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Abstract. We consider the effect of a second-order ‘porous media’ term on the evolution of
weak solutions of the fourth-order degenerate diffusion equation

hy = =V . (I"VAR = VH™)
in one space dimension. The equation without the second-order term is derived from a
‘lubrication approximation' and models surface tension dominated motion of thin viscous films
and spreading droplets. Here A(x, ) is the thickness of the film, and the physical problem
corresponds to n = 3.

For simplicity, we consider periodic boundary conditions which has the physical
interpretation of modelling a periodic array of droplets. In a previous work we studied the above
equation without the second-order ‘porous media’ term. In particular we showed the existence
of non-negative weak solutions with increasing support for 0 < n < 3 but the techniques failed
for # 2 3. This is consistent with the Fact that, in this case, non-negative seli-similar source-type
solutions do not exist for 7 = 3. .

In this work, we discuss a physical justification for the ‘porous media’ term when n = 3
and 1 < m < 2. We propose such behaviour as a cut off of the singular ‘disjoining pressure”
maodelling long range van der Waals interactions,

Foralln > 0 and 1 < m < 2, we discuss possible behaviour at the edge of the support
of the solution via leading order asymptotic analysis of travelling wave solutions. This analysis
predicts a certain ‘competition” between the second- and fourth-order terms. We present rigorous
weak existence theory for the above equation for all n > 0 and 1 < m < 2. In particular, the
presence of a second-order ‘porous media’ term in the above equation yields nonr-negative weak
solutions that converge to their mean as ¢t — co and that have additional regularity. Mozeover,
we show that there exists a time T* after which the weak solution is a positive strong solution.
For n > 3/2, we show that the regularity of the weak solutions is in exact agreement with that
predicted by the asymptotics.

Finally, we present several numerical computations of solutions. The simulations use a
weighted implicit-explicit scheme on a dynamically adaptive mesh. The numerics suggest that
the weak solution described by our existence theory has compact support with a finite speed
of propagation. The data confirms the local ‘power law” behaviour at the edge of the support
predicted by asymptotics.
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1. Introduction

We consider weak solutions of the fourth-order degenerate diffusion equation
hy ==V (f(h)VAR — VA™) ¢Y)]

in one space dimension. We study the case where f(k) = %", n > 0. This equation is
relevant to surface tension dominated motion of thin viscous films and spreading droplets
[18]. The second-order term in the equation, A#™, arises as a cut off of van der Waals
interactions. We refer to it as the ‘porous media’ term since it is the nonlinearity that arises
in the well known ‘porous media’ equation [25]. Physically, # is the thickness of the the
film. This paper considers weak solutions that can be zero on a set of non-zero measure,
hence are relevant to the droplet problem. We show that for » > 3, the inclusion of such a
‘porous media’ term removes the singularity associated with the movement of the ‘contact
line’ identified in 2 previous work [6].

1.1. Long range van der Waals interactions and the [ubrication approximation

The lubrication approximation for a thin film of liquid on a solid surface yields a fourth-
order degenerate diffusion equation for the film height [18]. In one space dimension, with
a no slip boundary condition on the liquid solid surface, it is

b+ (Ihl?’hxxx)x =0. (2)

The derivation uses the Stokes equation for steady viscous flow combined with a depth
averaging of the fluid velocity in the direction perpendicular to the surface.

The no slip boundary condition causes a paradox for films with a moving edge or
contact line. Indeed, a moving contact line produces infinite energy dissipation [17, 19].
Many authors have considered ways of addressing this problem, including the use of a
‘slip condition’ on the liquid/solid interface. In [6], we discussed the *slip models’ which
mathematically add a term of the form 8{2|?, 0 < p < 3 to the diffusion coefficient |}? in
(2). '

The inclusion of van der Waals forces has been proposed by several authors [28, 15] to
describe such physical phenomena as film rupture (in the repulsive case) and the precursor
film (in the attractive case). In this paper we only address the attractive case.

The boundary of the support of the weak solution physically corresponds to the contact
line, the triple contact point of the air/liquid, air/solid, and solid/liquid interfaces. We denote
the respective interfacial surface energies of the three interfaces by 1y, ¥sv, and 1g. The
spreading parameter, S, of the system is

S = ¥sv - 15 — Hv. 3

When & > 0, the drop energetically prefers to completely wet the surfacet and the jong
range character of the molecular interactions are important to the local dynamics close to the
liquid/solid interface [22]. Such interactions are important on a mesoscopic length scalel
and can be described in terms of a disjoining pressure [26, 20].

Following [28, 10, 14], the depth averaged fluid velocity satisfies

yh* &h A vh® d*h

h2
Ux) = “E(H(h))x-i‘g@ =—M x+—3'?E €]

t One calls this sitnation complete wetting as opposed to partial wetting,
1 Approximately 100-1000 A.
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where y is the surface tension and 7 is the fluid viscosity. The disjoining pressure IT is
taken to be “&ATJ where A is the Hamaker constant.
Mass conservation gives an evolution equation for the film height:

A vh* &h
e+ U =k — | —(logh)y — =——= ) =0
++ (hU): s (67!’7]( og )y 37 dx3)x (5
In the complete wetting problem, 4 > 0. Ignoring the capillary term and considering
only the long range van der Waals forces yields a super diffusive equation for the film

height
A A
hy = (_@r_hnhx)x = ﬁaog(h))xr

Solutions to this problem are known to have quite singular behaviour [12, 13, 24]. In
particular, one would expect infinite speed of propagation of the support and it is unclear
if one can even make sense of this equation for initial data with compact support.

Several authors have suggested that since intermolecular effects are not expected below
a certain length scale, the long range van der Waals model is not reasonable in the limit as
h — 0[22, 28]. In this spirit, we propose a simple cut-oif of the gradient of the disjoining
pressure at a molecular length scale, k., 1. Mathematically, this means replacing the gradient
of the disjoining pressure by

—A
[T = poh) (W) ©

where ¢, (h) is a non-negative cut-off function which is 1 for # > h,, and vanishes at
h = 0. We make the ansatz that the cut-off function vanishes like ™ as h —> 0. This
produces a modified van der Waals term in (5) that is ~ (Jogh)y. for &, << h < 1 but
has a subdiffusive ‘porous media’ like behaviour, (A" )y, below the molecular scale 4,,.

The rigorous theorems presented here are for a simplified equation (1) with just the
cutoff behaviour. Since the equation with the cut-off van der Waals term (6) is uniformly
parabolic in any region where £ 2 m > 0, we expect that a suitable ‘weak’ solution will
be completely smooth where i > 0 and that the regularity and well-posedeness properties
of the solution will be controlled by the behaviour of the diffusion coefficients in the limit
as h — 0. For this reason, we expect our results for the simpler model (1} to hold for the
full equation with the cut-off van der Waals term (6).

In section 6 we present some computations of both the simplified equation (1) and the
full equation (5) with a cut-off van der Waals term (6). In the latter case, the solution
exhibits a proncunced “foot’ analogous to the physical precursor film.

1.2. Degenerate diffusion equations: fourth order versus second order

‘We now compare the fourth-order ‘lubrication approximation’ equation

hy = _(Ihlnhxxx)x = _'(f(h)hxxx)x €))]
to the second-order porous media equation
B = (R )xx. : ®)

1.2.1 The porous media equation For m > 1, the porous media equation (8) has unique
weak solutions, On the real line, if the initial data is non-negative and has compact support,

T Such a method was suggested to us by A M Cazabat (private communication).
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then there exists a unique non-negative weak solation to the equation. This solution has
compact support that propagates with a finite speed. The porous media equation possesses
non-negative self-similar sonrce-type solutions for all m > 1

h(x, t) - M2/mt—1/(m+1) P (xM—(m—l)/(m+1)t—1/(m+1) )

a(m)(y§ — yHV/eD if y<yo

. 9
0 - if y> . ©

o) = [
Weak solutions with compact support converge to these source-type solations as ¢t — o0
[21].
Note that for 1 < m < 2 the “source type’ solutions ‘touch down’ with zero slope. In
[6] we found a family of solutions for the fourth-order lubrication equation that also touch
down with zero slope. In this paper we show that when 1| < m < 2 and n > 0 there
exist weak solutions to equation (1) that have zero slope at the edge. The rigorous theory
for this second-order problem relies heavily on a maximum or comparison principle. This
technique is not directly applicable to higher order problems.

