max and K = 1 + T |ρ0|min. (2.34)

We then have

k ≤ det(∇αXt
ε(α)) ≤ K (2.35)

for all ε > 0, t ∈ [0, T ] and α ∈ R
d.9

We first prove (ii). Note that using the fact that det(∇αXt
ε(α)) = 1−ρε

0(α)t > 0
and doing the change of variable α = X−t

ε (x) we have

‖ρε(·, t)‖L1 =
∫

Rd

|ρε
0(X

−t
ε (x))|

1 − ρε
0(X

−t
ε (x))t

dx =
∫

Rd

|ρε
0(α)|dα = ‖ρε

0‖L1 ≤ ‖ρ0‖L1 .
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From (2.32) we easily obtained ‖ρε(·, t)‖L∞ ≤ 2
k‖ρε

0‖L∞ ≤ 2
k‖ρ0‖L∞ for all t ∈

[0, T ] (such an estimate was derived in the previous section, see (2.11)–(2.13)). We
therefore obtain

�ρε(·, t)� ≤ 2
k

� ρ0 � ∀ t ∈ [0, T ].

Now let ω(x) be the characteristic function of the unit ball, ω(x) = χB(0,1)(x), then

‖vε(·, t)‖L∞ ≤ ‖ω∇N‖L1‖ρε‖L∞ + ‖(1 − ω)∇N‖L∞‖ρε‖L1

≤ C � ρε(·, t) �

≤ 2C

k
� ρ0� (2.36)

which concludes the proof of (ii).1

We now turn to the proof of (iii). We first need the following potential theory2

estimate that establishes a uniform log-Lipschitz estimate for the velocity field:3

Lemma 2.4. (Potential theory estimate for the velocity) Given an initial density
ρ0 ∈ L1 ∩L∞(Rd) and let ρε and vε be the smooth solutions as defined above. Then
vε satisfies the following estimate independent of ε

sup
t∈[0,T ]

|vε(x1, t) − vε(x2, t)| ≤ c � ρ(·, t) � |x1 − x2|(1 − ln− |x1 − x2|), (2.37)

where ln− is the negative part (near field) of the natural log.4

This lemma is proved for the case of the 2D Biot–Savart kernel for the incom-5

pressible Euler equations in Ref. 53. The extension to our problem is straightforward6

because our velocity kernel satisfies the same conditions as the Biot–Savart kernel,7

in fact the Biot–Savart kernel is a special case of the orthogonal flow in 2D. We8

leave the proof to the reader, noting that the estimate is well known for potential9

theory in R
d for the Poisson equation. This lemma directly yields the following10

estimates for the particle paths:11

Lemma 2.5. (Potential theory estimates for characteristics) Given the assump-
tions of Lemma 2.4 then there exist C > 0 and an exponent β(t) = exp(−C �ρ0 � t)
such that for all ε > 0 and t ∈ [0, T ],

|X−t
ε (x1) − X−t

ε (x2)| ≤ C|x1 − x2|β(t), (2.38)

|Xt
ε(α

1) − Xt
ε(α

2)| ≤ C|α1 − α2|β(t) (2.39)

and for all t1, t2 ∈ [0, T ],

|X−t1
ε (x) − X−t2

ε (x)| ≤ C|t1 − t2|β(t), (2.40)

|Xt1
ε (α) − Xt2

ε (α)| ≤ C|t1 − t2|β(t). (2.41)
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This lemma is proved in Ref. 53 (see Lemma 8.2) assuming the conditions of
Lemma 2.4 above. We note that the a priori bound for the L∞ norm of the velocity
field actually gives Lipschitz continuity in time, although this is not needed for the
proof below. By the Arzelà–Ascoli theorem there exist two functions Xt(α) and
Y t(x) and a sequence εk → 0 such that

Xt
εk

(α) → Xt(α) and X−t
εk

(x) → Y t(x) as εk → 0 (2.42)

and these convergences are uniform both in time and space on compact set of
R

d × [0, T ]. By passing to the limit in

Xt
ε(X

−t
ε (x)) = x; X−t

ε (Xt
ε(α)) = α

we obtain that Y t is the inverse of Xt. So we will write Y t = X−t.1

Given the above limiting particle paths X−t(x) we define the limiting density
according to the formula

ρ(x, t) =
ρ0(X−t(x))

1 − ρ0(X−t(x))t
. (2.43)

We also define the functions

ρ̃ε
0(α, t) ≡ ρε

0(α)
1 − ρε

0(α)t
and ρ̃0(α, t) ≡ ρ0(α)

1 − ρ0(α)t

so that ρε and ρ can be rewritten as:

ρε(x, t) = ρ̃ε
0(X

−t
ε (x), t) and ρ(x, t) = ρ̃0(X−t(x), t). (2.44)

The tilde notation is used to denote the time evolving densities in Lagrangian coor-2

dinates. Our goal next is to prove that ρε converge in L1 uniformly in time toward3

ρ. The proof here differs from the arguments in53 for the 2D vorticity problem due4

to the fact that the particle paths are not volume preserving, in contrast to the5

incompressibility of the 2D vorticity problem, and the fact that the density evolves6

in a prescribed way along particle paths rather than being conserved. We first derive7

some straightforward estimates on ρ̃ε
0 and ρ̃0:8

Lemma 2.6. For all ε > 0 and t, s ∈ [0, T ] we have:

sup
t∈[0,T ]

‖ρ̃ε
0(·, t) − ρ̃0(·, t)‖L1 ≤ 1

k2
‖ρε

0(·) − ρ0(·)‖L1 , (2.45)

‖ρ̃ε
0(·, t) − ρ̃ε

0(·, s)‖L1 ≤ ‖ρ0‖L∞‖ρ0‖L1

k2
|t − s|, (2.46)

‖∇αρ̃ε
0(·, t)‖L∞ =

1
k2

‖∇αρε
0(·)‖L∞ . (2.47)
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Proof. Estimate (2.45) is a simple consequence of the fact that:

ρε
0(α)

1 − ρε
0(α)t

− ρ0(α)
1 − ρ0(α)t

=
ρε
0(α) − ρ0(α)

(1 − ρε
0(α)t)(1 − ρ0(α)t)

.

Estimate (2.46) come from the equality

ρε
0(α)

1 − ρε
0(α)t

− ρε
0(α)

1 − ρε
0(α)s

=
ρε
0(α)2

(1 − ρε
0(α)t)(1 − ρε

0(α)s)
(t − s).

