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Abstract. We consider the effect of a second-order ‘porous media’ term on the evolution of 
weak solutions of the fourth-order degenerate diffnsion equation 

ht = -V. (h“VAh - Vhm) 
in one space dimension. The equation without the second-order term is derived from a 
‘lubrication approximation’ and models surface tension dominated motion of thin viscous films 
and spreading droplets. Here h(x. I) is the thickness of the film, and the physical problem 
corresponds to n = 3. 

For simplicity, we consider periodic boundary conditions which has the physical 
interpretation of modelling a penodic “ray of droplets. In a previous work we studied the above 
equation without the second-order ‘porous media’ term. In particular we showed the existence 
of non-negative weak solutions with increasing support for 0 < n < 3 but the techniques failed 
for n > 3. This is consistent with the fact that, in this case, non-negative self-similar source-type 
solutions do not eltist for n 2 3. 

In this work, we discuss a physical justification for the ‘porous media’ term when n = 3 
and 1 -= m < 2. We propose such behaviour as a cut off of the singular ’disjoining pressure’ 
modelling long rangc van der Waals interactions. 

FQI all n > 0 and 1 c m c 2, we discuss possible behaviour at the edge of the support 
of the solution via leading order asymptotic analysis of travelling wave solutions. This analysis 
predicts a certain ‘competition’ beween the second- and fourth-order tem. We present rigorous 
weak existence theory for the above. equation for all n > 0 and 1 < m c 2. In particular, the 
presence of a second-order ‘porous media’ term in the above equation yields mn-nego~ive weak 
solutions that converge to their mean as t -+ m and that have additional regularity. Morwver, 
we show that there exists a time T’ after which the weak solution is a posifive strong solution. 
For n =- 312 we show that the regularity of the weak solutions is in exact agreement with Ulat 
pedicled by the asymptmics. 

Finally, we present several numerical computations of solutions. The simulations use a 
weighted implicit-explicit scheme on a dynamically adaptive mesh. The numerics suggest that 
the weak solution described by our existence thwry has compact support with a finite speed 
of propagation. The data confirms the local ‘power law’ behaviour at the edge of the support 
predicted by asymptotics. 
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1. Introduction 

We consider weak solutions of the fourth-order degenerate diffusion equation 

A L Bertozzi and M Pugh 

fit = -V. (f (h)VAh - Vh”’) (1) 

in one space dimension. We study the case where f (h) = h“, n z 0. This equation is 
relevant to surface tension dominated motion of thin viscous films and spreading droplets 
[IS]. The second-order term in the equation, Ah’”, arises as a cut off of van der Waals 
interactions. We refer to it as the ‘porous media’ term since it is the nonlinearity that arises 
in the well known ‘porous media’ equation [25]. Physically, h is the thickness of the the 
film. This paper considers weak solutions that can be zero on a set of non-zero measure, 
hence are relevant to the droplet problem. We show that for n > 3, the inclusion of such a 
‘porous media’ term removes the singularity associated with the movement of the ‘contact 
line’ identified in a previous work [6]. 

1.1. LDng range van der Waals interactions and the lubrication approximation 

The lubrication approximation for a thin film of liquid on a solid surface yields a fourth- 
order degenerate diffusion equation for the film height [18]. In one space dimension, with 
a no slip boundary condition on the liquid solid surface, it is 

(2) ht + (lh13hxx~)x = 0. 

The derivation uses the Stokes equation for steady viscous flow combined with a depth 
averaging of the fluid velocity in the direction perpendicular to the surface. 

The no slip boundary condition causes a paradox for films with a moving edge or 
contact line. Indeed, a moving contact h e  produces infinite energy dissipation [17, 191. 
Many authors have considered ways of addressing this problem, including the use of a 
‘slip condition’ on the liquidlsolid interface. In [6], we discussed the ‘slip models’ which 
mathematically add a term of  the form plhlp, 0 c p < 3 to the diffusion coefficient lhI3 in 

The inclusion of van der Waals forces has been proposed by several authors [28, 151 to 
describe such physical phenomena as film rupture (in the repulsive case) and the precursor 
film (in the attractive case). In this paper we only address the attractive case. 

The boundary of the support of the weak solution physically corresponds to the contact 
line, the triple contact point of the airfliquid, air/solid, and solidfliquid interfaces. We denote 
the respective interfacial surface energies of the three interfaces by nv, ysv, and y~s. The 
spreading parameter, S, of the system is 

(3) 

(2). 

s = YSV - m - nv.  
When S > 0, the drop energetically prefers to completely wet the surfacet and the long 
range character of the molecular interactions are important to the local dynamics close to the 
liquid/solid interface 1221. Such interactions are important on a mesoscopic lensth scales 
and can be described in terms of a disjoining pressure [26, 201. 

Following [28, 10, 141, the depth averaged fluid velocity satisfies 

h2 yh2 d3h A yhZ d3h 
u(X) = --(rl(h))x + -- = ___ hz+-- 

3rl 37 dx3 637h217 37 dr3 
(4) 

t One calk this situation complete wening as opposed to partial welting. 
t Approximately ~ M I W O  A. 
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where y is the surface tension and q is the fluid viscosity. The disjoining pressure l7 is 
taken to be -& where A is the Hamaker constant. 

Mass conservation gives an evolution equation for the film height: 

In the complete wetting problem, A 0. Ignoring the capillary term and considering 
only the long range van der Waals forces yields a super diffusive equation for the film 
height 

Solutions to this problem are known to have quite singular behaviour [12, 13, 241. In 
particular, one would expect infinite speed of propagation of the support and it is unclear 
if one can even make sense of this equation for initial data with compact support. 

Several authors have suggested that since intermolecular effects are. not expected below 
a certain length scale, the long range van der Waals model is not reasonable in the limit as 
h + 0 [22, 281. In this spirit, we propose a simple cut-off of the gradient of the disjoining 
pressure at a molecular length scale, h,t. Mathematically, this means replacing the gradient 
of the disjoining pressure by 

where (o,(h) is a non-negative cut-off function which is 1 for h =- h, and vanishes at 
h = 0. We make the ansatz that the cut-off function vanishes l i e  hm as h + 0. This 
produces a modified van der Waals term in (5) that is - (logh)z, for h, i c  h < 1 but 
has a subdiffusive 'porous media' like behaviour, (h'"),,, below the molecular scale h,. 

The rigorous theorems presented here are for a simplified equation (1) with just the 
cutoff behaviour. Since the equation with the cut-off van der Waals term (6) is uniformly 
parabolic in any region where h >, m 0, we expect that a suitable 'weak' solution will 
be completely smooth where h > 0 and that the regularity and well-posedeness properties 
of the solution will be controlled by the behaviour of the diffusion coefficients in the limit 
as h + 0. For this reason, we expect our results for the simpler model (1) to hold for the 
full equation with the cut-off van der Waals term (6). 

In section 6 we present some computations of both the simplified equation (1) and the 
full equation (5) with a cut-off van der Waals term (6). In, the latter case, the solution 
exhibits a pronounced 'foot' analogous to the physical precursor film. 