1.2.2. The lubrication approximation The fourth-order problem (7) does not satisfy a
maximum principle. However, the equation possesses 2 number of conserved and dissipated
quantities that provide a weak solution theory via energy methods. In particular we have
the following weak existence theorem [6]7.

Theorem 1.1. Given any non-negative initial condition hy € H'(5), hy = 0 we have the
Jollowing results

Case l. Givenl <« n <2, 0 <5 < min(2—n, %), and o time T there exists b = 0,
ke L0, T; HY(SY)NL0, T; H*(SY)), that satisfies the equation in the following sense:

[ roc= J[ 10t [ Fhihar =0 1

R{x,0) = ho(x) ¥x € §°
hy(, 1) = hox strongly in L2(SY) as t = 0.

Moreover,

Furthermore, given o 2 -'2- - %, i has the additional regularity

rY2 e L2, T; HA(S'))
and
(") € LY@1).
Moreover, there exist positive A and ¢ such that for all t € [0, T,
NB(, 2} — Alles < Ae™ . (11)

where b is the mean value of h. A depends only on |holg, k, n, and |SY|. The rate of decay,
¢, depends only on n, and h. In particular, if hg is nonzero there exists a time T™ after which
the solution is a positive strong solution.

1 Similar regularity and Iong-time results have been recently proven for 0 < n < 3 for solutions in a weaker,
non-distribution sense [1].
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Case IA. If 3 3 < n < 1 the above is true if we replace the equation (10} with a solution in

the sense
hﬁ
f f ho, — f f F s en — f f b= () hmpy = 0 12)
Qr or or o

where ¢ is chosen so thatn > « = ~12- -5

Case2. If2 <n <3, givenany 0 <r < 1 satisfying0 < 2-+r —n < 1 then for any T there
exists b = 0 such that h L°°(0 T; H! Sl)) and h satisfies the equation in the following

sense!

3
— R “(h A)hx@szy = 0.
fgrh“’”sz FMRie + = fQTf()hxrpx-i-fer() 0] 0

The initial data are achieved as above. Furthermore, b has the additional regularity

R e 120, T; HA(SY))

(h*%)x € LY Q7) Yo >~ +

L B
t\)_li-*

The long time behaviour is as above (11).

The staterent for # = 2 is as in case 2 with a minor change in the form of the equation.
There also 1s an existence result for 0 < n < 3/8 in a weaker sense introduced in [2]. See
[6] for a discussion.

What is striking about these results is that the additional regularity of the weak solutions
for 0 < n < 3 is in exact agreement with the regularity of ‘zero contact angle’ non-negative
source type solutions (see (18)~(20) below). That is, if we assume that the limiting solution
h(x, ) has support compactly contained in S and and 2(x) ~ xF at the edge of the support
for all ¢ on some interval [0, T'], then the regularity constraints demand that

£=2 O<n<3/2 _ (13)
B=3/m  32<n<3i. (14)

Furthermore, the techniques used in proving theorem 1.2 fail for n > 3. This is consistent
with the lack of similarity or advancing front solutions for n 2 3.
We briefly discuss some exact solutions for the equation

By + (A Baxe)x = 0. (15)

Compactly supported non-negative self-similar ‘source type’ solutions exist for all
0 < n < 3 [3]. They have the scaling form

h(x, ) =t %H(x) n=xt"" o= . (16)

Where H(z) solves the ODE
H"Hypy = anH. (17)

For a given n and mass, there is more than one compactly supported non-negative symmetric
solution to this ODE. However, if we impose the additional constraint that the solution have
H, = 0 at the edge of the support, the solution is unique. This was proven in [3], in which
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they also proved that these “most regular’ solutions have the following behaviour at the
edge of their support: Let [—a, a] denote the support of H(x). Then

for0 < n» < 3/2, Hm ~@—mlasnta (18)
for n=13/2 H(m) ~ (a—n)log(l/(a—m)? as nta (19)
for 3/2<n<3 Hm~@—-n*" as nta (20)

The less regular solutions have H(n) ~ (a — ).

Starov [27] first noted that there are no finite mass ‘source-type’ solutions for n = 3.
Brenner and Bertozzi [9] addressed the significance of this fact for the physical problem
of spreading droplets. The n = 3 case arises when there is a no-slip boundary condition
at the liquid/solid interface, The lack of such scaling solutions is consistent with the fact
that a no-slip boundary condition leads to infinite energy dissipation at the contact line for
spreading drops with a finite contact angle [17, 19].

The non-existence of source type solutions for # > 3 is due to the structure of the ODE
(17) and is in sharp contrast to the source type solutions for the porous media eguation (8)
which exist for all m > 1.

There are also travelling wave solutions of the foxm k(x, £) = H(x — ct) as described
in [8]. Again, we see transitions in the behaviour at critical values of n. It is noteworthy
that there are no advancing front solutions for n 2 3. For 3/2 < n < 3 there are advancing
front solutions with the simple form

A(x, ) = €= (E —2)(2 ~ I)EA".
n n R

Alx —ct)’/m x >ct
otherwise

For 0 < n < 3/2 there are advancing front solutions with quadratic A(x — cf)? leading
order behaviour [8]. Finally, there are exact steady selutions for all n

A— Bx* x} < A/VEB

21
0 otherwise. @D

h(x,t) = {

The proof of the theorem 1.1 depends on certain dissipated energies. In this paper we
derive analogous estimates for the equation with both fourth-order and second-arder terms
present:

dn
a‘ + (1 e )y — (B )ex = 0.

We briefly discuss some properties of smooth solutions that we use to prove needed a
priori estimates.
For example, we have conservation of mass,

f h(x, )dx = f ho(x)dx.
5 §

When 1 « m < 2, we have dissipation of surface tension energy

j;l theCx, T)I? dx +foT FOyRL,, +mﬁ;r K2,

pmm=ba-m f Hm=358 drds = f Via(x, O dx (22)
Or st
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and the basic entropy dissipation: consider a function G(y) satisfying G"(y} = 1/f(3)
for y > 0. The convexity of G and mass conservation allow us to choose & so that
[ G(i(x, £)) dx > O for all ¢. Integration by parts yields

- 2 hm—] 2 _[
fsl Gh(x, :r))cbc+ffgr kxx+mfgr 7oy dnde = | GlhGz 00 ax. (23)

For n = 0, the linear problem, the entropy is merely the L2 norm. Bernis and Friedman
first introduced these entropies in [2]. In a previous work [6], we used these and a new
class of entropies to prove theorem 1.1. We show that for 1 < m < 2 the same resulis hold
and we extend results to all # > 0 by exploiting sharper estimates obtained by the presence
of the second-order term. For n > 3/2, we obtain sharp regularity results. We now discuss
this briefly:

1.2.3. Competition between the fourth- and second-order terms It is natural to expect that
either the second-order term or the fourth-order term will control the dynamics at the edge
of the support of the solution. “In section 2 we discuss leading-order asymptotics for the
solution near the edge of its support. For n 2 3 and 1 < m < 2, the asymptotics predict
that locally there are advancing travelling wave solutions and that their behaviour at the
edge of the support is dictated by the second-order term. That is, the solution at the edge
~ (x — x(@))/1, Moreover, for 3/2 < n < 3, and 1 < m < 2, whichever term gives
higher regularity at the edge will dominate. We also discuss some expansions for the case
n < 3/2. The predictions and possibilities are summarized in the chart below. The case
n = 3/2 is special as log dependences play a role when the fourth-order term dominates at
the edge 19.