Estimate (2.47) comes from the fact that:

∇αρ̃ε
0(α, t) =

1
(1 − ρε

0(α)t)2
∇αρε

0(α).

Then we note that as a direct consequence of (2.35) and the change of variable
formula, we have that for any nonnegative integrable function f ,

k

∫
Rd

f(α)dα ≤
∫

Rd

f(X−t
ε (x))dx ≤ K

∫
Rd

f(α)dα. (2.48)

To conclude the proof of (iii) we will need a similar estimate for the limiting particle1

path X−t(x):2

Lemma 2.7. For all t ∈ [0, T ], and nonnegative f ∈ L1(Rd),∫
Rd

f(X−t(x))dx ≤ K

∫
Rd

f(α)dα. (2.49)

The proof, which involves some technical arguments from real analysis, can be
found in the appendix. We are now ready to prove that ρε converge in L1 uniformly
in time toward ρ. Using formula (2.44) we write:

‖ρε(·, t) − ρ(·, t)‖L1 ≤ ‖ρ̃ε
0(X

−t
ε , t) − ρ̃0(X−t

ε , t)‖L1

+ ‖ρ̃0(X−t
ε , t) − ρ̃0(X−t, t)‖L1.

Using (2.48) and (2.45) we see that the first term is bounded by K
k2 ‖ρε

0− ρ0‖L1 and
therefore can be made small uniformly in time. Next we rewrite the second term as

‖ρ̃0(X−t
ε , t) − ρ̃0(X−t, t)‖L1 ≤ ‖ρ̃0(X−t

ε , t) − ρ̃ε1
0 (X−t

ε , t)‖L1

+ ‖ρ̃ε1
0 (X−t

ε , t) − ρ̃ε1
0 (X−t, t)‖L1

+ ‖ρ̃ε1
0 (X−t, t) − ρ̃0(X−t, t)‖L1 .

Note that the function ρ̃ε1 is different from ρ̃ε. Let us fix a δ > 0. Once again,
because of the bound (2.48) and the bound (2.49) from Lemma 2.7 we can choose
an ε1 such that the first and the last terms are smaller than δ/3 for all ε > 0 and
for all t ∈ [0, T ]. We then claim that as ε → 0, the middle term converges to 0
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uniformly in time. Indeed, because of (2.47), there exists a constant C(ε1) > 0 such
that

|ρ̃ε1
0 (X−t

ε (x), t) − ρ̃ε1
0 (X−t(x), t)| ≤ C(ε1)|X−t

ε (x) − X−t(x)|.

Using the uniform convergence of the backward particle path and the fact that
there exists a compact set K0 such that

Xt
ε(supp ρε1

0 ) ⊂ K0 for all t ∈ [0, T ] and all ε > 0,

we can then choose ε small enough to make the ‖ρ̃ε1
0 (X−t

ε , t) − ρ̃ε1
0 (X−t, t)‖L1 less1

than δ/3 for all t ∈ [0, T ]. This concludes the proof of (2.30).2

We now show (2.31). The proof follows Ref. 53. Let ωδ(x) be the characteristic
function of the ball of radius δ, ωδ(x) = χB(0,δ)(x), then

‖vε(·, t) − v(·, t)‖L∞ ≤ ‖ωδ∇N‖L1(‖ρε − ρ‖L∞) + ‖(1 − ωδ)∇N‖L∞‖ρε − ρ‖L1

≤ ‖ωδ∇N‖L1
2‖ρ0‖L∞

k
+ ‖(1 − ωδ)∇N‖L∞‖ρε − ρ‖L1,

where we have used the bounds ‖ρε(·, t)‖L∞ ≤ 1
k‖ρ0‖L∞ and ‖ρ(·, t)‖L∞ ≤ 1

k‖ρ0‖L∞3

which can be directly read from the explicit formulas (2.32) and (2.43). Since ∇N4

is locally integrable the first term can be made small by choosing δ small. Then5

we let ε go to zero and we use the fact that ρε converges to ρ strongly in L1 and6

uniformly in time. This concludes the proof of (iii).7

Finally we show (i). Using formula (2.44) we write:

‖ρε(·, t) − ρε(·, s)‖L1 ≤ ‖ρ̃ε
0(X

−t
ε , t) − ρ̃ε

0(X
−t
ε , s)‖L1

+ ‖ρ̃ε
0(X

−t
ε , s) − ρ̃ε

0(X
−s
ε , s)‖L1

and we conclude using (2.48) and (2.46) for the first term, and (2.47) and (2.40)8

for the second term. The proof of Proposition 2.1 is complete.9

We now prove Theorem 2.3:10

Proof of the Theorem 2.3. Convergences (iii) and bounds (ii) allow one to pass
to the limit in (2.29)–(2.29) and therefore prove the existence of bounded compactly
supported solutions. The uniform convergence (2.30) together with (i) give the
continuity of ρ(t) as a function taking values in L1(Rd). To prove conservation of
mass (2.27), choose the test function φ in (2.29) to be

φ(x, t) = χε
[t1,t2]

(t)χε
B(0,R)(x),

where 0 < t1 < t2 < T and R is large enough so that supp ρ(·, t) ⊂ B(0, R) for all
t ∈ [0, T ]. The smooth function χε

[t1,t2]
is equal to one inside [t1 + ε, t2 − ε], equal

to zero outside of [t1 − ε, t2 + ε], increasing on [t1 − ε, t1 + ε] and decreasing on
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[t2 − ε, t2 + ε]. The function χε
B(0,R) is similarly defined. Then letting ε go to zero

in (2.29) and using the fact that

t �→
∫

Rd

ρ(x, t)dt (2.50)

is continuous on [0, T ] we obtain that
∫

Rd

ρ(x, t1)dt =
∫

Rd

ρ(x, t2)dt for all 0 < t1 < t2 < T.