1.2. Degenerate dijj'ision equotions: fourth order versus second order 

We now compare the fourth-order 'lubrication approximation' equation 

hi = -(lhl"hxzx)z = -(f(h)hxdz (7) 

hi (h"')zx. (8) 

to the second-order porous media equation 

1.2.1 The porous media equation For m =- 1, the parous media equation (8) has unique 
weak solutions. On the real line, if the initial data is non-negative and has compact support, 

t Such a method was suggested to us by A M W a r  (private communication). 
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then there exists a unique non-negative weak solution to the equation. This solution has 
compact support that propagates with a finite speed. The porous media equation possesses 
non-negative self-similar sourcetype solutions for all m > 1 

A L Bertovi and M Pugh 

h(x, t )  = ~Z/mt-l/(m+I) ~(xM-(m-l)i(m+l)t-ll(m+l) ) 

Weak solutions with compact support converge to these source-type solutions as t ? 00 

1211. 
Note that for 1 < m < 2 the 'source type' solutions 'touch down' with zero slope. In 

[6] we found a family of solutions for the fourth-order lubrication equation that also touch 
down with zero slope. In this paper we show that when 1 < m c 2 and n > 0 there 
exist weak solutions to equation (1) that have zero slope at the edge. The rigorous theory 
for this second-order problem relies heavily on a maximum or comparison principle. This 
technique is not directly applicable to higher order problems. 

1.2.2. The lubrication approximation The fourth-order problem (7) does not satisfy a 
maximum principle. However, the equation possesses a number of conserved and dissipated 
quantities that provide a weak solution theory via energy methods. In particular we have 
the following weak existence theorem [6]t. 

Theorem 1.1. Given any non-negative initial condition ho E H'(S') ,  ho > 0 we have the 
following results 

Case 1. Given 1 < n c 2 0 < s < min(2 - n, i), and a time T there exists h > 0, 
h E L"(0, T ;  H ' ( S L ) )  nL2(0, T ;  H2(S1)) ,  that satisfies the equation in the following sense: 

Moreover, 

h(x. 0) = h&) VX E S' 

h,(., t )  + hoX strongly in L2(S') as t + 0. 

Furthermore, given a > - $ h hns the additional regularity 

h'"'' E L'(0, T; H2(S'))  

and 

(h'% E L4(Q2-). 

Moreover, there existpositive A and c such that for all t E [0, TI, 

p(., t )  - i?llp < Ae-" (11) 
where i% is the mean value of h. A depends only on Iho\,p, I;, n, and IS'I. The rafe of decay, 
c, depends only on n, and i?. In particular, ifho is nonzero there exists a time T* after which 
the solution is a positive strong solution. 

t Similar regularity and long-time mults have been recently proven for 0 < n < 3 for solutions in a weaker, 
non-distribution sense [l]. 
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< n < 1 the above is true ifwe replace the equation (IO) with a solution in Case IA. I f  
the sense 

where a! is chosen so that n z (Y 2 

Case 2. If2 < n < 3, given any 0 < r < 1 satisfying 0 < 2+r -n  < 1 then for any T there 
exists h 2 0 such that h E L"(0, T ;  H'(S')) and h satis$es the equation in the following 
sense: 

- 2. 

The initial data are achieved as above. Furthermore, h has the additional regulariry 
' h'+r'2 E L2(0, T ;  H2(S ' ) )  

and 
r 1  

VU > - + -. 
4 2  (ha), E L4(Qr) 

The long time behaviour is as above (U). 

The statement for n = 2 is as in case 2 with a minor change in the form of the equation. 
There also is an existence result for 0 < n < 318 in a weaker sense introduced in 121. See 
[6] for a discussion. 

What is sviking about these results is that the additional regularity of the weak solutions 
for o < n < 3 is in exact agreement with the regularity of 'zero contact angle' non-negative 
source type solutions (see (18)-(20) below). That is, if we assume that the limiting solution 
h(x,  t )  has support compactly contained in S' and and h(x)  - xp at the edge of the support 
for all t on some interval [O, TI ,  then the regularity constraints demand that 

Furthermore, the techniques used in proving theorem 1.2 fail for n 2 3. This is consistent 
with the lack of similarity or advancing front solutions for n 2 3. 

We briefly discuss some exact solutions for the equation 

ht + (Ihl"hzxx)z = 0. (15) 

Compactly supported non-negative self-similar 'source type' solutions exist for all 
0 < n < 3 131. They have the scaling form 

(16) 
1 h(x ,  t )  = t P H ( 7 )  7 = xt-' a ! = -  

n + 4 .  
Where H ( q )  solves the ODE 

H" H,,, = or7 H. (17) 

For a given n and mass, there is more than one compactly supported non-negative symmetric 
solution to this ODE. However, if we impose the additional constraint that the solution have 
H, = 0 at the edge of the support, the solution is unique. This was proven in [3], in which 
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they also proved that these 'most regular' solutions have the following behaviour at the 
edge of their support: Let [ -a ,  a] denote the support of X(q) .  Then 

A t Bertozzi and M Pugh 

for 0 < n < 3 12, H ( q )  - (a - q)' as q t a 
for n = 312 H(q)  - (a - q)'log(l/(a - q))'D as q f a 
for 312 -= n c 3 X ( q )  - (a - q)3'" as q t a .  

(18) 

(19) 
(20) 

The less regular solutions have H ( q )  - (a - q). 
Starov [27] first noted that there are no finite mass 'source-type' solutions for n = 3. 

Brenner and Bertozzi [9] addressed the significance of this fact for the physical problem 
of spreading droplets. The n = 3 case arises when there is a no-slip boundary condition 
at the liquid/solid interface. The lack of such scaling solutions is consistent with the fact 
that a no-slip boundary condition leads to infinite energy dissipation at the contact line for 
spreading drops with a finite contact angle [17, 191. 

The non-existence of source type solutions for n 3 is due to the structure of the ODE 
(17) and is in sharp contrast to the source type solutions for the porous media equation (8) 
which exist for all m > 1. 

There are also travelling wave solutions of the form h(x, t )  = X ( x  - ct)  as described 
in [SI. Again, we see transitions in the behaviour at critical values of n. It is noteworthy 
that there are no advancing front solutions for n > 3. For 3/2 < n c 3 there are advancing 
front solutions with the simple form 

3 3 3  
otherwise n n n h ( x , t )  = c = (- -2)(- - 1)-A". 

For 0 c n c 312 there are advancing front solutions with quadratic A(x - ct)' leading 
order behaviour [SI. Finally, there are exact steady solutions for all n 

A - Bx' 1x1 < A / J E  
otherwise. 

h ( x , t )  = 

The proof of the theorem 1.1 depends on certain dissipated energies. In this paper we 
derive analogous estimates for the equation with both fourth-order and second-order terms 
present: 

dh - + (h"hx,,), - (h")xx = 0. dt 
We briefly discuss some properties of smooth solutions that we use to prove needed a 

For example, we have conservation of mass, 
priori estimates. 

When 1 e m -= 2, we have dissipation of surface tension energy 



The lubrication approximation with a 'popomus media' cut-off 1541 

and the basic entropy dissipation: consider a function G ( y )  satisfying G"(y) = l/f(y) 
for y 0. The convexity of G and mass conservation allow us to choose G so that 
J,, G(h(x, t ) )  dx > 0 for all t .  Integration by parts yields 

For n = 0, the linear problem, the entropy is merely the L2 norm. Bemis and Friedman 
first introduced these entropies in [2]. In a previous work [6], we used these and a new 
class of entropies to prove theorem 1.1. We show that for 1 < m < 2 the same results hold 
and we extend results to all n > 0 by exploiting sharper estimates obtained by the presence 
of the second-order term. For n > 3/2, we obtain sharp regularity results. We now discuss 
this briefly: 

1.2.3. Competition between the fourth- and second-order terms It is natural to expect that 
either the second-order term or the fourth-order term will control the dynamics at the edge 
of the support of the solution. -In section 2 we discuss leading-order asymptotics for the 
solution near the edge of its support. For n > 3 and 1 < m < 2, the asymptotics predict 
that locally there are advancing travelling wave solutions and that their behaviour at the 
edge of the support is dictated by the second-order term. That is, the solution at the edge - (x - x( t ) ) l / (m- l ) .  Moreover, for 3/2 < n < 3, and 1 < m < 2, whichever term gives 
higher regularity at the edge will dominate. We also discusssome expansions for the case 
n < 3/2. The predictions and possibilities are summarized in the chart below. The case 
n = 3/2 is special as log dependences play a role when the fourth-order term dominates at 
the edge 19. 