Table 1. Behaviour at the edge: second versus fourth order.

term behaviour at edge O<n=<3/2 32<n<3 nz3
(BPheee)s  (x—xa())P for 0 < n < 372 can gontrol controls edge if o solutions
n>0 (x—x())¥" for3/2<n <3 edgeifm>n 1/m—1) <3/n

no solutions forn = 3
R 4 (x — xpley /im0 can control edge controls edge if  always controls
lem=2 Flfm—1)>3/n 1/im—1)>3/n edge

1.3. Main results

Given that the techniques used to prove theorem 1.1 break down as # — 3, a natural
question is what can one say about the problem for » 2 3. One result of this paper is that
the inclusion of a second-order ‘porous media’ term with 1 < m < 2 enables us to prove
the same results as in theorem 1.1. We derive a weak existence theory for the equation

By + (hnhx:rx)x - (hm)xx =0
forrn > 0 and ! < m < 2. In particular, for n > 3/2, the regularity of the weak solution
is in sharp agreement with that predicted by asymptotics at the edge of the support of the
solution (see table 1 and section 2). Thus the existence theorem supports the predictions

made by the asymptotics.
‘The main thecrem is
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Theorem 1.2. Given any non-negative initial condition hy € H'(SY), hy > 0 we have the
Jollowing results

Case 1. Letn 2 3,1 < m < 2. Then for any time T, there exists h such that
h e L®{0,T; H'(SY), h > O, and h satisfies the equation in the following sense of
distributions:

f fQ 1, +% NG % f j; i+ f fg Ohp

= f G Pl
Qr

The initial data are achieved as in theorem 1.1. Furthermore given g > O there exists a
solution h satisfying the above that has the additional regularity

p e L2(0, T; H2(SY)

(B ) € LYQr)  forally > =H

RETIRy, e 1XQr)  foralla >
and the long time behaviour

Mhx, ) = hllg= < A7

A iy determined by 1holz, n, kh, and |S'|. The rate of decay, c, is determined by n and
h. In particular, if hy is nonzero there exists a critical time T* after which the solution is
guaranieed to be strong and positive.

Case 2. For2 < n < 3,1 « m < 2 the above existence and long time result is true.
Moreover, given r satisfying both 0 < r < 1 and 0 < 2 4-r — n, there exists h with the
additional regularity

h1+r/2 e LZ(O, T; HZ(SI)),

+2
;€ LYQ7)  Va>l -

Case 3. Letl <= n < 2 1 < m < 2. Then on any time interval [0, T] given any
0 <5 < min(2 —n, -;-) and any ¢y > max(Q,m — n + 1), there exists a solution in the
Jollowing sense of distributions:

/ fQ o~ / j; St J fQ  Whachep, = / fQ s

The solution has the regularity
R e L}, T; HX(S")
(hP)x € L*(Qr) Vg 2
(#B: € L{Qr) Vaza
(h(l—n—s+m)/2)x' c LZ(QT)
hy € L0, T; LS.

and the long time behaviour as above.

—s+2
4
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The theorem for n = 2 is as in case 2, with a minor change in the definition of weak
solution. The reader can derive results for 0 < n < 1 following the proofs in [6].

Significant remark. Note that if we make the ansatz that the weak solution above has a
local power law (x — xo(f))¥ where xo(?) is the edge of the support then the additional
regularity in the statement of the theorem implies

S max (3/n, 1/(m — 1)) n>3/2
g max (2, 1/(5 + m — n)} 0<n<3/2

In particular, the theorem is sharp given the asymptotics for n > 3/2.

The techniques are similar to [6]. We introduce convex entropies to prove the existence
and long time result. For n > 3 existence and decay of weak solutions follows directly
from energy dissipation. The convex entropies are only needed for additional regularity. As
in [6], we use weak convergence arguments for nonlinear functions of & in Sobolev spaces
to prove existence. There is a direct relation between the exponents m and # that allow for
such spreading solutions.

We use a regularization introduced in {2] and used in [6]. In section 6 we present some
numerical calculations of the solutions which demonstrate the predicted interplay between
the ‘lubrication approximation’ term and the ‘porous media’ term. The simulations indicate
that the support of the solution has finite speed of propagation and continucus flux, two
properties desirable for a physically correct model.

The paper is organized as follows. Section 2 provides a discussion of the asymptotics at
the edge of the solution as a motivation for the sharpness of the theorems. Section 3 reviews
the properties of the regularization scheme. Section 4 proves the existence results for non-
negative initial data for ¢ < n. Section 5 proves the long time results for non-negative
initial data for 0 < n. Section 6 presents numerical calculations. Section 7 summarizes this
paper and discusses unsolved problems.

2. Competition between second- and fourth-order terms: asymptotics at the edge of
the support

Before proceeding with the rigorous analysis, we use asymptotics to study the competition
between the second- and fourth-order terms at the edge of the support.
Let us assume that we have a weak solution to the equation

ht = _(h"k.txx)x + (hm)xx (24)—

with compact support the edge of which propagates with finite speed. Either the fourth- or
the second-order term determines the motion of the edge of the support. In this section we
present a simple asymptotic argument for the competition between the two terms in terms
of n and m. In section 4 we present rigorous results which confirm the predictions made
by the asymptotics. For n > 3/2, the rigorous analysis is sharp in that the regularity of the
weak solution is in exact agreement with that predicted by the asymptotics.

We recall that for the lubrication approximation equation (7) advancing fronts only exist
for 0 < n < 3 [3, 8]. This suggests that for (24) to have an advancing front for n = 3, the
motion must be due to solely the second-order ‘porous media’ term. However, when n < 3
it should be possible to have either the second or fourth-order term determine the motion
of the edge of the support. The leading order asymptotics below indicate that this intuition
is reasonable.
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A standard technique is to assume that locally the solution looks like a travelling wave
near the edge of its support. Hence we consider solutions of the form
h(x,t) = H(x — c1).
This yields the following equation for H

—cH'(n) = —(H"(H" ()Y + (H" ()"
where n = x — ct. Integrating once, we find
A—cH(py=—H"(H"(n) + (H" W)Y (25)

A is determined by the regularity at the edge of the support of H. Without loss of generality,
the edge of the support of the solution corresponds to 1 = 0.

There are four cases to consider: 0 < n < 3/2 and 3/2 < n and for each of these
either A =0 or A 3£ 0. For technical reasons, we do not consider # = 3/2 as the expected
behaviour is not purely algebraic (19).

Case 1, 3/2 <n

Case la. A =0. Assume that H touches down like 5°, with @ &£ 1, 2. Then
HA g ~ nn9+9—3 (Hm)r ~ z,‘?mm':l-l’

If the porous media term is the lowest-order term on the right-hand side of (25) we have
H ~ (H™) therefore

=l e g = L .

m-—1 .
6 = 1/(m — 1) is the generic case for solutions of the porous media equation. Note that
touchdown with zero slope at the edge implies @ > 1 which gives the constraint 1 < m < 2,

For this behaviour to dominate the fourth-order lubrication term we require

2
nt+l—m
Combining these, we see that the porous media term dominates at the edge of the support
whenever

7 ~n

Hn(’?)HW(U) ~< (Hmcn)).' = n(n+1)9—3 < r‘ﬂn‘l—l _ = g >

1 2 3 1
—_— =0 — - < —. 2
m—1 >n+1-—m = n S m—1 @9
The same argument shows that if the lubrication approximation term is the lowest-order
term then

3 1 3
== and —_— < 27)
n m—1 nr
e =3/n=1/(m— 1) the two terms are of equal importance,
This argument suggests that the equation selects the power law that gives greater
regularity at the edge. In section 4, we prove that for 3/2 < nand 1 < m < 2 the

regularity of the weak solutions is in sharp agreement with the asymptotics (26)(27).

Case 1. A % (0. In this case, if the porous media term is the Iowest-order term then
A ~ (H™Y. As above, this implies

3 v .
! and < —1- 28

= —
m n+l1 m
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If the lubrication term is lowest-order then
3 1 3
Thrt and - 4+ 1
Forn > 3/2and 1 <m < 2, the existence theory of section 4 excludes behaviours (28)—~(29)

as they are not sufficiently regular.

(29)

Case2.0<n<3/2
Case 2a. A # 0. Again, the regularity of the weak solutions rules out this case.