Using again (2.50) we can let t1 → 0 to obtain the desired result. Equalities (2.28)1

can directly be read from (2.43) together with the fact that for t fixed, the function2

f(z) = (1/z − t)−1 is increasing on (−∞, +∞).3

2.3. Uniqueness of L∞ solution4

Uniqueness of solutions follows by an energy estimate involving the primitive of5

ρ — or in other words an H−1 inner product for a comparison of two densities. The6

argument requires several steps and involves some estimates with singular integral7

operators. It is the same argument that was used in Ref. 68 for the classical vorticity8

problem and more recently in a number of papers for the aggregation problem with9

and without diffusion, see Refs. 59, 9, 4 and 61.10

Theorem 2.4. The solution from Theorem 2.3 is unique.11

We omit the proof because it has already been done in a number of references12

above. We note that several papers already prove partial existence results combined13

with uniqueness. The main contribution of our paper is to fully develop the sharp14

existence theory for signed data.15

3. Convergence to Self-Similarity and Estimate16

of the Size of the Support17

In this section we consider solutions of Eq. (1.1) with negative initial data, or
equivalently, solutions of

∂ρ

∂t
+ div(ρv) = 0, v = ∇N ∗ ρ (3.1)

with positive initial data (note the change of sign in the formula defining the veloc-18

ity). Recall that for this problem solutions are spreading and exist globally in time,19

see Theorem 2.3. We prove in the theorem below that any positive solution of (3.1)20

with initial data in L∞ and with compact support converges in L1 to a spread-21

ing circular patch. The proof relies on an estimate for all time t of the size of22
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the support of ρ(·, t). For simplicity we normalize everything to mass one and we1

consider solutions belonging to P(Rd), the space of probability measures.2

Theorem 3.1. Suppose ρ0 ∈ P(Rd) is compactly supported and belongs to L∞(Rd).
Choose r0 and h0 such that

supp ρ0 ⊂ B(0, r0) and ‖ρ0‖L∞ ≤ h0. (3.2)

Let Φ(x, t) be the circular patch of mass 1 with initial height h0, that is

Φ(x, t) =
h0

1 + h0t
χB(0,R(t))(x), where R(t) = R0(1 + h0t)1/d and

R0 = (ωdh0)−1/d.

Note that since ρ ∈ P(Rd) we necessarily have R0 ≤ r0. Define

E(t) =
E0

(1 + h0t)1/2d−1 where E0 =
rd
0

Rd
0

− 1 ≥ 0.

Let ρ(x, t) be a solution of the PDE (3.1) with initial data ρ0(x). Then for all t ≥ 0
we have:

supp ρ(·, t) ⊂ B(0, r(t)) where r(t) = R(t)(1 + E(t))1/d (3.3)

and

‖ρ(·, t) − Φ(·, t)‖L1 ≤ 2E(t). (3.4)

Remark 3.1. We prove in Theorem 4.2 in the next section that in the two-3

dimensional case, the above 1/
√

t convergence rate is sharp (this is done by comput-4

ing a family of exact elliptical solutions). Moreover, for the special case of radially5

symmetric data, one has the sharper rate of convergence 1/t in all dimensions,6

because equations reduce to a version of the inviscid Burgers equation (see the last7

section of Ref. 11).8

Remark 3.2. It is enough to prove Theorem 3.1 for the Hölder continuous solution
given by Theorem 2.1. Indeed assume that the result of the theorem holds for all
compactly supported initial data which are Hölder continuous and assume that we
are given non-smooth initial data ρ0 ∈ L∞ satisfying (3.2). Let η(x) be a smooth
probability measure supported in the ball of radius 1, define ηε(x) = ε−dη(x/ε) and
ρε
0 = ρ0 ∗ ηε. Note that ρε

0 is still a probability measure. Now fix a δ > 0. For all
0 < ε < δ the function ρε

0 satisfy

supp ρε
0 ⊂ B(0, r0 + δ) and ‖ρε

0‖L∞ ≤ h0. (3.5)

Let ρε(x, t) be the classical solution given by Theorem 2.1 starting with initial data
ρε
0, 0 < ε < δ. Since we have assumed the result of the theorem holds for these
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solutions, from (3.5) we can conclude that

supp ρε(·, t) ⊂ B(0, rδ(t)) where rδ(t) = R(t)(1 + Eδ(t))1/d

for all 0 < ε < δ, where R(t) is defined as in the theorem and Eδ(t) is defined by
replacing r0 by r0 + δ. Fix a time t, since the particle path converges uniformly, by
letting ε → 0 we obtain

supp ρ(·, t) ⊂ B(0, rδ(t)) where rδ(t) = R(t)(1 + Eδ(t))1/d.

Then by letting δ → 0 we obtain the desired estimate (3.3). As will be pointed out1

at the end of the proof of Theorem 3.1, estimate (3.4) is a direct consequence of2

estimate (3.3).3

The remainder of this section is devoted to the proof of Theorem 3.1. As noted in4

Remark 3.2 we can assume without loss of generality that ρ0 is a Hölder continuous,5

compactly supported, probability measure. From now on let us fix such a ρ0, let us6

also fix r0, h0, Φ(x, t), R(t) and E(t) to be as defined in the theorem. Finally let7

ρ(x, t) be the Hölder continuous solution starting with initial data ρ0.8

3.1. Change of variables9

We now move into the reference frame of Φ(x, t). We do the change of variable:

x̃ =
x

R(t)
=

x

R0(1 + h0t)1/d
, t̃ = ln(1 + h0t) (3.6)

and we define

ρ̃(x̃, t̃) = Rd
0e

t̃ρ

(
R0e

t̃/dx̃,
et̃ − 1

h0

)
. (3.7)

One can easily check that ρ̃(x̃, t̃) satisfies

∂ρ

∂t
+ div (ρv) = 0, v = ωd∇N ∗ ρ − x

d
, (3.8)

where we have dropped all the tilde in the above equation for better readability.
One can also check that since ρ(x, t) ≤ h0

1+h0t for all x ∈ R
d and t ≥ 0, then

ρ̃(x̃, t̃) ≤ 1
ωd

for all x̃ ∈ R
d and t̃ ≥ 0. (3.9)

Note that the stationary state of (3.8) is the radially symmetric patch of radius10

one, height 1/ωd and mass one. Going back to the original variable, this stationary11

state obviously corresponds to Φ(x, t).12
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3.2. Estimate of the size of the support1

In this subsection we drop the tilde for convenience. The following general lemma2

is fundamental to our proof:3

Lemma 3.1. (Frozen in time estimate of the velocity at the boundary) Suppose
µ ∈ P(Rd) satisfies

suppµ ⊂ B(0, r) and ‖µ‖L∞ ≤ 1
ωd

(3.10)

for some r > 0 (note that since µ ∈ P(Rd) we necessarily have r ≥ 1). Then the
velocity field

v(x) = ωd(∇N ∗ µ)(x) − x

d

satisfies

v(x) · x ≤ − 1
2d−1drd−2

(rd − 1) for all x ∈ ∂B(0, r). (3.11)

Proof. Choose x such that |x| = r. Using the fact that ∇N ∗ χB(0,r)(x) = x/d we
obtain

v(x) = −ωd∇N ∗
[

1
ωd

χB(0,r) − µ

]
(x).

