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Abstract

The physics of particle-laden thin film flow is not fully understood, and recent experiments have
raised questions with current theory. There is a need for fully two-dimensional simulations to
compare with experimental data. To this end, a numerical scheme is presented for a lubrication
model derived for particle-laden thin film flow in two dimensions with surface tension. The scheme
relies on an ADI process to handle the higher-order terms, and an iterative procedure to improve
the solution at each timestep. This is the first paper to simulate the two-dimensional particle-laden
thin film lubrication model. Several aspects of the scheme are examined for a test problem, such
as the timestep, runtime, and number of iterations. The results from the simulation are compared
to experimental data. The simulation shows good qualitative agreement. It also suggests further
lines of inquiry for the physical model.

Keywords: adaptive timestepping, alternating direction implicit, coupled system, particle-laden,
surface tension, thin film

1. Introduction1

In recent years, the problem of numerically solving gravity-driven thin film flow for clear fluids2

has had ample work done in both one and two dimensions. However, the case when the film3

contains particles suspended within it has received less attention, especially in two dimensions.4

The evolution of a clear fluid down an inclined plane is modeled using a single partial differential5

equation and numerical schemes have been derived using finite differences [9, 16] and finite elements6

[32]. For similar equations, such as spreading thin films, there are methods for finite elements in7

one dimension [10, 11, 37] and for finite differences in two dimensions [35]. The incorporation of8

particles into such a flow leads to another variable in the model, namely the particle concentration,9

and an accompanying equation related to the evolution of the particles. The result is a system10

of equations that requires a different approach from the clear fluid case to formulate a practical11

numerical scheme, due to the coupling of the equations.12

An active area of research in the last decade has been the development of numerical methods13

for higher-order thin film equations including complex fluids described by systems of equations.14

Related problems include methods for coupled systems of nonlinear parabolic equations [22, 26].15
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The scheme presented here is, in part, inspired by recent models for surfactants [34] and thin films16

[35]. We choose an Alternating Direction Implicit (ADI) scheme as a tractable method for implicit17

timesteps, because surface tension introduces a severe restriction on the timestep in the case of18

explicit schemes. This ADI approach also allows for an implicit scheme while avoiding to have to19

solve the large sparse linear algebra problems by an iterative method, such as GMRES, that result20

from linearizing the two-dimensional operators in Newton’s method [35]. ADI is also amenable21

to parallelization. While ADI schemes for numerically solving parabolic equations date back to22

the 1950’s [27], their use in higher-order problems is rather new, e.g., [35], and not all that well-23

studied. However, the ease of parallelization makes such schemes a viable choice for multiprocessor24

platforms. Since their inception, ADI schemes have been extended to handle parabolic problems25

with mixed derivative terms [2, 8, 24, 30], variable coefficients [15, 35], and high-order terms [35].26

The ideas present in these schemes can be combined to create an efficient way to numerically27

solve the particle-laden thin film flow equations. The nonlinearity and higher-order terms are han-28

dled in a similar manner to Witelski and Bowen [35], which dealt with thin film equations, and29

the remaining terms are treated as in Warner et al. [34], which devised a semi-implicit scheme30

for surfactants. This combined approach is fine-tuned to draw out better efficiency, via adaptive31

timestepping and an iterative procedure within each timestep. At the cost of the extra calcula-32

tions due to the iterative nature of the scheme, the timestep needed for stability can be improved33

over recent methods. The result is an efficient method to simulate the continuum model in two34

dimensions.35

The full physics of particle-laden thin film flow is not well understood. Recent experiments,36

and their comparison to the model, have raised questions. We present such a comparison in this37

paper, where the results show qualitative agreement. In particular, by performing two-dimensional38

simulations, we are able to observe finger formation and compare directly with experiments. The39

development of quantitatively correct models for these systems is an ongoing active area of research.40

Thus, there is a need for accurate, fully two-dimensional simulations of the model, such as in the41

case of mudslides and oil spills.42

The paper is organized as follows: Section 2 presents the system of evolution equations for43

the flow. In Section 3, the numerical scheme for this system is derived. Section 4 covers the44

adaptive timestepping scheme implemented in the code. A complete explanation of the spatial45

discretization is given in Section 5. The practicality and implementation of a moving reference46

frame in the simulations are discussed in Section 6. Numerical simulations are presented in Section47

7. We compare the results generated from the numerical scheme to an experiment using silicone48

oil and glass beads in Section 8. Finally, in Section 9, we provide a discussion of the results and49

future work.50

2. Model51

The results from experiments indicate that particle-laden thin film flows exhibit three distinct52

regimes, based on the initial particle concentration and angle of inclination [36]. For low con-53

centrations and angles, the particles settle to the substrate with clear fluid flowing over the top.54

The behavior after sedimentation is similar to clear fluid experiments, such as those performed by55

Huppert [14]. High concentrations and angles cause a particle-rich ridge to emerge at the front56

of the flow. Medium concentrations and angles lead to a particle concentration which appears to57

stay well-mixed throughout the duration of the experiment. Based on Cook [5], this behavior likely58
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belongs to one of the two previously mentioned regimes, but may not have evolved to the point59

where this distinction can be made.60

Figure 1: The coordinate system and variables considered in this problem. x is in the plane, in the direction of the
flow; y is in the plane, perpendicular to x; and z is normal to the plane. h is the film thickness and ϕ is the particle
concentration.