Case 2b. A = 0. We recall that for 0 < n < 3/2 the lubrication approximation equation (7)
has non-negative self-similar source-type solutions with expanding support with 8 = 2 [3]
and receding travelling wave solutions with & = 3/xn [8]. Therefore the options are: the front
could recede with & = 3/n or the front could advance with & = 2 (lubrication dominated)
or 8 = 1/(m — 1) (porous media dominated). Since we are ultimately concerned with the
advancing front casef we consider only & = 2 for the lubrication dominated behaviour.

In the case @ = 2, the lubrication approximation term dominates the motion of the edge,
and we seek an expansion :

Hm =kp + An® + B’ +Cn°+.... (30)
where 2 <@ <b < ¢ <.... Therefore
H*op) = K™ 4+ nk" 1?0 D(An® + B + .. )+l — DR 220D )0+ L
H™=1(n) is expanded similarly. Defining A = a(a — 1){a — 2)4, B = (b — 1)(b — 2)B,
C=c(c—1)c—-2)C, we find
_HnHm + Hm-IHr =

_ (knnbt + nAkn—I n2n+a—2 + anﬂ—-l n2n+b—2 + ann—l nZn-!-c—Z +.. -)

x (ﬁn"‘3 + B+ C P+l )

+ (£ 4 A — DR 2 B — DR 4 )
x (2kn+aAn® + BBl +cCyt .. )

_ (_ Apnyrta=d _ panpPtb=3 _ Fpnpinio=3 )

+ (2K a AR P 4 pBEPT IR L)

Recall that —cH = —H"H" + H™ 1 H’, hence (30} implies the lowest-order term above
must be 7°. We now begin considering the possibilities.

Case 1. No lowest-order terms cancel. In this case, the lowest-order term from the
lubrication term is the term of order 2: 5?93 ~ 52, This implies @ = 5 — 2n. The
coefficient of this termn determines the speed of the edge. The assumption ¢ > 2 then
imposes the requirement n# < 3/2. The fact that the lowest-order term comes from the
lubrication approximation term implies #****=2 < »?»~! implying 27 + 2 — 3 < 2m — 1,
hence m = 3/2. This suggests that if m and » satisfy

3 3
n<3 mzs

1 Our existence theorem states that the weak solution will eventually become a strong positive solution so that
the support must eventually increase to fill the whole periadic domain.
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then there is an expansion of the form H(n) = kn* + An°2* + ..., where 2k determines
the second derivative at the edge and A determines the speed of the edge.

Case 2. The lowest-order term from the lubrication term cancels with the lowest-order term
from the porous medium term. If these two terms are to cancel, we need 52 +H4—3 ~ p?-1,
This determines @ = 2(m~n-+1) and A is then determined by a and £: a(a—1)(a—2)Ak" =
2k™. The requirement 2 < a implies m > n. The cancellation makes 72123 the
lowest-order term from the lubrication term, and 7***t%—3? the lowest-order term from the
porous medium term. Since the lubrication term dominates the bebaviour, Ate=3 ~ p2,
determining & = 5 — 2r. The requirement a < b implies m < 3/2, 2 < b implies n < 3/2.
Moreover, 72*=3 < y>*+5-3 implies m > n/2 + 3/4, which immediately implies m > n.
This suggests that if 1 and n satisfy 7 o

R < % m < % mz —lin -I-%
then there is an expansion of the form H(n) = kn? + Ap*™~20t2 4. Bp5~2 o |, where k&
determines A and the second derivative at the edge and B determines the speed of the edge.

Case 3. The lowest-order and second lowest-order terms from the lubrication term cancel
with the respective terms from the porous media term. Repeating the above argument, we
find that ¢ and b are determined by m and #, and if m and n satisfy

3 1 3 1
n<s3 m<sn+ g m23n+1

then there is an expansion of the form H (1) = kn?-+- Ap?n— 22 . gpym—antl | opS-2n |
Here % determines A, B, and the second derivative at the edge, while C determines the
speed of the edge.

We note that in the above, we have assumed that the lowest-order terms in the expansion
of H" (2) have been from 72@~D(An? +...) and not from 22 (An® + ...)? or other
terms. Under this assumption, we can continue the above process indefinitely, and we see
that for any m and n satisfying n < 3/2 and m > n, there is an expansion H so that
H®m) =kn*+...+¢én°2" +..., where 2k determines the second derivative at the edge and
the coefficients of the intermediate terms and £ determines the speed. This suggests that
there are two degrees of freedom: the second derivative and the speed. A more in depth
study of the asympiotics in which an inner expansion at the edge is matched to an outer
expansion away from the edge may yield additional matching constraints.

Thus it is possible to have leading order > behaviour when m > n and from the above
arguments for n > 3/2, one can have 51 behaviour when 1/(m — 1) > 3/n, Since
n>mand n < 3/2 always implies 1/(m — 1) > 3/n, there is always at least one possible
behaviour for any 0 <n <3/2, 1 <m < 2.

3. Regularized problem

To prove existence of weak solutions and to numerically compute the weak solutions we
use a regularization scheme introduced in [2] and used in [6, 1].

The regularization involves altering the equation and lifting the initial data. We bound
the initial data for the regularized problem away from zero by

heo(x) == ho(x} + 8(€).

where 3(¢) > 0 and Aeg — kg in HI(SH) as e — 0.
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In addition, we regularize the equation by considering

hep = —(fe(hedherex)r + (hem)xx
hetlhe|”

h) = —m——.

fe(he) el +

We remark that f; is still degenerate; however for n < 4, fe(¥) ~ y*/e as y — 0. This
degree of degeneracy is more tractable and this approximate problem has unique positive
smooth solutions for all time.

Theorem 3.1. (Global existence of unique smooth positive solutions for the regularized
problem.) Let hg € HY(SY), ko > 0, 1 < m < 2. Given an initial condition

hep(x) = ho(x) +3(€)
there exists a unique positive solution to the regularized equation
hey = —(fs(hE)hexxx)x + (hém)xx

hetthel®

fe(h) = m-

The proof is a minor modification of that presented in [2], and summarized in [6]. For
this reason, we omit many details. The main points are : ‘

e Classical parabolic Schauder estimates guarantee existence of a smooth solution up to

a time o.
e In this short time of existence, for any ¢ < o, the smooth solution satisfies

f 2(x, )dx + f f FACHYI
= ) [ [ [

= f hei(x, 0)dx. (31)
Sl

Since hieo — kg in H1(S'), (31) provides an g priori upper bound for f hei independent
of t and € at any time ¢ < o. This in turn yields an a prieri bound for the Holder norm

Vhelowzesty
[he(x1, £) = he(x2, )] < Clxy — x2|12 vt < o, (32)
A, Dlpeegsy € € vt <o. (33)
Equations (31)-(33) imply
lhe(x, 1)) — he(x, )] < Cltr — 1] V/2. (34)

In all of the above, C depends only on the H! norm of the initial data, |ig|z:.
o We introduce the convex ‘entropy’

1
Go(y) = > for y > 0.
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Integration by parts yields

€ z 2
; 6_—_h¢(x, e dx +j;l Golhe(x, 1)) dx +-/; fgl kel

+m f o kel = €

0 Jst fe(he) £ 5t Ghelt)(x)2

for any ¢t < ¢. As in [2] and [6], this & prieri bound for fsl g/ }z§ and the Holder
continuity (32) provide an a priori pointwise lower bound for the solution £ (x, 7).

e The a priori bound for the minimum depends on ¢ and Jholz and the bound for the
maximum depends only on gl . Hence the solution is uniformly parabolic on {0, o]
and can be continued to any time 7.

¢ Uniqueness follows from energy methods, as in [2].

We remark that (32)-(34) imply that {&.} is a uniformly bounded equicontinuous family
of functions on Q7. The Arzela-Ascoli theorem guarantees the existence of a subsequence
that converges uniformly to a limit, 4.

+ Golheo(x)) dx < C. (35)

4, Existence of weak solutions

We recall the regularized equation and initial data from the previous section:

heo(x) = ho(x) + 3(€) (36)

her = _(fe(he)hexxx)x + (hem)xx (37)
kMR

felhg) = EPETEARS (38)

Let

Or=5'%(0,T) @ € CP(0, T; C=(Sh).

Recall the energy dissipation (31)
f hel(x, ) dx f kel dx =C.

s st

The Sobolev embedding theorem implies there exists an M < ¢o such that
[ReCx, DS M Vx,t.