Table 1. Behaviour at the edge: second v e n u  fourth order. 

term behaviour at edge 0 c n < 312 312 c n c 3 " > 3  

(k"h,), (x - x ~ ( i ) ) ~  for 0 < n c 312 can control controls edge if no solutions 
" > O  (x - xa (1)p'" for 3 / 2  < n c 3 

no solutions for n > 3 
edge if m > n I / ( m  - I )  < 3 / n  

(h% (x - K a ( t ) p - ' )  can contral edge contcals edge if always contrals 
1 < m c 2  if I / ( m  - 1) > 3 / n  l / ( m  - 1) =- 3/n  edge 

1.3. Main results 

Given that the techniques used to prove theorem 1.1 break down as n -+ 3, a natural 
question is what can one say about the problem for n > 3. One result of this paper is that 
the inclusion of a second-order 'porous media' term with 1 < m < 2 enables us to prove 
the same results as in theorem 1.1. We derive a weak existence theory for the equation 

for n z 0 and 1 < m < 2. In particular, for n > 3/2, the regularity of the weak solution 
is in sharp agreement with that predicted by asymptotics at the edge of the support of the 
solution (see table 1 and section 2). Thus the existence theorem supports the predictions 
made by the asymptotics. 

The main theorem is 
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Theorem 1.2. Given any non-negative initial condition ho E H' (S'), ho 2 0 we have the 
following results 

case 1. Let n 2 3, 1 < m < 2. Then for any time T,  there exists h such that 
h E L@(O, T ;  €I'(S')), h 2 0, and h satisfies the equation in the following sense of 
distrib@.ons: 

A L Bertoui and M Pugh 

The initinl data are achieved as in theorem I.  I .  Fulthermore given CUD =- 0 there exists a 
solution h satisfving the above that has the additional regularity 

h q  E Lz(O, T; H2(S'))  

(hy)x ,  E L 4 ( Q ~ )  

(h(Utm-l)/* L. E Lz(Qr) 

Ilh(x. t )  -illp 6 Ae-'. 

jorall y 2 
for all 01 2 a~ 

and the long time behaviour 

A is determined by IholH!, n, z, and IS'I. The rate of decay, c, is determined by n and 
z. In particular, a ho is nonzero there exists a critical time T' ajier which the solution is 
guaranteed to be stmng and positive. 

Case 2. For 2 < n < 3, 1 < m < 2 the above existence and long time result is true. 
Moreover, given r satisfying both 0 < r < 1 and 0 < 2 f r - n, there exists h with the 
additional regular@ 

h'+'12 E L2(0, T ;  H*(S')) ,  

(h"L E L4(&) 
r + 2  

VU 2 - 4 '  

Case 3. Let 1 < n < 2, 1 -= m < 2 Then on any time interval 10, TI given any 
0 4 s < min(2 - n, 4) and any CUD > "(0, m - n + I), there exists a solution in the 
following sense of distributions: 
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The theorem for n = 2 is as in case 2, with a minor change in the definition of weak 
solution. The reader can derive results for 0 < n < 1 following the proofs in 161. 

Significant remark. Note that if we make the ansatz that the weak solution above has a 
local power law (x - xo(f))fl where x&) is the edge of the support then the additional 
regularity in the statement of the theorem implies 

max (3/n, l/(m - 1)) n > 312 
P > [  max(Z,l/(;+m-n)) O < n  ~ 3 1 2 .  

In particular, the theorem is sharp given the asymptotics for n > 312. 
The techniques are similar to [6]. We introduce convex entropies to prove the existence 

and long time result. For n > 3 existence and decay of weak solutions follows directly 
from energy dissipation. The convex entropies are only needed for additional regularity. As 
in [6], we use weak convergence arguments for nonlinear functions of h in Sobolev spaces 
to prove existence. There is a direct relation between the exponents m and n that allow for 
such spreading solutions. 

We use a regularization introduced in [2] and used in [6]. In section 6 we present some 
numerical calculations of the solutions which demonstrate the predicted interplay between 
the 'lubrication approximation' term and the 'porous media' term. The simulations indicate 
that the support of the solution has finite speed of propagation and continuous flux, two 
properties desirable for a physically correct model. 

The paper is organized as follows. Section 2 provides a discussion of the asymptotics at 
the edge of the solution as a motivation for the sharpness of the theorems. Section 3 reviews 
the properties of the regularization scheme. Section 4 proves the existence results for non- 
negative initial data for 0 < n. Section 5 proves the long time results for non-negative 
initial data for 0 < n. Section 6 presents numerical calculations. Section 7 summarizes this 
paper and discusses unsolved problems. 

2. Competition between second- and fourth-order terms: asymptotics at the edge of 
the support 

Before proceeding with the rigorous analysis, we use asymptotics to study the competition 
between the second- and fourth-order terms at the edge of the support. 

Let us assume that we have a weak solution to the equation 

h, = - (h"hxxx)x  + (h")xx (24) - 
with compact support the edge of which propagates with finite speed. Either the fouah- or 
the second-order term determines the motion of the edge of the support. In this section we 
present a simple asymptotic argument for the competition between the two terms in terms 
of n and m. In section 4 we present rigorous results which confirm the predictions made 
by the asymptotics. For n > 312, the rigorous analysis is sharp in that the regularity of the 
weak solution is in exact agreement with that predicted by the asymptotics. 

We recall that for the lubrication approximation equation (7) advancing fronts only exist 
for 0 < n < 3 [3, 81. This suggests that for (24) to have an advancing front for n > 3, the 
motion must be due to solely the second-order 'porous media' term. However, when n < 3 
it should be possible to have either the second or fourth-order term determine the motion 
of the edge of the support. The leading order asymptotics below indicate that this intuition 
is reasonable. 
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A standard technique is to assume that locally the solution looks like a travelling wave 
near the edge of its support. Hence we consider solutions of @e form 

h(x ,  t )  = H(x  - ct). 

Thii yields the following equation for H 

-cH'(v) = -(H"(q)H"'(q))'+ ( H m ( ~ ) ) "  

where q = n - c t .  Integrating once, we find 

A - c H ( ~ )  = -H"(q)H"'(q) + (H'"(7))'. (25) 
A is determined by the regularity at the edge of the support of H .  Without loss of generality, 
the edge of the support of the solution corresponds to q = 0. 

n and for each of these 
either A = 0 or A # 0. For technical reasons, we do not consider n = 3 / 2  as the expected 
behaviour is not purely algebraic (19). 

Case 1. 312 < n 

Case la. A = 0. Assume that H touches down like qe, with 0 # 1,2. Then 

There are four cases to consider: 0 < n < 312 and 3 / 2  

H" H"' - rlne+B-3 (p)' - p - 1 .  