Note that the function between square bracket is positive and has mass rd − 1 and
is supported in B(0, r). So

v(x) · x = −ωd

∫
B(0,r)

∇N(x − y) · x
[

1
ωd

− µ

]
(y)dy

≤ −ωd

(
inf

y∈B(0,r)
∇N(x − y) · x

)
(rd − 1).

Note that since |x| ≥ |y| we have that

|x − y|2 = |x|2 − 2x · y + |y|2 ≤ 2|x|2 − 2x · y = 2(x − y) · x.

Therefore

∇N(x − y) · x =
(x − y) · x

dωd‖x − y‖d
≥ 1

2dωd‖x − y‖d−2
≥ 1

2dωd(2r)d−2
(3.12)

which conclude the proof.4

Define

Ωt = supp ρ(·, t) and L(t) = sup
x∈Ωt

|x|. (3.13)
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Also let X(α, t) be the (rescaled) particle paths, i.e.

d

dt
X(α, t) = v(X(α, t), t), X(α, 0) = α, (3.14)

where

v(x, t) = ωd(∇N ∗ ρ(t))(x) − x

d
. (3.15)

Fix a time t ≥ 0 and choose α so that X(α, t) ∈ Ωt and |X(α, t)| = L(t). Then,
heuristically,

d

dt

1
2
L(t)2 =

d

dt

1
2
|X(α, t)|2 = Ẋ(α, t) · X(α, t)

= v(X(α, t), t) · X(α, t) ≤ − 1
2d−1dL(t)d−2

(L(t)d − 1), (3.16)

where we have use Lemma 3.1 to obtain the last inequality. Multiplying both sides
by dL(t)d−2 leads to

d

dt
L(t)d ≤ − 1

2d−1
(L(t)d − 1)

which provide us with an estimate on the size of the support. In order to make the1

above heuristic argument into a rigorous one, we will need the following amount of2

regularity on the particle paths:3

(i) The particle paths X(α, t) are differentiable in time and satisfy (3.14) pointwise.4

(ii) |v(x, t)| is bounded on any compact set of R
d × [0, +∞).5

An elementary argument shows that condition (ii) guarantees that L(t) is contin-6

uous. Since we have chosen ρ0 to be Hölder continuous, Sec. 2 guarantees that7

the particle paths satisfy the regularity conditions (i) and (ii), see for instance8

Eq. (2.19). The above argument is in the same spirit as the proof of finite time9

blowup for L∞ solutions of aggregation equations with less singular kernels by the10

first two authors and Carrillo,10 in which they estimate the size of the support11

of the solution and show that it must collapse inside a ball with radius that goes12

to zero in finite time. We are now ready to prove rigorously the above heuristic13

argument.14

Lemma 3.2. (Estimate of the size of the support) Let ρ(x, t) be the solution of the
rescaled problem (3.8) with initial data ρ0 ∈ P(Rd) ∩ Cγ(Rd). Assume that

supp ρ0 ⊂ B(0, r0) and ‖ρ(·, t)‖L∞ ≤ 1
ωd

∀ t ≥ 0. (3.17)

Note that since ρ0 ∈ P(Rd) we necessarily have r0 ≥ 1. Let r(t) be such that :

d

dt
r(t)d = − 1

2d−1
(r(t)d − 1), r(0) = r0. (3.18)

Then ρ(·, t) is supported in B(0, r(t)) for all t ≥ 0.15
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Proof. Let Ωt, L(t) and X(α, t) be defined by (3.13) and (3.14). As ρ0 ∈ Cγ , (i)
and (ii) holds and the function L(t) is continuous. For 0 < ε < 1 define the function
rε(t) by:

d

dt
rε(t)d = − (1 − ε)

2d−1
(rε(t)d − 1), rε(0) = r0. (3.19)

Note that rε(t) decays toward 1 slower than the function r(t) defined by (3.18).
Note also that for t fixed, limε→0 rε(t) = r(t). We will prove that Ωt ⊂ B(0, rε(t))
for all t ≥ 0 and all 0 < ε < 1. Taking the limit as ε goes to 0 will then give the
desired result. Fix 0 < ε < 1. We do the proof by contradiction. Assume that there
exists a time t1 > 0 such that L(t1) > rε(t1) and define

T = {t ≥ 0 |L(t) ≥ rε(t)}.

Clearly t1 ∈ T so T is not empty. Since both L(t) and rε(t) are continuous, the set
T is closed. Therefore there exists a time t∗ ∈ T such that

t∗ = min T . (3.20)

Using again the continuity of L(t) and rε(t) we have that L(t∗) = rε(t∗). Choose
x ∈ Ωt∗ such that |x| = L(t∗) = rε(t∗) and let α = X−t∗(x). For this particle α, we
have:

|X(α, t∗)| = rε(t∗) and |X(α, t)| < rε(t) for all t < t∗. (3.21)

Let us prove the second statement. Since X(α, t∗) ∈ Ωt∗ , then X(α, t) ∈ Ωt for all
t ≥ 0. This simply comes from the fact that Ωt = Xt(Ω0). Since X(α, t) ∈ Ωt for
all t ≥ 0 we have that L(t) ≥ |X(α, t)| for all t ≥ 0 and therefore it is not possible
for |X(α, t)| to become greater than or equal to rε(t) before time t∗ otherwise t∗

would not be the minimum of T . To summarize, t �→ X(α, t) is the particle path
which first reaches the boundary of the ball of radius rε(t) and this occurs at time
t∗. Using (3.21) we then get that for h > 0,

X(α, t∗) − X(α, t∗ − h)
h

· X(α, t∗) ≥ |X(α, t∗)|2 − |X(α, t∗ − h)||X(α, t∗)|
h

≥ rε(t∗) − rε(t∗ − h)
h

rε(t∗).