In all of the following theorems, the initial data are achieved as in theorem 1.27.

Proposition 4.1. Given any non-negative initial condition hy € H'(SY), ho > 0 we have the
Jollowing results

Case 1. Letn 2 3,1 < m < 2, and let h, be the unigue positive smooth solution to
the regularized problem (36)~(38) with 5(¢) chosen so that 5(¢) = O as ¢ — (. Then on
any time interval [0, T], there exisis a subsequence that converges pointwise uniformly and
weakly in L®(0, T; H'(S')) to a non-negative h and h satisfies the equation in the following
sense:

3 1] 1 1/
f ho, + 2 f £, + = f F O, + f f F st
Gr 2 or 2 ar or
= f H™):0,. (39)
, Qr

t The proof of this is standard, and we refer the reader to [2] for further details.
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The initial data is achieved as in theorem 1.1. Furthermore, given oy > 0, there exists h
with the additional regularity

B e L0, T; H*(SY))

1
(W) e LYQr) Yy > -”%

(#*57), € LAQr) Ve > a.

Case 2. Let2 <n <3, Y <m <2, andrsatisfybothO<r <1and 0 < 2+r—n Ifk,
is the unigue positive smooth solution fo the regularized problem (36)—38) with

5(e) = ¢° 8 <1/2. (40)
Then all of the above results hold, and h has the further regularity
h1+r/2 = LZ(O, T; HZ(SI))

r+2
7

We remark that there is an existence theorem for n = 2 which is very similar to case 2,
and zefer the reader to [6] for the slightly different definition of weak solution needed.

() € LY Q1) A

Proof. We first prove case 1, in which # > 3. Recall that 4. is smooth so that we can
integrate by parts:

d1 mm —1)@—m) [ . _ g
dt 2[ f fé(h )héxxx - 3 s he ské_: - m[ h lhé.%x
41)

Note that all the terms on the right-hand side have the same sign if 1 < m < 2. Integrating
in time gives

% fs 82 0 =1 f 2(,T) + f f b, + 0= 2(2_”‘) f 5 R R

+m f hehe2, (42)
Qr )

which then guarantees a priori bounds independent of € for

[raen [ rword. [[ retnd=aff 6
s Q7 or

and [ f e ih 2, (43)
or

in terms of the initial data, [, he2(-, O).
Note that for any ¢ smooth and bounded away from zero:

me1\ 2 m+1\? —
), = (27) | pertnd

+((m~—1)2+——~——-—(m 1)3("’ 2)) B }
st



1550 A L Bertozzi and M Pugh

Therefore [ (heazﬂ)ix is a2 linear combination of a priori bounded quantities, hence is a
priori bounded. Thus the following are bounded uniformly in &:

ffzr(he%l = _[Qr(h R

We obtain further a priori bounds by noting that integration by parts also implies
d _ 1 _
& = - — 1) [ j; e 2 felhdhe, — 3 fs (felhhe 2Y'hed

— |k
dr S
+m f h;"“”"‘hei:l.
5l

Integrating in time implies.

m [ nemni = [ hetroond 4[] Gooretynd

.,.ﬁ (fy he“(-,T)~‘/;l h:‘(-.c))

1
< h T felh e fs TR+ SRS Y BT 1 [S e

1 [+ i ar
o Us:k‘ (.,T)+j;lhe (,0)).

Note that, since & — 1 + n > m, a variant of an argument in the appendix of [6] implies
that JBe® "™ fo(he) e and [(felle )™ 2Y > ™ 1= are a priori bounded. Furthermore,
since |ho(x, )| € M for all x and ¢, [ h*(-, T) and [ h*(-,0) are bounded. These facts
and (43) yield an a priori bound for [f, ke a-Btmp 2

By weak compactness, these bounds imply that there exxsts a subsequence so that

il o in L2(0, T; H2(S')) (44)
(=@ in IO, TINSY) V> TS @)
BT =~ GUF), i LA, T LA(SY) Ve ra (46)
hey = By in L*®(0, T; Lz(S‘)). (47

Given a test function ¢ € C§°(0, T; C®(81)), the approximate solution /. satisfies the
integral equation

1
f f hep, + f Fh g+ f[ FhIh g, + [ FelheYrexPrne
Cr 2 gr 2 Or Qr
=/ (hem)x(f’x' (48)
Qr

To prove that the weak limit # satisfies (39), we must show convergence of the nonlinear
terms in (48). 'We present the argument for ﬂ' or ”(hs)hexgaJc The other terms follow
analogously.

Lemma 4.2. Let @ CC Qr be compactly contained in Qr. Then

FlhrORE — F(K? strongly in LE(S).
€ x X
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Proof. This is identical to the proof in [6] for the Jubrication approximation. Fix p > 0.

f f (fi (kR — f()R2)* = f f (Frhhe — £ (yRZY
Q Qnthzul

+ f f (Fr IR — £ IR2)".
QY h<p}

By the regularity theory of uniformly parabolic equations, % is smooth in N {k = u},
hence k. and its derivatives converge uniformly to % and its derivatives on this set. Taking
€ to zero,

f f (Feans — F1 R - 0
(k)
m+l

For the second integral, we expand the square and bound each term. Taking y = &=
we find that one term is

f f (Flhehet < C f f R (FX D) (e )e
Qn{f<p} hep

<C (sup h 4"4"(f"(he))2) f ()i
Or

(h<pe}

< C sup ¥ (7 (Re)) .
(=g}
In the above we used the fact that (h.¥), is uniformly bounded in L*(Q7). We now use
the fact that f/'(y} — f”(y} uniformly on [0, M] as € -+ 0 for n > 2, as proved in the
appendix of [6]. This and the uniform convergence of k. to & imply f/(h.) converges
uniformly on Q7 to f”(k). Therefore, by taking ¢ small,

sup A 4—4y(fe.'r(he))2 C{,L4"4Y+2("'—2).

[h<p}
Recall that -'i’i’i =y < %, implying that 4 —4y +2(n — 2) > 0. The other two terms from
the integral over 2 N {# < u} are bounded in the same way. Taking i — 0, we have the

result. a
This lemma implies

/ f Ftkee > || f £,

since ¢ has support Q compact in Q7 and k., converges weakly to k, in L2(Qr). The
other nonlinear terms converge similarily. This finishes the proof for the case n > 3.
We now prove case 2, in which 2 < n < 3. This uses a convex entropy first introduced

in [6]. Take G (y) so that Gm(y) =5 = fory > 0.
r—n+2 ‘ € r—2
Gr(y) = Y >
(2—n+()(1—n+r) (r——2)(r—3)
where ¢ is chosen so that [ G, (&) > 0.
As before,
4 G’(h)=—fh’h2—lr(l-r)fh"zk“—m @—lkz (49)
d fo me T f e Pex T3 s s fehe) T
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We note that all the terms on the right-hand side have the same sign since 0 < r < 1.
Integrating in time gives

fs Gr el TH + f fQ T hThe, + = -1 f N he PRt 4 m f f T 12 ;;
= fsl Gre(he(-, 0)).

The constraint (40) on §(¢) and r — n 42 > 0 provide an @ priori bound for the entropy
of the initial data, fsl Gh (he(-, 0)) £ C, where C is independent of €. In this way, the
following are bounded independent of ¢

ff herhssz[[ hf?’—zh 4_le (he o ) )4 ff r+m—n lh 2
or gr Or or
=a ff, 6
T

The above used the fact that there exists € independent of € such that f{k.) < Ch".
For a smooth function bounded away from zero,

2
f R = (14 /27 ( f b b+ 1~ L= 1) f h;-‘h.gi).
5 4 3 5!