The evolution equations for the flow are based on the regime where the inclination angle and61

particle concentration are both high enough to induce the formation of a particle-rich ridge. The62

equations are formulated in terms of the thickness of the film, h, and the particle concentration by63

volume, ϕ (see Figure 1). The equations for modeling this regime were first derived in Zhou et al.64

[36]; re-derived in Cook et al. [6], using conservation of volume rather than mass; and modified in65

Cook et al. [7], adding in a shear-induced diffusion term to correct for an instability affecting ϕ.66

The dimensionless system [7] is67

ht +∇ · (hvav) = 0, (1)

(ϕh)t +∇ · [ϕh (vav + (1− ϕ)vrel)− Fdiff ] = 0. (2)

The orientation for (1)-(2) is such that x lies in the plane and is parallel to the direction of the68

flow, y is across the plane and perpendicular to x, and z is normal to the plane. A one-dimensional69

form of the problem considers only the x-direction, while two dimensions includes both x and y.70

The two velocity terms, vav and vrel, are the volume-averaged velocity of the fluid and the velocity71

of the particles relative to the liquid, respectively. We use the term liquid to refer to the substance72

that the particles are suspended in and fluid to refer to the mixture as a whole. In Equation (2),73

vav + (1− ϕ)vrel is the individual velocity of the particles [6] and Fdiff is shear-induced diffusion of74

the particles.75
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The volume-averaged velocity of the liquid and the particles together is76

vav =
h2

µ(ϕ)
∇∇2h−D(α)

[
h2

µ(ϕ)
∇ (ρ(ϕ)h)− 5

8

h3

µ(ϕ)
∇ (ρ(ϕ))

]
+

ρ(ϕ)

µ(ϕ)
h2x̂, (3)

where the terms in (3) come from surface tension, the effects of gravity normal to the inclined77

plane, and the effects of gravity parallel to the inclined plane.78

The density of the fluid as a whole is ρ(ϕ) = 1+ρfϕ; ρf = ρp−ρl
ρl

is the difference in the densities79

between the particles and the liquid. The function µ(ϕ) = (1 − ϕ/ϕmax)
−2 [18, 31] is the effective80

fluid viscosity, where ϕmax is the maximum packing fraction of particles, assuming the particles81

are spheres. For this problem, the maximum packing fraction has been empirically determined to82

be 0.58, while the theoretical value is 0.64 [33]. D(α) = (3Ca)1/3 cotα [3] is a modified capillary83

number, where Ca is the capillary number of the liquid and α is the angle of inclination of the84

plane on which the fluid is flowing (α = 0 corresponds to the plane being horizontal while α = π/285

to vertical).86

The settling velocity of the particles, relative to the velocity of the liquid, is a combination of87

three factors, assumed to be multiplicative,88

vrel = Vsf(ϕ)w(h)x̂. (4)

The coefficient Vs = 2
3
a2ρf in (4) is the Stokes settling velocity of a single sphere settling in a89

viscous liquid, where a is the dimensionless particle radius. A hindered settling function, in this90

case the Richardson-Zaki function f(ϕ) = (1 − ϕ)5 [29], accounts for the effect of sedimentation.91

The particles settling parallel to the substrate is modeled using a wall effects function, w(h) =92

A(h/a)2/
√

1 + (A(h/a)2)2 with A = 1/18. This function is an approximation to a method of93

images solution to a single sphere falling parallel to a vertical wall [13]. This has the property that94

it is near 0 for h small and near 1 for h large.95

Since the system (1)-(2) is fourth-order and (3) contains higher-order terms but (4) does not,96

vrel is not regularized. This leads to an instability affecting the particle concentration in numerical97

simulations [7]. To correct for this, a shear-induced diffusion term (5) was added in,98

Fdiff =
3

2
a2(3Ca)1/3D̂(ϕ)

h2ρ(ϕ)

µ(ϕ)
∇ϕ. (5)

This behavior can be seen in a one-dimensional example on the domain x : 0−50 with ∆x = 0.05.99