If the porous media term is the lowest-order term on the right-hand side of (25) we have 
H - (H"')' therefore 

9 = l/(m - 1) is the generic case for solutions of the porous media equation. Note that 
touchdown with zero slope at the edge implies 0 > 1 which gives the constraint 1 < m c 2. 
For this behaviour to dominate the fourth-order lubrication term we require 

Combining these, we see that the porous media term dominates at the edge of the support 
whenever 

1 2 3 1 - = e >  
m - 1  n f l - m  n m - 1 '  

* -<-  

The same argument shows that if the lubrication approximation term is the lowest-order 
term then 

3 3 e = -  
n m - l  n 

< -. 1 - and 

If 0 = 3/71 = l/(m - 1) the two terms are of equal importance. 
This argument suggests that the equation selects the power law that gives greater 

regularity at the edge. In section 4, we prove that for 312 < n and 1 < m < 2 the 
regularity of the weak solutions is in sharp agreement with the asymptotics (26)-(27). 

Case Ib. A # 0. In this case, if the porous media term is the Iowest-order term then 
A - (Hm)'. As above, this implies 

3 1 1 e = -  
m n + l  m 

< -. - and 
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If the lubrication term is lowest-order then 
1 3 and - < -  

n + l  m n + l '  
3 8s- 

For n > 312 and 1 < m < 2, the existence theory of section 4 excludes behaviours (28)-(29) 
as they are not sufficiently regular. 

Case 2.0 < n  i 312 

Case 2u. A # 0. Again, the regularity of the weak solutions rules out this case. 

Case 2b. A = 0. We recall that for 0 < n < 312 the lubrication approximation equation (7) 
has non-negative self-similar sourcetype solutions with expanding support with 8 = 2 [3] 
and receding travelling wave solutions with 8 = 3/12 [SI. Therefore the options are: the front 
could recede with 0 = 3 / n  or the front could advance with 0 = 2 (lubrication dominated) 
or 8 = l/(m - I) (porous media dominated). Since we are ultimately concerned with the 
advancing front caset we consider only 0 = 2 for the lubrication dominated behaviour. 

In the case 8 = 2, the lubrication approximation term dominates the motion of the edge, 
and we seek an expansion 

. ,  

H ( q )  = kq2 + Aq'? + Bqb + Cqc +. . . . (30) 
where 2 

H"(q) = k"q* + nkn-'q2"-')(Aqn + Bqb + . . .) + n(n -~l)k"-2q2(n-2)(. . .)' + . . . 
Hm-'(q)  is expanded similarly. Defining ti = u(a - l ) (a  - 2)A, e = c(c - l ) ( c  - 2)C, we find 

a < b < c < . . . . Therefore 

= b(b - I)(b - 2)B, 

-H"H~!! + ~ m - 1 ~ '  = 

- (k"$" + nAk"-'q2"*-2 + nBk"-'q2"+b-2 + riCk"-'qZ"+c-2 + . . .) 
x p q a - 3  + j q b - 3  + eqc-3 + . . .) 
+ (km-'qh-2 + A(m - l)km-2q2m"-4 + B(m - l)km-2q"+b-4 +...) 
x (2kq + aAqn-' + bBqb-' + cCqc-'. . .) 
= (-2k"q2"+cX-3 - jk"h%+b-3 - ek?iq%+c-3 - , . .) 

+...) + b~km-1 2m+b-3 + (2k"qh-' + u A k " - ' 1 7 ~ + ~ - ~  rl 

Recall that -cH. = -H"H"'+ H"-'H', hence (30) implies the lowest-order term above 
must be q2. We now begin considering the possibilities. 

Case 1. No lowest-order terms cancel. In this case, the lowest-order term from the 
lubrication term is the term of order 2 q2"+a-3 - 7'. This implies a = 5 - h. The 
coefficient of this term determines the speed of the edge. The assumption U t 2 then 
imposes the requirement n < 312. The fact that the lowest-order term comes from the 
lubrication approximation term implies h2"+0-3 < - , lmplying ' 2n+a - 3 < 2m - 1,  
hence m 2 312. This suggests that if m and n satisfy 

3 m > ;  

t Our existence theorem states that the weak solution will eventually become a strong positive solution so that 
me supporl must eventually increase to fill the whole periodic domain. 
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then there is an expansion of the form H ( q )  = kq2 4- A$-& + . . ., where 2k determines 
the second derivative at the edge and A determines the speed of the edge. 

Case 2. The lowest-order term from the lubrication term cancels with the lowest-order term 

from the porous medium term. If these two terms are to cancel, we need q2n+0-3 - $"'-I. 
This determines a = Z(m-n+l) and A is then determined by a and k: a(a- I)(a-2)Akn = 
2km. The requirement 2 c a implies m t n. The cancellation makes 92"+b-3 the 
lowest-order term from the lubrication term, and $'"+'-3 the lowest-order term from the 

determining b = 5 - 2n. The requirement a < b implies m c 3 /2 ,  2 c b implies n < 3/2. 
Moreover, $"+*-' < implies m n/2  + 3/4, which immediately ~~ implies m > n. 
This suggests that i f m  and n satisfy 
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porous medium term. Since the lubrication term dominates the behaviour, 9"+6-3 - v z 7  

then there is an expansion of the form H ( 9 )  = kqZ + Aqzm-"+2 + B 9 5-2n + . . ., where k 
determines A and the second derivative at the edge and B determines the speed of the edge. 

Case 3. The lowest-order and second lowest-onfer termsfrom the lubrication term cancel 
with the respective rermsfiom the porous media term Repeating the above argument, we 
find that a and b are determined by m and n, and if m and n satisfy 

n c !  m i + + ,  3 m > f n + l  

then there is an expansion of the form H ( q )  = k ~ Z + A ~ " - " f Z + B ~ 4 m ~ n + 2 + C  4 5-%+ ... 
Here k determines A, B ,  and the second derivative at the edge, while C determines the 
speed of the edge. 

We note that in the above, we have assumed that the lowest-order terms in the expansion 
of H" (2) have been from q2"-')(Af' + . . .) and not from qZ("-z)(Aqa + . . .)2 or other 
terms. Under this assumption, we can continue the above process indefinitely, and we see 
that for any m and n satisfying n < 3 / 2  and m > n, there is an expansion H so that 
H ( 9 )  = kq2 + . . . + Zq5-" + . . ., where 2 determines the second derivative at the edge and 
the coefficients of the intermediate terms and E determines the speed. This suggests that 
there are two degrees of freedom: the second derivative and the speed. A more in depth 
study of the asymptotics in which an inner expansion at the edge is matched to an outer 
expansion away from the edge may yield additional matching constraints. 

Thus it is possible to have leading order q2 behaviour when m t n and from the above 
arguments for n z 3/2 one can have q''6-1) behaviour when I/(m - 1) t 3/n. Since 
n > m and n c 3 / 2  always implies l / ( m  - 1) > 3 / n ,  there is always at least one possible 
behaviour for any 0 < n < 3/2,  1 m c 2. 

3. Regularized problem 

To prove existence of weak solutions and to numerically compute the weak solutions we 
use a regularization scheme introduced in [2] and used in [6, 11. 