Since the particle path are differentiable with respect to time and satisfies (3.14)
pointwise (see Sec. 2), letting h → 0 and then using (3.19) we obtain:

v(X(α, t∗), t∗) · X(α, t∗) ≥ r′ε(t
∗)rε(t∗)

= − 1 − ε

2d−1d rε(t∗)d−2
(rε(t∗)d − 1)

> − 1
2d−1d rε(t∗)d−2

(rε(t∗)d − 1).

This contradicts Lemma 3.1.1
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3.3. Proof of the theorem1

Let us now put back the tilde. Solving the ODE (3.18) we find that

r̃(t̃)d − 1 = (r̃d
0 − 1)e−

t̃

2d−1

and going back to the original variable this translates into:

r(t)d

R(t)d
− 1 =

(
rd
0

Rd
0

− 1
)

1

(1 + h0t)
1

2d−1
.

The right-hand side of the above equation is E(t). We therefore have proven2

estimate (3.3).3

We now show that the L1-estimate (3.4) is a direct consequence of the estimate
of the size of the support (3.3). Clearly ρ(·, t) is smaller than Φ(·, t) inside the ball
of radius R(t) and greater outside. Using moreover the fact that both Φ(·, t) and
ρ(·, t) have mass 1 we easily find that

‖Φ(·, t) − ρ(·, t)‖L1 =
∫
|x|≤R(t)

Φ(x, t) − ρ(x, t)dx +
∫
|x|>R(t)

ρ(x, t)dx

= 1 −
∫
|x|≤R(t)

ρ(x, t)dx +
∫
|x|>R(t)

ρ(x, t)dx

= 2
∫
|x|>R(t)

ρ(x, t)dx.

Using (3.3) and the fact that

‖ρ(·, t)‖L∞ ≤ h0

1 + h0t
=

1
ωdR(t)d

it is then easy to see that the mass of ρ(·, t) outside the ball of radius R(t) is
bounded by E(t):∫

|x|>R(t)

ρ(x, t)dx =
∫

r(t)≥|x|>R(t)

ρ(x, t)dx ≤
∫

r(t)≥|x|>R(t)

1
ωdR(t)d

dx

=
r(t)d

R(t)d
− 1 = E(t).

This conclude the proof of estimate (3.4) as well as the proof of Theorem 3.1.4

4. Exact Solutions and Numerical Examples5

In this section we construct a family of exact solutions in 2D and present numerical6

results in 2D and 3D. The family of exact solutions consists of elliptical aggre-7

gation patches and is derived directly from the well-known theory for elliptical8

vortex patches. For the collapsing problem, these exact solutions provide us with9

an example of aggregation patches collapsing to a nontrivial singular measure (The-10

orem 4.1). For the spreading problem, elliptical patches allow us to prove that the11
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convergence rate toward selfsimilarity derived in the previous section is sharp in1

2D (Theorem 4.2).2

We then present numerical results of more general aggregation patches in 2D and3

3D, the latter case having axial symmetry for ease of computation. The numerics4

can be made very accurate by reformulating the problem as a dynamics equation5

for the boundary of the patch alone and by doing a time change of variable so that6

the blow up occurs as s → ∞. The numerics illustrate the phenomena of collapse7

toward a complex skeleton in the collapsing case (Figs. 2, 5 and 6), as well as the8

phenomena of “pinching” of the boundary in the spreading case (Figs. 3 and 7).9

4.1. Elliptical patches in 2D10

There is a class of well-known vortex patch solutions to the 2D Euler equations con-11

sisting of rotating ellipses. These are known as the Kirchoff ellipses (see Kirchoff,4312

Chap. 20, Lamb44 p. 232, and Majda and Bertozzi53 Chap. 8). For these exact solu-13

tions, the velocity field associated with constant vorticity ellipse can be computed14

analytically along with the dynamics of the patch. By computing the orthogonal15

velocity field we immediately obtain an analytical formula for ∇N ∗ ρ for ρ the16

characteristic function of an ellipse.17

Given a density ρ = ρ0χE(a,b) where

E(a, b) =
{

x

∣∣∣∣x2
1

a2
+

x2
2

b2
< 1
}

,

the velocity field generated is precisely

v(x) =



− ρ0

a + b
(bx1, ax2), x ∈ E(a, b),

− ρ0√
a2 + λ2 +

√
b2 + λ2

((
√

b2 + λ)x1, (
√

a2 + λ)x2), x /∈ E(a, b),

where λ(x) satisfies

x2
1

a2 + λ
+

x2
2

b2 + λ
< 1.

We note that inside the ellipse (and on the boundary) the flow field is linear. Linear
flow fields map ellipses to ellipses and thus the elliptical shape is preserved under
the flow, although the major and minor axes will change. For the vorticity problem
this results in exact solutions that rotate at a constant angular velocity. For the
aggregation problem it results in ellipses that collapse or spread and for which we
obtain explicit ODEs for the major and minor axes:

ȧ = ḃ = −ρ(t)ab

a + b
, ρ(t) =

ρ0

1 − ρ0t
.

So the quantity a − b is conserved and we obtain the following theorem about18

collapsing elliptical patches:19

Theorem 4.1. (Collapse of positive Elliptical Patches toward singular measures)
Let ρ(x, t) be the solution of (1.1) starting with initial ρ0 ∈ P(R2) being the uniform
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distribution on the ellipse E0 = {x | x1
a2
0

+ x2
b20

< 1}, 0 < b0 ≤ a0. As t → T ∗, where
T ∗ = (πa0b0)−1 is the maximal time of existence, the solution converges weakly-*
as a measure toward the weighted distribution on the segment

µ(x1) =
2
√

x2
0 − x2

1

πx2
0

δI(x0),

where δI(x0) is the uniform measure on the interval x1 ∈ [−x0, x0] and x0 ≡ a0− b01

is the semi-major axis of the limiting ellipse, i.e. a0 → x0 as t → T ∗.2

The proof of this theorem is straightforward. From the exact solution we
have b0 → 0 and a0 → x0 as t → T ∗. Clearly the limiting measure is a
weighted measure on the interval from [−x0, x0]. So what is left is to compute
the weight. We note that prior to the collapse, the x2 coordinate of the ellipse

boundary satisfies x2(x1) = ±b(t)
√

1 − x2
1

a(t)2 . The weight function is the limit
of the portion of mass that collapses onto the point x on the interval and this

is simply limt→T∗ 2ρ(t)x2(x1) = limt→T∗ 2ρ(t)b(t)
√

1 − x2
1

a(t)2 . Using the fact that
ρ(t) = 1/π(a(t)b(t)) we can substitute this into the limit to obtain the weight

lim
t→T∗

2
πa(t)

√
1 − x2

1

a(t)2
=

2
πx0

√
1 − x2

1

x2
0

.