As before, this shows that ff'(h!*+/2)2, is a linear combination of a priori bounded
quantities, hence is @ priori bounded. These bounds imply that for fixed r, there exists
a subsequence so that in addition to the weak convergences (44), (45) and (47) we have

(¥ )y —~ (D) in L2(0, 75 L3(S1Y), (50)
Bee -~ %) in LAO,T;ZHSY) Va3 % + %— (51)
(), —~ @F), in 220, T LA(SY). (52)

‘We note that the proof of the bound needed for the weak convergence (46) uses the uniform
bounds on ff k. "2h.)t and [f b heix

The rest of the proof follows as in the case n > 3, in that these weak convergences
imply that the nonlinear terms converge. For example, (51) is sufficient to prove lemma

4.2. The reader is also referred to [6] for a discussion. O

Proposition 4.3, Given 1 <n <2, 1 <m <2, hy 20, and hy € HY(S?). Let h, be the
uniqgue positive smooth solution to the regularized problem (36)—(38) with
P 2

Then on any time interval [Q, T), there exists a subsequence of {h.} that converges pointwise
uniformly and weakly in

dley=¢

L20, T; H2(SY))Y N L™, T; H'(S"Y)

to a solution h in the sense of distributions

f fQ rmo, = f . FMYz ey + f fg ] Flhheh o, + f Qr(hm)xqox. (54)



The lubrication approximation with a ‘porous media’ cut-off 1553

Furthermore, given any 0 < 5 < min(2 - n, 2) and any o > max(0, 3/2 — n), there exists
a solution with the additional regularity:

B3, BT e 120, T; HA(S") . (55)
) e LHQr) Ve ap (56)
I s m+1
4 4 o
(7")x € L*(Q7) ¥y 2 min (2 yC ) (57)
AT e L0, T3 HI(SH). (58)

We remark that one can prove an existence theorem for 3/8 < n < 1 which is very
similar to the above theorem, and refer the reader to [6] for the definition of weak solution
needed. There is also an existence theorem for 0 < n < 3/8 which uvses a weaker definition
of weak solution than a distribution solution. Again, the interested reader is referred to [6]
for the details.

Proof. The foilowing proof is almost identical to the existence proof in [6] for the equation
{(7) without the ‘porous media’ term for 1 < n < 2. The main difference is the higher
regularity (58) obtained from the presence of the ‘porous media’ term in the G; entropy
dissipation. For this reason, we only sketch the proof.

Recall the convex entropy Gy(y) = f(.v) introduced in section 3. Integration by parts
yields (35):

m-—-l

5 G, :)zd”f Golhe(, ””""”f f f o Tty < Ce

The constraint (53) on 8(¢) and n < 2 provide an a priori bound for the entropy of the initial
data C, = [ Golheo} + [ e/(6h€3) £ C, where C is independent of €. Mass conservation
and the convexity of Go allow us to choose Gy so that { Go(h) > 0. Therefore

f i <C
or

Weak compactness implies that there exists a subsequence that converges weakly in
L0, T; H*(S1)) to k. Dissipation of surface tension energy (22) implies that 3k, /8¢ is
uniformly bounded in L2(0, T'; H~1(S)). The well-known Lions—Aubin lemma [23] then
implies that there exists a subsequence that converges strongly in L2(0, T; H'(S")) to k.
We now prove that k is a weak solution in the sense (54). Since k. converges pointwise
uniformly to 2 on Q7 and fI(y) converges uniformly to f'(y) on [0, M] for n > 1 (as
proved in the appendix of [6]), f!(h.) converges uniformly to f'(2) on Qr. Similarly
fe(h.) converges uniformly to f{#) on Qr. Hence the limit k(x, t) solves the equation in
the sense (54). For example,

f .[,3 . Fetdhexhexzpz — f fQ ] F' Wbty

since .y, converges weakly in L2 to kg, he, converges strongly in L2 to &, and fI(he)
converges uniformly to f'(h).
For the extra regularity, we recall a convex entropy first introduced in [6]

1 € i
- 2+ 53+ 5) yts + R-n-5{l—-n—19)

Gri(y) ¥y e
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chosen so that {(G5)"(y) = mj By integration by parts,

d -5 - S(S + 1) =52y 4 hf i 2
dtf G (he) = f ke henr 3 g he ™ hey —m ; —fe(Te)hex-
We note that one of the coefficients, ﬂ%’l, is positive, hence the techniques used above
do not immediately apply. However, it is possible to ‘hide’ the [ h~*"2h} term in the
ff ke *heZ, term in such a way as to bound the right-hand side from above by a combination
of the integrals where all the coefficients are negative, This requires s < 5 and the details
are fully presented in [6]. As before, we then have a priori upper bounds for the following:

f (heffz—s/‘f)i f (hel—S/Z)ix-
Qr Or

This used s < 2 —n and the constraint (53) on 8{¢). Again, energy dissipation yields a
priori bounds for

f (heE f Y,
or Qr

The uniform bound. for g‘ he "‘3‘“’}1 2 follows as before, and uses the bounds on
T he™2het and [ ™ hc2,. This requlres oo >3/2—n.

Taking a subsequence of t.he above subsequence, the limit # inherits these bounds, hence
has the desired regularity. O

5. Long time behaviour of solufions
In this section we prove the long time results for the equations.

Proposition 5.1. Given hy € H!(S 1), hp 2 0 let i be the wegk solution from section 4. The
mean of the initial data is denoted b, h = E sl| [ ho.

Case 1. n = 3. There exist positive A and ¢ such that for all t € [0, T

(G, 2) — Rl <A™
A is determined by \holm and |SY|. The rate of decay, ¢, is determined by \S'| and k. In
particular, if ho is nonzero the solution is a positive strong solution after a critical time T*.
Case 2. 0 < n < 3. There exist positive A and ¢ such that for all t € [0, T},

W x, £) = Blls < A€T |

A is determined by |ho(g, n, h, and [SY]. The rate of decay, c, is determined by n and h.
In particular, if hy is nonzero there exists a time T, after which the solution is a positive
strong solution.

Proof. We first prove case 1, n 2 3. We recall the energy dissipation (41):

d1 m(m—1}2 —m) » ] _

dt 2‘/. f .fé(he)héxxx 3 s hem 3kej "'ﬁ"l-/;‘l h n lhe?:x
The terms on the right-hand side are all nonpositive, hence

d1 - D2 -
S [ra<-PE20m [ hrng<—c [ nd
s 5

dr2 s
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In the above, we used the fact that [Jh.(, o < M for all ¢t € [0,T], hence
he(x,t)Y*3 > C. Schwarz’s inequality then implies

d 2 2 :
— [ h < — .
dr Jo x C (fsl hsx)

A varjant of Gronwall's lemma gives

f Kty dx < fo h2(x,0) dx 1
st 14+Ct fo heZ(x,0) dx =T

We note that C depends on ||z, through its dependence on |Ahg|.. The weak convergence
By = By in L2(S') implies that the weak Jimit inherits the above bound:

(h(x, 1) = h)Y dx € Af Rix.Hdx € —
sl il

In the above we used Poincaré’s inequality:
Poincaré’s inequality. Let h € C2(S') and consider xy € §'. Then
fmarwam%xswffhﬂn’
51 Ry

This also holds true for & & H'(S!) by a density argument.
The following interpolation inequality is proven in [6]:

1 4 @\ 1+«
Mms(a) MWMHWW+(a)wmwr

where |w], is the Holder—« seminorm. Taking & = 1, in the interpolation inequality gives

- 4
R, 8) — h|pe £ -(W for all t > Q.
This implies that there exists a time, Ty, after which 4 is strictly positive and bounded below
by k/2 and hence a strong solution. The energy dissipation applied to this strong solution

implies that for ¢ > To,

d n
af x\()fxxx

Another application of the Poincaré inequality, Gronwall’s lemma, and the interpolation
inequality yields the exponential decay.