The regularization involves altering the equation and lifting the initial data. We bound 
the initial data for the regularized probIem away from zero by 

he,@) = ho(x) + 6(~). 
where 6(~) > 0 and hcO + ho in H1(S1) as E + 0. 
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In addition, we regularize the equation by considering 

her = -(f&)h<xxx)x + (he'")zx 

We remark that f is still degenerate; however for n < 4, f < ( y )  - y4/c  as y --f 0. This 
degree of degeneracy is more tractable and this approximate problem has 'unique positive 
smooth solutions for all time, 

Theorem 3.1. (Global existence of unique smooth positive solutions for the regularized 
problem) Let ha E H'(S'),  ho > 0, 1 < m < 2 Given an initial condition 

he&) = h d x )  +J(€) 

there exists a unique positive solution to the regularized equation 

her = - ( f < ( k k z r ) x  + (he'"),, 

The proof is a minor modification of that presented in [2], and summarized in [6]. For 
this reason, we omit many details. The main points are : 

Classical parabolic Schauder estimates guarantee existence of a smooth solution up t o  
a time U .  

0 In this short time of existence, for any t < U ,  the smooth solution satisfies 

= 1, h&, O W .  (31) 

Since hCo -+ ho in H'(S ' ) ,  (31) provides an apriori upper bound for She: independent 
of t  and e at any time t < U .  This in turn yields an apri01-i bound for the Holder norm 
Ih, IC~D(SL) 

Ih,(xl,t)-h,(xz.t)l~Clxl - ~ z l " ~  vt < U ,  (32) 

Ihc(., t)lL-(sl) < C vt <a.  (33) 

M x .  ti) - h,(x, tdl  < Clti - fzI1'*. (34) 

Equations (31)-(33) imply 

In all of the above, C depends only on the H' norm of the initial data, IholHl. 
We introduce the convex 'entropy' 

1 
G,"(y) = - 

Y" 
for y z 0. 
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Integration by parts yields 

for any t c v. As in [2] and [6], this a priori bound for fs, s/h$ and the Holder 
continuity (32) provide an a priori pointwise lower bound for the solution h&, t). 
The a priori bound for the minimum depends on E and lh&~ and the bound for the 
maximum depends only on [h&I. Hence the solution is uniformly parabolic on [O, U ]  

and can be continued to any time T. 
Uniqueness follows from energy methods, as in [2]. 
We remark that (32H34) imply that {hc} is a uniformly bounded equicontinuous family 

of functions on QT. The Arzela-Ascoli theorem guarantees the existence of a subsequence 
that converges uniformly to a limit, h. 

Let 
Qr = S' x (0. T) 9 E Cr(0 .T ;  Cm(S')), 

Recall the energy dissipation (31) 

l, h& t)  d.r < lL h& dx = C. 

The Sobolev embedding theorem implies there exists an M < 00 such that 
Ihe(x, t)l < M VxSx, t. 

In all of the following theorems, the initial data are achieved as in theorem L2t. 

Proposition 4.1. Given any non-negative initial condition bo E H'(S'),  ho > 0 we have the 
following results 

Case 1. b t  n > 3, 1 < m < 2, and let h, be the unique positive smooth solution to 
the regularizedproblem (36)-(38) with S(E) chosen so that S(E) + 0 as E -+ 0. men on 
any time interval [0, TI, there exists a subsequence that converges pointwise uniformly and 
weakly in L"(0, T ;  H ' ( S ' ) )  to a non-negative h and h sazisfres the equation in the following 
sense: 

' 

t The proof of this is standard, and we refer the reader to [Z] for further details. 
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The initial data is achieved as in theorem 1.1. Furthermore, given 010 =- 0, there exisrs h 
with the additional regularity 

h y  E L'(0, T ;  H 2 ( S ' ) )  

Case 2. Let2 < n < 3, 1 < m < 2, and r sari& both 0 < r < 1 and0 < 2+r  -n. I fh ,  
is the unique positive smooth solution to the regularizedproblem (36)-(38) with 

6(€) = Ee 8 < 112. (40) 

h'+'/? E LZ(0, T; H 2 ( S * ) )  

Then all of the above results hold, and h has the further regularity 

r + 2  Va 2 - 
4 '  

We remark that there is an existence theorem for n = 2 which is very similar to case 2, 

(he), E L4(Qr)  

and refer the reader to 161 for the slightly different definition of weak solution needed. 

Proof. We first prove case 1, in which n 2 3. Recall that h, is smooth so that we can 
integrate by parts: 

(41) 

Note that all the terms on the right-hand side have the same sign if 1 < m < 2. Integrating 
in time gives 

which then guarantees a priori bounds independent of E for 

in terms of the initial data, Jsl h,:(., 0). 
Note that for any h, smooth and bounded away from zero: 
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Therefore J(h, 2 )xz is a h e a r  combination of a priori bounded quantities, hence is a 
priori bounded. Thus the following are bounded uniformly in E: 
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z + L z .  

We obtain further apriori bounds by noting that integration by parts also implies 

Integrating in time implies 

Note that, since a - 1 + n > m, a variant of an argument in the appendix of 161 implies 
that Jh,'-l-"f,(h,)Jp and J(~(k,)h,"-2)"h,3-"~~~ are a priori bounded. Furthermore, 
since Ih,(x, t)l < M for all x and t ,  Jh,"(., T )  and JhCEL(., 0) are bounded. These facts 
and (43) yield an a priori bound for JQOhr,hrs-3+mh CX. 

By weak compactness, these bounds unply that there exists a subsequence so that 

Given a 
integral equation 

jt function (o E e ( 0 ,  T; Cm(S')), the approximate solution ~ satir 

To prove that the weak l i t  h satisfies (39), we must show convergence of the nonlinear 
terms in (48). We present the argument for JQoh, f[(h6)h&. The other terms follow 
analogously. 

Lemma 4.2. Let S2 cc QT be compactly contained in QT. Then 

f:(h,)hZ + f"(h)h: strongly in Lz(S2). 
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Proof. This is identical to the proof in [6] for the lubrication approximation. Fix p > 0. 
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By the regularity theory of uniformly parabolic equations, h is smooth in Q n [h > p], 
hence h, and its derivatives converge uniformly to h and its derivatives on this set. Taking 
E to zero, 

For the second integral, we expand the square and bound each term. Taking y = y ,  
we find that one term is 

In the above we used the fact that (h& is uniformly bounded in L 4 ( Q ~ ) .  We now use 
the fact that f:(y) + f"(y) uniformly on IO, MI as E --f 0 for n > 2, as proved in the 
appendix of [6]. This and the uniform convergence of h, to h imply f;(h,) converges 
uniformly on QT to f"(h). Therefore, by taking E small, 

sup h,4-4Y(f$(hE))2 < Cp4-4~t2("-2'. 
Ih<?pl 

Recall that = y c 2, implying that 4 - 4y + 2(n - 2) > 0. The other two terms from 
the integral over 0 n (h c p]  are bounded in the stme way. Taking p + 0, we have the 
result. 

This lemma implies 

since q~ has support Q compact in QT and h,  converges weakly to h, in L2(&). The 
other nonlinear terms converge similarily. This finishes the proof for the case n > 3. 

We now prove case 2, in which 2 c 52 < 3. This uses a convex enmopy first introduced 
in [6]. Take G;,(y) so that GCi(y) = &j for y > 0. 