Note also that one can directly integrate the ODEs for a and b, in particular
using the dynamics of the product ab. It is easy to solve for both variables:

a(t) =
(a0 − b0) +

√
(a0 − b0)2 + 4a0b0(1 − ρ0t)

2
, (4.1)

b(t) =
−(a0 − b0) +

√
(a0 − b0)2 + 4a0b0(1 − ρ0t)

2
. (4.2)

Using the above exact solution we can now prove that the convergence rate in3

Theorem 3.1 is sharp in two space dimensions.4

Theorem 4.2. (L1 convergence rate of negative Elliptical Patches toward selfsimi-
larity) Let ρ(·, t) = ρ(t)χE(t) be an elliptical patch solution with negative initial data,

with ρ(t) = −1
1+t and E(t) = {x | x1

a(t)2 + x2
b(t)2 < 1}, a(t) and b(t) being the semi-major

axis and semi-minor axis of the ellipse E(t). Let Φ(x, t) = −(1 + t)−1χB(0,R(t)),

where R(t) =
√

(1 + t)/π. Then

‖ρ(·, t) − Φ(·, t)‖L1 = 4a0b0

[
2 arctan

(√
a(t)
b(t)

)
− π

2

]

=
2
√

a0b0(a0 − b0)√
1 + t

+ O

(
1

1 + t

)
.
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This is proved by a direct computation involving the above solutions.1

Remark 4.1. There are analogous ellipsoid solutions in 3D of the form x2
1

a2 + x2
2

b2 +2

x2
3

c2 = 1 where a, b, c satisfy ODEs involving elliptic integrals. This is due to a known3

formula for the gradient of the Newtonian potential convolved with an ellipsoid in4

3D, a classical result that comes from the Newtonian physics of self-gravitating5

bodies. Computing these solutions is beyond the scope of this paper however we6

expect them to have similar qualitative behavior to the 2D elliptical solutions.7

4.2. Collapsing aggregation patches, time rescaling,8

and contour dynamics9

We now consider the case of a general collapsing patch. Without loss of generality
we take the initial density to be one and for simplicity of notation we assume that
the patch is simply connected with smooth boundary. Formally we compute a time
and amplitude rescaling for the equations of motion by defining

s = ln
1

1 − t
, ρ̃ = (1 − t)ρ, ṽ = (1 − t)v. (4.3)

Substituting these changes into the original equation ρt + ∇ · (ρv) = 0, after some
calculus we formally obtain

ρ̃s + ṽ · ∇ρ̃ = 0; v = −∇N ∗ ρ̃, (4.4)

where in the above calculation we use the fact that −∇ · v = ρ and that term
cancels the additional term obtained from differentiating ρ = ρ̃

1−t with respect to
time. We also use the fact that ρ(x, t) is 1

1−t times the characteristic function of
the domain Ωs = Ω(t) for s = − ln(1 − t). The upshot is that we have a new time
variable s and the patch singularity occurs as s → ∞. Moreover, the patch remains
a characteristic function (the rescaled density does not grow or shrink) and it is
simply transported along characteristics of the rescaled velocity. The next step is
to rewrite (4.4) as a dynamic equation for the boundary of the patch. This can be
done following the classical contour dynamics formulation for vortex patches.53,69

Note that, integrating by parts, we can express ṽ as a boundary integral:

ṽ(x, s) = −∇N ∗ χΩs(x) =
∫

∂Ωs

N(x − y)n(y)dσ(y). (4.5)

For the two-dimensional problem, we drop the tilde in Eq. (4.5) and parametrize
the curve ∂Ωs by z(α, s), α ∈ [0, 2π], a Lagrangian variable. We obtain

v(x, s) =
∫ 2π

0

N(x − z(α, s))
[ ∂z

∂α
(α, s)

]⊥
dα

and since Ωs moves according to v we get

∂z

∂s
(α, s) =

1
2π

∫ 2π

0

ln |z(α, s) − z(α′, s)|
[ ∂z

∂α
(α′, s)

]⊥
dα′. (4.6)
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We discretize ∂Ωs with N particles X1(s), . . . , XN (s). We use a midpoint rule
to approximate the velocity field:

v(x, s) =
1
2π

∫
∂Ωs

ln |x − y|n(y)dσ(y)

≈ 1
2π

N∑
i=1

ln
∣∣∣∣x − Xi+1 + Xi

2

∣∣∣∣ (Xi+1 − Xi)⊥

|Xi+1 − Xi|
|Xi+1 − Xi|

=
1
2π

N∑
i=1

ln
∣∣∣∣x − Xi+1 + Xi

2

∣∣∣∣ (Xi+1 − Xi)⊥ (4.7)

with the convention that XN+1 := X1. See Fig. 1(a) for a graphic explanation of1

this formula.2

−5 −2.5 0 2.5 5
−2

−1

0

1

2
Numerics
Exact solution

(a) Quadrature schematic (b) Ellipse 50 points

−5 −2.5 0 2.5 5
−2

−1

0

1

2
Numerics
Exact solution

(c) Ellipse 150 points

Fig. 1. 2D collapsing aggregation patches. (a) schematic of quadrature. (b) and (c) show an exact
elliptical solution with respectively 50 and 150 gridpoints compared with the analytic solution at
times t = 0, 0.62, 0.86, 0.95.
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This leads to the system of ODEs

Ẋk =
1
2π

N∑
i=1

ln
∣∣∣∣Xk − Xi+1 + Xi

2

∣∣∣∣ (Xi+1 − Xi)⊥, 1 ≤ k ≤ N (4.8)

that we solve using an adaptive Runge–Kutta–Felhberg algorithm order 4/51

(“ODE45” in MATLAB). These schemes use an adaptive timestep chosen by setting2

the local time truncation error. In our simulations we take that to be smaller than3