The proofs of the other cases are identical to those in [6] for the equation with the
lubrication term alone hence we omit the details. The key ideas are that for 0 < n < 2,
the convex emropy f Go(ke) is eqmvaient to the L? norm of A.(-, ) — (b + 8(e)).
That it dissipates with a rate [ & ¢2, implies that the approximating solutions k. decay
exponentially fast at a rate independent of €. For 1 < n < 3, we use the dissipation of the
following convex entropy

g [ Gto<—c [ i,
The entropy [ G7 (h) is equivalent to the L? norm of k. (-, )**3 — (h + 8(¢))*5. The
long time result then follows. The proofs of equivalence of the entropies to squares of L*

norms is due to a ‘parabolic sandwich’ argument in which we show that the entropies can
be chosen so that their graphs are ‘trapped’ between two parabolas. d
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6. Numerical results

Our numerical scheme is an adaptation of a code used in [7]. With the permission of the
authors, we use some of the language from this source. The simulations use a conventional
finite difference method. Specifically, it is an implicit two level scheme based on central
differences. In addition, some of the numerical results presented here use a dynamically
adaptive mesh composed of a fixed macro-grid and adaptive micro-grid needed for higher
resolution of the ‘contact line’. The finite difference scheme with a fixed non-uniform
non-adaptive grid was used used in [11, 16, 29] to compute solutions of the equation
¢ = —(RhAgzc)x. In these works, they compared their results to results from a finite
element method and found excellent agreement. '
We consider solutions on a periodic domain [—1, 1] that are symmetric about x = 0.
The equation preserves this symmetry. For this reason, we solve the equation on the interval
[0, 1], discretized by the N mesh points,

O=xj<xp<...<xy=1

At each computational time level the arrays k; and p;, { € [1,..., N, approximate
hix,t) and —hy.(x, £), and v;, j € [1, ..., N — 1] approximates A,..(x, #). The h; and p;
values exist at the point x;, while v; is the computed third derivative at the center of the
interval, (x; + x;+1)/2. The following picture depicts these associations:

Xi L Xigl
i Bi
Pi Pis1

We uvse the notation:

Axl__}_% = Xjy1 — Xj

=1
il = 5 (g1 + X)

Ax=x —X
PEAL T

=1
hiyd = 3 + i)
by —h
8k o D T
:+% Axi+%
e
hET
1

For simplicity we describe the difference scheme in space first and later mdlcate the
time step process. The equation we wish to compute has the form

By A+ (F(Whyxx)z — (Pm())xy = 0.
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‘We discretize the spatial operators by
v — f(h,_1)v
2 2

. — 2 . ‘ .=
(o) + yes S(emh)) =0 - (59)
vi + ap_ 1 =0 - . (60)
1+2 i
pi +8%h: =0, . (61)

We impose ‘periodic’ boundary conditions by reflection symmetry at the endpoints.

The time discretization of the above set of differential-algebraic relations uses a simple
two level scheme. In advancing from time ¢ to time ¢ + dt we replace the time derivative
terms by difference quotients involving the solution at the old time level (time ) and the as
yet unknown solution at the new time level (time r 4 d¢). We evaluate the other terms using
a weighted average of the solution at the two time levels; a typical weight is 8 = 0.55 on
the advanced time level and I — 8 = 0.45 on the old time level: -

% = N(h) would yield EIE (B (¢ + dt) — ; (1)) = N{0.55h(-, t + dr) 4+ 0.45h(-, 1)).

At each time level, we have to solve a set of nonlinear equations. This is done with
Newton’s method. By choosing an appropriate ordering of the 3N — 1 equations (59)—(61),
the Jacobi matrix has its nonzero entries ¢lose to the diagonal. For this reason, the use of
Newton’s method is not a prohibitive expense.

We dynamically choose the lensth of the time steps to control several aspects. If the
result of the time step violates any of a list of constraints, it rejects the step and tries again
with a smaller step size. To avoid using unnecessarily short time steps, if we easily meet all
the constrainis for several steps, we increase the step size by about 20% on the next step.
We now describe the constraints the scheme respects. The first constraint comes from local
time truncation. Another constraint rejects any step for which the minimum of k decreases
by more than 10%. We also require that the correction on the first iteration of Newton's
method is a small fraction of the change over the step, where the initial guess at the change
was the change over the previons step, corrected for any différence in df’s. This allows
us to solve the equations (59)—(61) in only one Newton iteration per time step, should we
choose to do so.

We use graded spatial grids that are very fine near the contact line and less fine in other
regions. The macro-grid is fixed for all time, and we call its intervals ‘macro intervals’. At
a fixed time level, each macro-interval is divided into 2/ micro intervals, where j can be
different for each macro-interval. The size of k,; and Axx, on the macro-interval determine
whether to increase or decrease the exponent j for the next time level. Specifically, if these
derivatives are large, j increases and if they are small, j decreases. In this way, the grid is
fine where high resolution is needed and coarse elsewhere. .

All the simulations presented here have the C$°(S") initial condition

[ Cema/ 014 g=af(x—1/4)" x| < 1/4

. (62)
otherwise.

ho(x) =

The weak solution is approximated via the regularization scheme of section 3. That is,
we fix € and compute

s

he = —(felhedhense)s + (B™se
hAh

() = ————
f(G) Ehén+h64
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with initial condition
heo(x) = ho(x) + 8(€).

Theorem 3.1 guarantees that there exists a unique smooth positive solution to the
regularization scheme. Propositions 4.1 and 4.3 guarantee that the regularization scheme
will for suitably small € produce a close approximation of the weak solution. Although no
rigorous theorem exists quantifying the accuracy of the regularization, the numerics suggests
that the convergence is 2(5(¢)). We choose the spatial grids to be fine enough so that the
bulk of the error in computing the weak solution comes from the epsilon regularization.
That is, for fixed epsilon, we choose spatial grids to over-resoive the smooth regularized
solution.

‘We present computation from several case studies,

6.1 Case [: n =3, m=3/2

For this case we choose initial data (62) with ¢ = 1 and @ = 1/16. We use 8(¢) = ¢%* in
the regularization scheme. We present calculations with three different values of : 1072,
1072, and 10~'4. The corresponding values of 8(¢) are 2.00 x 1073, 2.51 x 10~* and
6.310 x 1075,