..r-n+2 ~ - 2  

where c is chosen so that ssL GL,(h,) > 0. 
As before, 
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We note that all the terms on'the right-hand side have the same sign since 0 < r < 1. 
Integrating in time gives 
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The constraint (40) on 6(c)  and r - n + 2 > 0 provide an apriori bound for the entropy 
of the initial data, Jsl GL6(h6(., 0)) < C ,  where C is independent of E .  In this way, the 
following are bounded independent of E 

The above used the fact that there exists C independent of 6 such that f&,) ,< Ch,". 
For a smooth function bounded away from zero, 

As before, this shows that J(hc1+r'2)$ is a linear combination of a priori bounded 
quantities, hence is a priori bounded. These bounds imply that for fixed r ,  there exists 
a subsequence so that in addition to the weak convergences (44). (45) and (47) we have 

(h"' z)xx in L2(o, T: L2(S' ) ) ,  (50) 

(hc-)= - (h*)x in L2(0, T; L2(S')). (52) 

(51) 
r 1  

Vu > - + - 4 2  (hGa)z - (ha), in L4(0, T; L4(S'))  

We note that the proof of the bound needed for the weak convergence (46) uses the uniform 
bounds on J h,'-'h,); and J h6rh&. 

The rest of the proof follows as in the case n > 3, in that these weak convergences 
imply that the nonlinear terms converge. For example, (51) is sufficient to prove lemma 

0 

Proposition 4.3. Given 1 < n < 2, 1 < m < 2, ho 3 0, and ho E H'(S') .  Let h, be the 
unique positive smooth solution to the regularizedproblem (36)-(38) with 

4.2. The reader is also referred to [6] for a discussion. 

Then on any time interval [O, TI, there exists a subsequence of {h<] that convergespoirthvise 
uniformly and weakly fn  

~ ~ ( 0 ,  T ;  H'(s')) n L ~ O ,  T ;  H'(s')) 

to a solution h in the sense of distributions 
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Furthermore, given any 0 e s < min(2 - n, 5) and any uo > max(0,3/2 - n). there exists 
a solution with the additional regulariw: 

(55) hi-%, h y  E L'(0, T ;  Hz(Si)) 

(h-) ,  E L2(QT) Vu > uo 

E L2(0, T ;  Hi(S')). (58) 
h* 

We remark that one can prove an existence theorem for 3/8 < n < 1 which is very 
similar to the above theorem, and refer the reader to [6] for the definition of weak solution 
needed. There is also an existence theorem for 0 < n < 318 which uses a weaker definition 
of weak solution than a distribution solution. Again, the interested reader is referred to [6] 
for the details. 

Proof. The following proof is almost identical to the existence proof in [6] for the equation 
(7) without the 'porous media' term for 1 < n e 2. The main difference is the higher 
regularity (58) obtained from the presence of the 'porous media' term in the G ,  entropy 
dissipation. For this reason, we only sketch the proof. 

Recall the convex entropy Gg(y) = & introduced in section 3. Integration by parts 
yields (35): 

The constraint (53) on 6(c )  and n < 2 provide an apriori bound for the entropy of the initial 
data C, = 1 Go(h,o) + l c / ( 6 h , ; )  < C, where C is independent of E .  Mass conservation 
and the convexity of Go allow us to choose Go so that 1 Go(h,) > 0. Therefore 

Weak compactness implies that there exists a subsequence that converges weakly in 
L'(0, T ;  H2(S' ) )  to h. Dissipation of surface tension energy (22) implies that ah,/& is 
uniformly bounded in Lz(O, T ;  H-'(S')) .  The well-known Lions-Aubin lemma [23] then 
implies that there exists a subsequence that converges stmngly in L'(0, T; H'(S ' ) )  to h. 

We now prove that h is a weak solution in the sense (54). Since h, converges pointwise 
uniformly to h on QT and f : (y)  converges uniformly to f ' ( y )  on [0, MI for n > 1 (as 
proved in the appendix of [6]) ,  f:(h,) converges uniformly to f'(h) on Q T .  Similarly 
f ,(h,)  converges uniformly to f ( h )  on QT. Hence the limit h(x.  t )  solves the equation in 
the sense (54). For example, 

since h,, converges weakly in Lz to h,,, h,, converges strongly in L' to h,, and f:(h,) 
converges uniformly to f ' (h ) .  

For the extra regularity, we recall a convex entropy first introduced in 161 

y2-n-s + C  
E 1 + - 1 

(2 + s)(3 + s) y2+* (2 - n - s)(l - n - s) G,;"(Y) = 
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chosen so that (G;;)"(y) = 1 By integration by p m ,  
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YfJY)' 

We note that one of the coefficients, 9, is positive, hence the 'khniques used above 
do not immediately apply. However, it i s  possible to 'hide' the h,-s-Zhc: term in the 
J h,-sh,:x term in such a way as to bound the right-hand side from above by a combination 
of the integrals where all the coefficients are negative. This requires s c i, and the details 
are fully presented in [6]. As before, we then have apriori upper bounds for the following: 

This used s c 2 - n and the consfmint (53) on 6(e). Again, energy dissipation yields a 
priori bounds for 

The uniform bound. for fh,'-3+"h,Z follows as before, and uses the bounds on 
J h,-s-2h,$ and J h,-sh,,. This requires cuo > 312 - n. 

Taking a subsequence of the above subsequence, the limit h inherits these bounds, hence 
has the desired regularity. a 

5. Long time behaviour of solutions 

In this section we prove the long time results for the equations. 

Proposition 5.1. Given ho E H' (SI), ho 2 0, let h be the weak solutionfrom section 4. The 
mean of the initial data is denoted i, = &Isl ho. 

Case I .  n 2 3. There exist positive A and c such that for a11 t E [0, TI 

llh(.,t) - illp G'Ae"'. 

A is determined by IholHt and IS'I. The rate of decay, c, is determined by IS'/ and i. In 
particular, ifho is nonzero the solution is a positive strong solution afer a critical time T'. 

Case 2. 0 < n c. 3. There existpositive A and c such thhtfor all t E 10, TI, 

Ilh(x,t) -$lip < Ae-". 

A is determined by IhO[Hl, n, i, and IS*[. The rate of decay, c, is determined by n and i. 
In particular, if ho is nonzero there exists a time T', after which the solution is a positive 
strong solution. 

Proof. We first prove case 1, n 2 3. We recall the energy dissipation (41): 

The terms on the right-hand side are all nonpositive, hence 
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In the above, we used the fact that llh6(.,t)llm 6 M for all f E [O,T], hence 
h,(x, t)m-3 > C. Schwarz's inequality then implies 

A variant of Gronwall's lemma gives 

We note that C depends on Iholxi. through its dependence on Ihol,. The weak convergence 
h,, - h, in L2(S') implies that the weak limit inherits the above bound: 

L ! ( h ( x , t ) - h ) ' d x < A  h ; ( x , t ) d x <  -. A 
Ct 

In the above we used Poincari's inequality: 

Poincad's inequality. Let h E C2(S')  and consider xo E S'. Then 

This also holds hue for h E H'(S' )  by a density argument. 
The following interpolation inequality is proven in [6 ] :  

where lwlu is the Holder-cd seminorm. Taking cd = 4, in the interpolation inequality gives 

for all t > 0. 
A 

Ih(., t )  - I;ILw < - 
Ct'/3 

This implies that there exists a time, TO, after which h is smctly positive and bounded below 
by h/2 and hence a strong solution. The energy dissipation applied to this strong solution 
implies that for t > To, 

Another application of the Poincari inequality, Gronwall's lemma, and the interpolation 
inequality yields the exponential decay. 