10−5. Figures 1(b) and 1(c) show the results of the numerics for the exact elliptical4

solution starting with the initial ellipse x2
1/52+x2

2/22 = 1. We compare results with5

50 versus 150 grid points at times t = 0, 0.62, 0.86, 0.95. The results compare well6

with the exact solution shown as a solid line. More information about the accuracy7

of the numerical scheme can be found in the Appendix. In Fig. 2 we show that8

aggregation patches of more general shapes typically collapse toward more complex9

skeletons. Each has initial data that is the characteristic function of some region.10

The singularity time is t = 1. At the collapse time, the patch becomes a singular11

measure supported on a domain of Lebesgue measure zero which consists of the12

−1 −0.5 0 0.5 1
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−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a) Rounded triangle:
boundary at t = 0

(b) Rounded triangle:
boundary at t = 0.92

(c) Rounded triangle:
boundary at t = 0.99995
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−3 −2 −1 0 1 2 3

−2
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0

1

2

−2 −1 0 1 2
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(d) A pentagon – 1000 points (e) A random shape –
5000 points

(f) An annulus – 1000 points

Fig. 2. 2D collapsing aggregation patches. All examples show an initial patch that is the charac-
teristic function of some region. At t = 1 the solution converges to a set of measure zero. (a)–(c)
show snapshots of the boundary evolution of such a patch. In this example, as t → 1, the patch
converges toward a singular measure supported on a three-branched star. Other high resolution
simulations with various shapes are shown in (d)–(f). In each image, the dashed line is the bound-
ary of the patch at time t = 0 and the solid line is the boundary at time t = 0.99995. The number
of grid points used is displayed in each subfigure.
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union of intersecting curves. The patch skeleton shown is actually the solution of1

true patch at time t = 0.99995; the boundary has almost collapsed and the interior2

is not visible. The annulus example in Fig. 2(f) retains its empty core at the collapse3

time.4

4.3. Spreading case in two dimensions5

We now consider the case of a spreading patch solution, corresponding to a negative
solution of (1.1) or a positive solution of (3.1). Without loss of generality we assume
the initial density is the characteristic function of some region. We make a similar
change of variables to those in the previous subsection with some modifications:

s = ln(1 + t), ρ̃ = (1 + t)ρ, ṽ = (1 + t)v − x̃/d, x̃ = x/(1 + t)1/d. (4.9)

Note the additional rescaling of space along the lines of the similarity variables
described in Sec. 3. Also note that ṽ is divergence-free inside the patch, due to
the additional x/d term subtracted. Substituting these changes into the original
equation ρt + ∇ · (ρv) = 0, after some calculus we formally obtain

ρ̃s + ṽ · ∇̃ρ̃ = 0; ṽ = ∇̃Ñ ∗ ρ̃ − x̃/d. (4.10)

The patch remains a characteristic function (the rescaled density does not grow or6

shrink) and it is simply transported along characteristics of the modified velocity7

field. We write the equation for the boundary of the patch following the contour8

dynamics formalism described above and compute the solution for several exam-9

ples in 2D. The results are shown in Fig. 3 in the rescaled variables. Note that10

initial regions of high curvature produce defects in the long time limit in which the11

boundary folds on itself, despite the L1 convergence to the exact circular solution.12

Note that we cannot have convergence in L∞ because the solution and its limit are13

both piecewise constant. The numerics suggest that one may not have pointwise14

convergence of the boundary due to the defects.15

Figure 4 shows a computational example involving interacting particles (point16

masses) for the spreading problem. Note that they also self-organize in the long17

time limit to the exact circular patch solution.18

4.4. 3D numerics — axisymmetric patches19

Here we compute some axisymmetric examples in 3D. We construct the boundary
of the patch as a surface of revolution. Let(

x(α), y(α)
)
∈ ]0, 1[

be a curve in the x − y half-plane for x > 0. We rotate this curve in three dimen-
sions, about the y-axis, to obtain a surface of revolution. The surface can thus be
parametrized by

φ(α, θ) =
(
x(α) cos(θ), y(α), x(α) sin(θ)

)
, α∈ ]0, 1[, θ∈ ]0, 2π[.
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(a) Star: boundary at s = 0 (b) Star: boundary at s = 2 (c) Star: boundary at s = 10
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(e) A strongly perturbed
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5000 points

Fig. 3. Four examples of contour dynamics for the rescaled spreading problem (4.10) in two
dimensions. (a)–(c) show snapshots of the boundary evolution of a patch. At time s = 10 the
patch has reached steady state. (d)–(f) show various shapes: the initial boundary is shown as a
dashed line and the long time limit (s = 10) is shown as a solid line.
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Fig. 4. 2D spreading dynamics for initial data a sum of 2000 particles. The long time limit is
shown on the right.
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For the collapsing problem, the velocity at a point p is

v(p) =
∫

α

∫ 2π

θ=0

− 1
4π‖p− φ(α, θ)‖

∂φ

∂θ
× ∂φ

∂α
(α, θ) dθdα.

Hence for a point p = (X, Y, 0) in the (Oxy) plane we have

�v(X, Y, 0))

=
∫

α

∫ 2π

θ=0

−x(α)


y′(α) cos(θ)

−x′(α)
y′(α) sin(θ)




4π
√

(x(α) cos(θ) − X)2 + (x(α) sin(θ))2 + (y(α) − Y )2
dθdα.

By symmetry v(X, Y, 0) · ez = 0 so we define vX and vY by

v(X, Y, 0) = vX(X, Y )ex + vY (X, Y )ey.

After some integration we find

vX(X, Y ) =
∫

α

1
π

x(α)y′(α)
A
√

A + B

[
(A + B)E

(
2A

A + B

)
− BF

(
2A

A + B

)]
dα,

vY (X, Y ) =
∫

α

1
π

x(α)x′(α)√
A + B

F
(

2A

A + B

)
dα

with

A(α) = 2x(α)X, B(α) = x2(α) + X2 + (y(α) − Y )2

and E , F are the complete elliptic integral of the first and second kinds

E(m) =
∫ π

2

0

√
1 − m sin2(x)dx, F(m) =

∫ π
2

0

dx√
1 − m sin2(x)

, m ∈ [0, 1].