~——— initial condition
~~~~~ h(x,1), 8()=2.00e-3, t=0.0322
-== h(x1), 8(e)=2.51e-4, 1=0.0322
0.17¢ =-=- h(x,b), 8(g)=6.31e-5,1=0.0322 1
2
L
0.05 | \
0 ‘ N Figure 1. Approximate solutions for n = 3,
m = 3/2. Pictured are solutions for three
0.0 02 0.4 0.6 0.8 10 values of & at the fixed time ¢ = 0.0322.
X Note that the *drop’ is spreading.

Figures 1-3 show the regularized solution at a fixed time ¢ = 0.0322 for three different
values of ¢. Figures 1 and 2 depict h.(x, ) while figure 3 shows h.,.. Figure 1 shows
that all three values of ¢ produce approximate solutions very close to each other. Moreover
they indicate that the support of the weak solution has increased from its initial support but
that the support has not yet expanded to fill the entire domain.

Figure 2 shows a close up of the a.(x, £) near the edge of the support of weak solution.
The figure clearly indicates that the convergence is O(3(e)). Moreover, it shows that the
‘apparent contact line’ has extremely good dependence on ¢ as ¢ — 0. Note that at the
edge, the regularized solution is a monotone function. This is as expected for solutions of
the porous media equation, i, = (A™ )}z, and should be compared to case 2 in which the
fourth-order lubrication approximation dominates at the edge.
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Fipure 2, CIosé~up of approximate solutions
for n = 3, m = 3/2. Note that the

apparent ‘edge’ of the support has very good
dependence on § and appears to have finite
speed of propagation.

Figure 3. Second derivative of approximate
solutions for n = 3, m = 3/2. Note that the
second derivatives appear to be converging

0.01 —
‘ \  ~— initial condition
R
e B G t), Ble)=2.51e4, t=0.0322
0.008 “'\ e Bt} SE)6.31e-5, 1=0.0822 |
1Y
'l
0.006 | \
'
\
LY
v
0.004 | g% \\
AN
“; \\
0.002 N e
X \
AN
N e
0.20 0.30 (.40
X
40
30 [ A =
20 } 4
1.0
‘\
0.0 S
—eem (R0, B(E)=2.00e-3, t=0.0322
—— (hxt), . BlE)=2.51e4, =0.0322
-1.0 — = {h(x.0),,. 8(€)=6.31e-5, (=0.0322
=2.0 ‘
0.2

0.4 0.6 0.8

to a bounded function with discontinuity

1.0 at the edge, consistent with the predicted
guadratic touch-down.

Figure 3 shows k., for the three values of the regularization parameter. The graphs
indicate that as € —> 0, the solution converges to a bounded function with a discontinuity at
the edge of its support. Hence the weak solution appears to ‘touch down’ with 2 quadratic
behaviour at its edge, as predicted by the asymptotics in section 2 for m =.3/2. Hence for
these values of s and » the fourth-order term appears to be negligible at the edge of the

support.

62. Case: n=1andm=19

For this case we also choose initial data with ¢

= 1l and ¢ = 1/16. We again use

8(¢) = €% in the regularization scheme. Figures 46 show the regularized solution at
a fixed time ¢ = 0.0025 for the three different values of ¢: 1072, 10712, and 10~%*. Again,
the corresponding values of §(e) are 2,00 x 1073, 2.51 x 10~* and 6.310 x 10~°. Figures
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4 and 5 depict k. (x, t) while figure 6 shows h., .. As in case 1, figure 4 shows that all
three values of € produce approximate solutions very close to each other. Moreover they

also indicate that the support of the weak solution has increased from its initial support but
has not yet expanded to fill the entire domain.

0.20

initial condition

h(x,1), ¥g)=6.31e-5, 1=0,0025
——— h.(xt), 8(e)=2.51e-4, =0.0025
—-—- h(x.1), 8(g)=2.00e-3, t=0.0025

015 T

0.05 t
\
0.00 s " Figure 4. Approximate solutions for n = 1,
- : VPV = m = 1.9, Pictured are solutions for three
60 02 04 06 08 1.0 yalues of § at the fixed fime ¢ = 0.0025.
X Note that the'drop’ is spreading.
0.0050 wy
!
H

initial condition
0.0040 1§ 1 o h(x0), S(E)=6.31e-5, t=0.0025 |
——~ hx), $(e)=2.51e-4, t=0.0025
meme (), B(E)=2.00e-3, t=0.0025

A
(”

|
‘a
00030 4

=
0.0020 |

1A
00010 | % ~

H

n

0.0000
030 040 050

Figure 5. Close-up of approximate solutions
for n = 1, m = 1.9. Note that unlike
figure 2, the approximate solution is not

0.80 locally monotone at the apparent edge of

the support. This is characteristic of higher-
order equations.

Figure 5 shows a close up of the k. (x, t) near the edge of the support of weak solution.
The figure clearly indicates that the convergence is Q(8(¢)). Moreover it shows that the
edge of the support has extremely good dependence on ¢ as ¢ — 0. Note that at the edge
the regularized solution is nor a monotone function. That is, the height has a local minimum
which is the same order of magnitude as §(¢). The solution also shows small oscillations
ahead of this minimum. This ‘oscillatory tail” is typical of higher order equations. This is

in contrast with case 1, in which the behaviour at the edge is determined by the lower order
‘porous media’ term.
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4.0
20t
5
0.0 ~
—— (n{x,0),,. B(g)=6.31e-5,1=0.0025 )
_____ (h.(e0). , 8(e)=2.51e-4, =0.0025 Figure 6. Second derivative of approximate
—— (ht(x,t))“, 8(c)=2.00¢-3, 1=0.0025 solutions for n = 1, m = 1.9, Note that the
. second derivatives appear 1o be converging
2.0 : A— - - to a bounded function with discontinuity
0.0 G2 0.4 0.6 0.3 10 a the edge, consistent with the predicted
X quadratic touch-down.

Figure 6 shows ke, for the three values of the regularization parameter. The graphs
indicate that as € — 0, the solution converges to a bounded function with at discontinuity
at the edge of its support. Thus the weak solution appears to ‘touch down’ with a quadratic
behaviour at its edge, which is the correct behaviour for a travelling wave solution to
lubrication approximation, #, = —{(A "By ), With # = 1. The porous media equation
with m = 1.9 has a solution that touches down like x!%%, Such behaviour is much more
singular than the quadratic touchdown shown here. Hence for this case the fourth-order
term dominates at the edge, as predicted by the asymptotics.

6.3. Case 3

Finally, we present a single calculation of a solution. with the full “van der Waals’ term with
a cutoff. The equation we compute is

Ber = ~(fe(Be)hexre)s + (Pu(Be))nx
he4h£3

ehe + R

Pulhe) =logl(u+h™Y™] m=3/2

felhe) =

with initial condition
heg(x) = ho(x) + d(e).

Note that as it — 0 we recover the van der Waals term without a cut-off. However, for
fixed £ > 0, (Pu(he))e = Be™  hey /(i + k™) so that as i, — O the gradient of P, (he)
behaves like the gradient of a ‘porous media’ term, (h.™)./m. Note that while € is a
mathematical regularization of the equation, w has the interpretation of a physical cut-off
scale, Thus we fix u small and take ¢ — 0. We remark that it is crucial that (Pr (A ))x/Fex
be a positive function of &,. Otherwise this term produces an ‘ill posed’ backward diffusion
in a range of A, where (P, {h.))x /B, changes sign. It is an exercise to verify that a variant
of theorem 1.2 guarantees that the regularization scheme will for suitably small € produce
a close approximation of the weak solution.
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2.0
——— initial condition

----- h,(x.t), t=0.00005

—~= h(x1), t=0.0001 4
—-—+ h,(x,t), t=0.0004

— h(x,1), t=0.001

L5 ¢

= F. L e h(x,t), t=0.00247
Z 1.0 7
= —~— bx,t), t=0.00567
—-—= h(x,1), t=0.0129
— h,(x.0), t=0.029
05 E__h - h,(x,8), t=0.05 )
Figure 7. Approximate solutions for the
problem with long-range van der Waal
00 i e e ey T p T peeppry v effects and porous m?dia ::ut-oﬁ’. Note, that
g 0.0 0.2 0.4 0.6 03 1.0 there is a pronounced ‘foot’ at the edge of the

solution, analogous to the physical precursor
X film,

We choose initial data (62) with ¢ = 12 and a = 1. We fix p = 0.00008, ¢ = 10-12,
and 8§(e) = €™ = 2.51 x 10~ Flgure 7 shows A,(x, £) for several times . Note that the
support propagates very quickly and that a ‘foot” appears at the edge of the solution. This
is qualitatively Jike the ‘precursor film’ [15] linked to long range van der Waals interactions
in complete wetting.

7. Conclusions

This paper poses the equation
Ry 4 (h”hxx:c)x — (hm).u: =0 X e Sl

as a model problem for the study of 2 molecular scale cutoff of long range van der Waals
forces in the moving contact line of 2 completely wetting thin film.

We prove a global existence theorem for weak solutions with non-negative data and
consider all » > O and 1 <« m < 2, In addition to the case where n < 3 and sharp
existence theory is known for the homogenous fourth-order equation (7), we show that with
the addition of the second-order term distribution solutions exist for the critical physical
case of n = 3 (and for all #» 2 3) and that they become strong posmve solutions in the
infinite time limit.

In conjunction with the existence theory, we address leading order asymptotic analysis
for the edge of the support of the solution. We examine the competition between the second
and fourth-order terms and for # > 3/2 this study indicates the existence theory is sharp.

We also present numerical calculations of various weak solutions. The numerics show
that the solutions have support with finite speed of propagation and regularity at the edge
as dictated by the asymptotics and rigorous theory,
© To our knowledge none of these topics has been addressed before in the the literature
for a combined second-order/fourth-order equation of this type. In fact, the sharp existence
theory for the homogeneous fourth-order equation (7) with 0 < 7 < 3 has only recently
been addressed in two independent papers [6, 1]. The question of existence of distribution
solutions with increasing support for n 2 3 is of extreme importance to the subtle physical
problem of a moving contact line in a thin film, where the correct exponent is n =3,
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‘We also briefly address the full physical equations and the need for a cut-off of the
singular disjoining pressure at a molecular scale. We believe that this paper is the first in
either the physics or mathematics literature to address the mathematical validity of various
cut-off functions of the disjoining pressure.

There are many open mathematical problems in this field. They include but are not
restricted to uniqueness of 2 weak solution, any result in higher dimensions, questions of
singularity formation (see e.g. [7, 5, 4] for a discussion). Moreover, there is a need for
more comparison of the various models to actual wetting experiments.
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