The proofs of the other cases are identical to those in 161 for the equation with the 
lubrication term alone hence we omit the details. The key ideas are that for 0 < n < 2, 
the convex entropy lGo(h, )  is equivalent to the L2 norm of h,( . , t )  - (h $- J ( E ) ) .  
That it dissipates with a rate lsj h& implies that the approximating solutions h, decay 
exponentially fast at a rate independent of E .  For 1 < n < 3,  we use the dissipation of the 
following convex entropy 

The entropy JG;,(h,) is equivalent to the L2 norm of he(. ,  t)'+i - (h + S ( E ) ) ' + $ .  The 
long time result then follows. The proofs of equivalence of the entropies to squares of L2 
norms is due to a 'parabolic sandwich' argument in which we show that the entropies can 

U he chosen so that their graphs are 'trapped' between two parabolas. 
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6. Numerical results 

Our numerical scheme is an adaptation of a code used in [7]. With the permission of the 
authors, we use some of the language from this source. The simulations use a conventional 
finite difference method. Specifically, it is an implicit two level scheme based on central 
differences. In addition, some of the numerical results presented here use a dynamically 
adaptive mesh composed of a fixed macro-grid and adaptive micro-grid needed for higher 
resolution of the 'contact line'. The finite difference scheme with a fixed non-uniform 
non-adaptive grid was used used in [ll, 16, 291 to compute solutions of the equation 
hl = -(hhxxz)z. In these works, they compared their results to results from a finite 
element method and found excellent agreement. 

We consider solutions on a periodic domain [-I, 11 that are symmehic about x = 0. 
The equation preserves this symmetry. For this reason, we solve the equation on the interval 
[0,1], discretized by the N mesh points, 
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0 = X I  < xz < . . . < X N  = 1. 

At each computational time level the arrays hi and p i ,  i E [l, ..., NI,  approximate 
h(x, I) and -h&, t), q d  vi, j E [I. ..., N - 11 approximates h,&. t) ,  The hi and pi 
values exist at the point xi ,  while U; is the computed thiid derivative at the center of the 
interval, (xi + xi+1)/2. The following picture depicts these associations: 

For simplicity we describe the difference scheme in space first and later indicate the 
time step process. The equation we wish to compute has the form 

ht + (f@)hxxx)z - (J"(h))xx = 0. 
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We discretize the spatial operators by 

ui + aPi+; = 0 (60) 

pi + P h i  = 0. (61) 
We impose 'periodic' boundary conditions by reflection symmetry at the endpoints. 

The time discretization of the above set of differential-algebraic relations uses a simple 
two level scheme. In advancing from time f to time I + dt we replace the time derivative 
terms by difference quotients involving the solution at the old time level (time I) and the as 
yet unknown solution at the new time level (time t +at).  We evaluate the other terms using 
a weighted average of the solution at the two time levels; a typical weight is 6' = 0.55 on 
the advanced time level and 1 - 8 = 0.45 on the old time level: 

1 _ -  - N(h)  would yield 
dh 
df dt 

At each time level, we have to solve a set of nonlinear equations. This is done with 
Newton's method. By choosing an appropriate ordering of the 3N - 1 equations ( 5 9 x 6 1 ) .  
the Jacobi matrix has its nonzero entries close to the diagonal. For this reason, the use of 
Newton's method is not a prohibitive expense. 

We dynamically choose the length of the time steps to control several aspects. If the 
result of the time step violates any of a list of constraints, it rejects the step and tries again 
with a smaller step size. To avoid using unnecessarily short time steps, if we easily meet all 
the constraints for several steps, we increase the step size by about 20% on the next step. 
We now describe the constraints the scheme respects. The first constraint comes from local 
time truncation. Another constraint rejects any step for which the minimum of h decreases 
by more than 10%. We also require that the correction on the first iteration of Newton's 
method is a small fraction of the change over the step, where. the initial guess at the change 
was the change over the previous step, corrected for any difference in dt's. This allows 
us to solve the equations (59)-(61) in only one Newton iteration per time step, should we 
choose to do so. 

We use graded spatial grids that are very fine near the contact line and less fine in other 
regions. The macro-grid is fixed for all time, and we call its intervals 'macro intervals'. At 
a fixed time level, each macro-interval is divided into 2j  micro intervals, where j can be 
different for each macro-interval. The size of h,, and h,,, on the macro-interval determine 
whether to increase or decrease the exponent j for the next time level. Specifically, if these 
derivatives are large, j increases and if they are small, j decreases. In this way, the grid is 
fine where high resolution is needed and coarse elsewhere. 

- (hi@ + dt) - h i @ ) )  = N(0.55h(., I + dt) + 0.45h(., t ) ) .  

All the simulations presented here. have the CT(S1) initial condition 

The weak solution is approxim.ated via the regularization scheme of section 3. That is, 
we fix E and compute 

het -(h(h<)haxx)x + (he")xz 
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with initial condition 
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h,o(x) = hdx)  +SCE). 
Theorem 3.1 guarantees that there exists a unique smooth positive solution to the 

regularization scheme. Propositions 4.1 and 4.3 guarantee that the regularization scheme 
will for suitably small E produce a close approximation of the weak solution. Although no 
rigorous theorem exists quantifying the accuracy of the regularization, the numerics suggests 
that the convergence is O@(E)) .  We choose the spatial grids to be fine enough so that the 
bulk of the error in computing the weak solution comes from the epsilon regularization. 
That is, for fixed epsilon, we choose spatial grids to over-resolve the smooth regularized 
solution. 

We present computation from several case studies. 

6.1. Case 1: n = 3, m = 312 

For this case we choose initial data (62) with c = 1 and a = 1/16. We use a(<) = 
the regularization scheme. We present calculations with three different values of E :  

6.310 x 

in 

and The corresponding values of 6(~) are 2.00 x 2.51 x and 

0.1 

h 

x -" - - 
0.05 

I 
0 

- initial condition 
-__-- h,(x,t), S(~)=2.00e-3, d . 0 3 2 2  --- h,(x,t), 6(~)=2.51e-4, k0.0322 
-_-. h&), S(~)=6.3Ie-5, M.0322 

X 

Figure 1. Approximate solutions for n = 3, , m = 312. Pictured are solutions for three 
values of S at the fixed time f = 0.0322. 
Note that the 'drop' is spreading. 

Figures 1-3 show the regularized solution at a fixed timet = 0.0322 for three different 
values of E .  Figures 1 and 2 depict h&, t )  while figure 3 shows hcx2. Figure 1 shows 
that all three values of E produce approximate solutions very close to each other. Moreover 
they indicate that the support of the weak solution has increased from its initial support but 
that the support has not yet expanded to fill the entire domain. 

Figure 2 shows a close up of the' h, (2, t )  near the edge of the support of weak solution. 
The figure clearly indicates that the convergence is 0(6(6)). Moreover, it shows that the 
'apparent contact line' has extremely good dependence on E as E + 0. Note that at the 
edge, the regularized solution is a monotone function. This is as expected for solutions of 
the porous media equation, ht = (h'"),, and should be compared to case 2 in which the 
fourth-order lubrication approximation dominates at the edge. 
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4.0 

,&, 6(E)=?.OOe-3, M.0322 
(h&t))xL. 6(~)=2.5 le-4, r=0.032? 
(hG(x,t))xz, 6(€)=6.31e-5. b0.0322 - 

-2.0 

Figure 2. Close-up of approximate solutions 
for n = 3, m = 312. Note that the 
apparent ‘edge’ of the support has very good 
dependence on S and appears to have b i t e  
spMd of propagation. 

Figure 3. Second derivative of approximate 
solutions for n = 3, m = 312. Note that the 
second derivatives appear to be converging 
to a bounded function with discontinnily 
t the edge. consistent with the predicted 
quadratic touch-down. 