If the surface has a toroidal topology, then the section in the (Oxy) half-
plane is a closed curve Γ. As in the 2D case, we discretize Γ with N particules
(x1(s), y1(s)), . . . , (xN (s), yN (s)) and use a midpoint rule to approximate the veloc-
ity field:

ẋk =
1
π

N∑
i=1

xi+1 + xi

2
(yi+1 − yi)

1
Ai

√
Ai + Bi

×
[
(Ai + Bi)E

(
2Ai

Ai + Bi

)
− BiF

(
2Ai

Ai + Bi

)]
,

ẏk =
1
π

N∑
i=1

xi+1 + xi

2
(xi+1 − xi)

1√
Ai + Bi

F
(

2Ai

Ai + Bi

)
,

1140005-32



1st Reading

December 20, 2011 16:13 WSPC/103-M3AS 1140005

Aggregation via the Newtonian Potential and Aggregation Patches

where xN+1 := x1, yN+1 := y1 and

Ai = 2xk
xi+1 + xi

2
,

Bi =
(

xi+1 + xi

2

)2

+ x2
k +

(
yi+1 + yi

2
− yk

)2

.

As in 2D we present some numerical results. In Figs. 5 and 7 we show a section1

of the surface rather than the surface itself for readability. We also show a complete2

3D surface in Fig. 6. We observe similar behavior in 2D and in 3D: in the collapsing3

problem the patches converge to a skeleton of codimension 1, and in the expanding4

problem the patches converge to a ball (in rescaled coordinates). Note that in the5

expanding case, since the figures display the section of the surface in the half plane,6

the limit is a half circle. Note also that when there is a high curvature the long time7

limit presents the same defaults on the boundary as in 2D.8

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1 2 3
−1

0

1 1

0 2 4 6

−2

0

2

(a) Circle section - 200
points

(b) Square section - 600
points

(c) Random section
- 5000 points

Fig. 5. Three examples of 3D collapsing patches showing the section of the surface in the x – y
half-plane. Case (b) is also shown below in Fig. 6 as a surface of revolution. The dashed line is
the initial data and the solid line shows the boundary at t = 0.99995.

(a) Initial state (b) Collapsed state

Fig. 6. 3D visualization of Fig. 5(b), a toroidal patch with a square section.
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(a) Circle section – 200
points

(b) Astroidal section – 600
points

(c) Random section – 5000
points

Fig. 7. 3D rescaled expanding patches. These figures show the section of the surface in the x–y
half-plane. The dashed line is the initial data and the long time limit is shown as a solid line.

Appendix. Proof of Lemma 2.71

Lemma A.1. For all t ∈ [0, T ], and nonnegative f ∈ L1(Rd),∫
Rd

f(X−t(x))dx ≤ K

∫
Rd

f(α)dα. (A.1)

Proof. Recall that X−t
ε (x) converge uniformly toward X−t(x) on compact subset

of R
d × (0, T ) and that

k ≤ det(∇αXt
ε(α)) ≤ K (A.2)

for all ε > 0, t ∈ [0, T ] and α ∈ R
d. First we are going to show that

|Xt(E)| ≤ K|E| (A.3)

for all bounded measurable set E ⊂ R
d. Here |E| denote the Lebesgue measure of2

the set E.3

Assume first that E = Bx0,r is a ball of radius r < ∞ centered at x0 ∈ R
d.

Given any λ > 1 there exists an ε > 0 such that

|Xt(Bx0,r)| ≤ |Xt
ε(Bx0,λr)| ≤ K|Bx0,λr| ≤ λdK|Bx0,r|.

To see this, note that since X−t
ε (x) converge uniformly toward X−t(x) on compact4

sets, we have that given λ > 1, Xt(Bx0,r) ⊂ Xt
ε(Bx0,λr) if ε is small enough. This5

gives the first inequality. The second inequality comes from (A.2) and the third6

inequality is just a rescaling of the ball in R
d. Letting λ → 1 we see that (A.3)7

holds for any ball of finite radius.8

Assume now that E = O is a bounded open set and let λ > 1. By a classical
covering lemma (see e.g. Lemma 2, p. 15, in Ref. 64) there exists a finite number
of pairwise disjoint balls Bx1,r1 , . . . , Bxk,rk

so that

∪iBxi,ri ⊂ O ⊂ ∪iBxi,λri .
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Then, since (A.3) holds for balls, we have:

|Xt(O)| ≤
∑

i

|Xt(Bxi,λri)| ≤ K
∑

i

|Bxi,λri | = λdK
∑

i

|Bxi,ri | ≤ λdK|O|.

Letting λ → 1 we see that (A.3) holds for any bounded open set.1

We now show that (A.3) holds for any bounded measurable set E. Let On be a
sequence of bounded open set such that E ⊂ On and |On| → |E|. Thus we have

|Xt(E)| ≤ |Xt(On)| ≤ K|On| → K|E|.

Finally we approximate f by simple functions. For λ > 1 let:

f ≤
∞∑

i=−∞
λiχEi < λf, where Ei = {x : λi−1 < f(x) ≤ λi}.

Here χEi(x) is the characteristic function of the set Ei. Using this construction we
have ∫

Rd

f(X−t(x))dx ≤
∫

Rd

∑
i

λiχEi(X
−t(x))dx =

∑
i

λi|Xt(Ei)|

≤ K
∑

i

λi|Ei| = K

∫
Rd

∑
i

λiχEi(α)dα ≤ λK

∫
Rd

f(α)dα.

Numerical convergence in 2D2

We perform a mesh refinement study to illustrate that the scheme is O( 1
N ) where3

N is the number of particles which discretize the boundary of the patch. The4

quadrature would ordinarily be O( 1
N2 ) however the singularity of the kernel keeps5

it at O( 1
N ) and this is illustrated below.6
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log10 of the number of points
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e 
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Newtonian kernel →

Non–singular kernel →

experimental points
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Fig. A.1. Logarithm of the error with respect to the number of points, with linear fit y = px+ q,

shown are the Newtonian potential and a smooth kernel K(x) = e−
x2
2 .
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We compute the time evolution of an elliptical patch with N = 2kN particles on1

the boundary for k = 1, . . . , 12 from s = 0 to s = 3. Then we compare at final time2

s = 3 each solution fk with 2kN points, k = 1, . . . , 11 to the solution f12 that has3

the most points. More specifically we compute the average distance between the4

points of fk and the points of f12 (subsampled). Then we repeated the calculation5

with the nonsingular kernel K(x) = e−
x2
2 instead of the Newtonian kernel N . Then6

we do a linear fit y = px+ q. Figure A.1 displays both results. The slope of the line7

for the Newtonian kernel is −1.06 whereas the slope of the line for the exponential8

kernel is −2.02.9
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