Figure 3 shows h,,, for the three values of the regularization parameter. The graphs 
indicate that as E 0, the solution converges to a bounded function with .a discontinuity at 
the edge of its support. Hence the we& solution appears to ‘touch down’ with a quadratic 
behaviour at its edge, as predicted by the asymptotics in section 2 for m =~3/2. Hence for 
these values of m and n the fourth-order term appears to be negligible at the edge of the 
support. 

6.2. Case21 n = 1 andm = 1.9 

For this case we also choose initial data with c = 1 and a = 1/16. We again use 
S ( E )  = in the regularization scheme. Figures 4-5 show the regularized solution at 
a fixed time f = 0.0025 for the three different values of E :  lo-’, lo-’*, and Again, 
the corresponding values of S(E) are 2.00 x 2.51 x and 6.310 x Figures 
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1 

! 
! -  initial condition 
! ___-_ h,(x,t), 6(e)=6.31e-5. t=0.0025 
~! _-- h,(x,t), 6(E)=2.51e-$, t=0.0025 i \ h,(x,t), 6(&)=2.00e-3. H.0025 . 
l i  
I !, 
1 i, /’ 

t \, /e’’ 

_---- , ---_____ ----- 

’ \ cc 

t 

4 and 5 depict h&, t) while figure 6 shows hexx. As in case 1, figure 4 shows that all 
three values of E produce approximate solutions very close to each other. Moreover they 
also indicate that the support of the weak solution has increased from its initial support but 
has not yet expanded to fill the entire domain. 

Figure 5. Close-up of approximate solutions 
for n = 1, in = 1.9. Note that unlike 

0.20 

o,oooo 

initial condition 
hJx,t), 6(&)=6.31e-5, t=0.0025 

--_ h,(x,t). 6(~)=2.51e-4, M7.0025 
h,(x,t), 6(&)=2.00e-3, t=0.0025 

- .. ~ 

lowlly monotone at the apparent edge of s < z  -___________________--------.--- I 

-- __ - - - . 0.00 
values of 6 nt the fixed time I = 0.0025. 
Note that the’drop’ is spreading, 

0.0 0.2 0.4 0.6 0.8 

0.05 k\\ ___ ’ -~ 1- -__ 

X 

0.0050 

0.0040 

0.0030 - 
x 
-” .c 

0.0020 

0.0010 

Figure 4. ,Approximate solutions for n = 1. 
m = 1.9. Piclured are ~olufions far three 

1 figure 2. the aDoroximale solution is not 
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-7 n I 

Figure 6. Second derivative of approximare 
solutions for n = 1 ,  m = 1.9. Note that the 
second derivatives appear to be converging 
to a bounded function with discontinuity I.I 

0.0 0.2 0.4 0.6 0.8 1.0 at the edge, consistent with the predicted 
X quadratic touch-down. 

Figure 6 shows h,,, for the three values of the regularization parameter. The graphs 
indicate that as E + 0. the solution converges to a bounded function with at discontinuity 
at the edge of its support. Thus the weak solution appears to 'touch down' with a quadratic 
behaviour at its edge, which is the correct behaviour for a travelling wave solution to 
lubrication approximation, h, = -(h"h,,), with n = 1. The porous media equation 
with m = 1.9 has a solution that touches down like x ' ' / ~ .  Such behaviour is much more 
singular than the quadratic touchdown shown here. Hence for this case the fourth-order 
term dominates at the edge, as predicted by the asymptoncs. 

6.3. Case 3 

Finally, we present a single calculation of a solution with the full 'van der Waals' term with 
a cutoff. The equation we compute is 

hcr = -(fe(hG)hcxxx)x + (Pm(hr))xx 

P,(h,) = log[(,u -k h,")"'"] m = 3 / 2  

with initial condition 

Note that as ,u 3 0 we recover the van der Waals term without a cut-off. However, for 
fixed ,u > 0, (Pm(hc))x = hem-'h6,/(,u + hem) so that as h, + 0 the gradient of P,(h,) 
behaves like the gradient of a 'porous media' term, (hcm)z /m.  Note that while E is a 
mathematical regularization of the equation, ,u has the interpretation of a physical cut-off 
scale. Thus we fix ,u small and take E + 0. We remark that it is crucial that (Pm(h<))&, 
be apositive function of h,. Otherwise this term produces an 'ill posed' backward diffusion 
in a range of h, where (Pm(h6))x/h6x changes sign: It is an exercise to verify that a variant 
of theorem 1.2 guarantees that the regularization scheme will for suitably small E produce 
a close approximation of the weak solution. 
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2.0 I 

initial condition 
--_-- h*(x,t), t=00.00005 
--- h,(x,t), t-0.0001 

hc(x,t), t=0.0004 
- h&x,t), td.001 
_-__- h,(x,t), t=0.00247 
--_ h&x,t), t=0.00567 

- h,(x,t), t-0.029 
h&t), d.0129 

0.0 0.2 0.4 0.6 0.8 
X 

Figure 7. Approximate solutions for the 
problem with long-range van der Wad 
effects and porous media cut-off. Note that 
there is a pronounced ’foot’ at the edge of the 
solution. analogous to the physical precursor 
film. 

We choose initial data (62) with c = 12 and a = 1. We fix /.L = 0.00008, E = 
and &E) = = 2.51 x IO4. Figure 7 shows h,(x,  f )  for several times f .  Note that the 
support propagates very quickly and that a ‘foot’ appears at the edge of the solution. This 
is qualitatively like the ‘precursor film’ [IS] linked to long range van der Waals interactions 
in complete wetting. 

7. Conclusions 

This paper poses the equation 

h* f (h”h,), - (P),, = 0 x E SI 
as a model problem for the study of a molecular scale cutoff of long range van der Waals 
forces in the moving contact line of a completely wetting thin film. 

We prove a global existence theorem for weak solutions with non-negative data and 
consider all n > 0 and 1 m < 2. In addition to the case where n < 3 and sharp 
existence theory is known for the homogenous fourth-order equation (7). we show that with 
the addition of the second-order term distribution solutions exist for the critical physical 
case of n = 3 (and for all n 2 3) and that they become strong positive solutions in the 
infinite time limit. 

In conjunction with the existence theory, we address leading order asymptotic analysis 
for the edge of the support of the solution. We examine the competition between the second 
and fourth-order terms and for n > 3/2 this study indicates the existence theory is sharp. 

We also present numerical calculations of various weak solutions. The numerics show 
that the solutions have support with finite speed of propagation and regularity at the edge 
as dictated by the asymptotics and rigorous theory. 

To OUT knowledge none of these topics has been addressed before in the the literature 
for a combined second-ordedfourth-order equation of this type. In fact, the sharp existence 
theory for the homogeneous fourth-order equation (7) with 0 e n < 3 has only recently 
been addressed in two independent papers [6, I]. The question of existence of distribution 
solutions with increasing support for n 2 3 is of extreme importance to the subtle physical 
problem of a moving contact line in a thin film, where the correct exponent is n = 3. 
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We also briefly address the full physical equations and the need for a cut-off of the 
singular disjoining pressure at a molecular scale. We believe that this paper is the first in 
either the physics or mathematics literature to address the mathematical validity of various 
cut-off functions of the disjoining pressure. 

There are many open mathematical problems in this field. They include but are not 
restricted to uniqueness of a weak solution, any result in higher dimensions, questions of 
singularity formation (see e.g. [7, 5, 41 for a discussion). Moreover, there is a need for 
more comparison of the various models to actual wetting experiments. 
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