The initial film thickness is a jump, from 1 to 0.05 at x = 25, smoothed by hyperbolic tangent. The100

initial particle concentration is taken to be ϕ = 0.3. This simulation is similar to those described101

in Section 7, and a moving reference frame is used, as discussed in Section 6. By time t = 1000,102

the solution without the extra diffusion term has developed an instability near x = 10 (Figure 2)103

while the one with it is still stable (Figure 3). Note that the oscillations trailing the particle-rich104

ridge, between x = 0 and x = 10 are a result of the discretization of the moving reference frame105

and are discussed in Section 6.106

Equation (5) accounts for horizontal diffusion of particles in the fluid caused by horizontal gradients107

of ϕ and was derived based on results from Leighton [20] and Leighton and Acrivos [21]. The term108

D̂(ϕ) = (1/3)ϕ2
(
1 + (1/2)e8.8ϕ

)
is a dimensionless diffusion coefficient.109
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Figure 2: The numerical solution of ϕ at time t = 1000 without shear-induced diffusion. By this time, an instability
has developed near x = 10.
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Figure 3: The numerical solution ϕ at time t = 1000 with shear-induced diffusion (5). The solution is still stable
due to the extra term.

3. Numerical Scheme110

In the case of a gravity-driven clear fluid flow, the model reduces to a single equation [3] for the111

film thickness, h,112
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ht + (h3)x +∇ ·
(
h3∇∇2h−D(α)h3∇h

)
= 0. (6)

Solving (6), and similar problems, numerically in one and two dimensions has been performed using113

several different methods [1, 9, 16, 23, 32, 35]. Including particles in the physics not only adds a114

second equation, but couples it to the equation for the film thickness. The particle-laden case115

has been solved numerically in one dimension with methods such as forward Euler with upwind116

differencing [36] and the Lax-Friedrichs method [6] when the high-order terms are omitted, and117

backward Euler with centered differencing [36] when the terms are included.118

This system of PDEs in two dimensions poses numerical difficulties beyond those present in the119

clear fluid problem. For both the clear and particle-laden cases, fully explicit schemes typically have120

the problem that an O(∆x4) timestep, assuming ∆x = ∆y, is needed for stability. One solution is121

to use an implicit scheme. For the clear fluid and similar problems, the nonlinearity combined with122

an implicit scheme amounts to solving the problem at each timestep using an iterative process,123

such as Newton’s method, to converge to the solution [35]. For the particle-laden case, using an124

implicit scheme typically requires that both equations be solved simultaneously, using an iterative125

process to account for the nonlinearity. This results in a linear algebra problem with twice the126

number of unknowns and a matrix that is twice as large in each dimension, compared to the clear127

fluid problem. Therefore, solving the particle-laden case leads to larger linear algebra problems to128

solve at each timestep and the matrix from Newton’s method will have a more complex structure129

than for clear fluids.130

The goal of the scheme presented here is to circumvent some of the aforementioned difficulties.131

The advantages of this approach, over a purely explicit scheme or implicit with Newton’s method,132

is that the timestep is more lenient than for a fully explicit scheme and the linear algebra problem133

that results from the implicit part of the scheme is reduced to a series of smaller banded matrix134

solves, which can be done efficiently and independently for each equation.135

The numerical scheme that we employ for the particle-laden thin film flow problem is inspired136

by the schemes presented in Witelski and Bowen [35] for higher-order parabolic PDEs and Warner137

et al. [34] for surfactants. In Witelski and Bowen, several ADI schemes, based on backward Euler,138

second-order backward difference formulas, as well as Newton-like schemes, are derived for solving139

the nonlinear PDE known as the thin film equation,140

ht +∇ ·
(
f(h)∇∇2h

)
= 0. (7)

The backward Euler-based ADI scheme for (7) uses approximate values of h in the nonlinear and141

mixed-derivative implicit terms. It is suggested to start with approximations, such as time-lagged142

values, for evaluating these terms and calculating the numerical solution at the timestep. Then143

use this solution for the new approximate values within the same timestep and recalculate. This144

results in an iterative scheme at each timestep. However, for solving the thin film equation, it was145

noted that the iterations did not provide a noticeable improvement. Warner et al. use this method146

for a coupled system of nonlinear PDEs relating to surfactants. They handle the higher-order147

terms implicitly using Crank-Nicolson, and apply ADI to this. The remaining terms, which are at148

least second-order in space, are treated explicitly. For the nonlinear and mixed-derivative terms,149

the values are time-lagged and the problem is solved only once per timestep. In the simulations,150

∆x = ∆y = π/100 ≈ 0.0314 required a timestep of O(10−5).151

Our approach is to handle applicable terms implicitly, using ADI, and treat the remaining terms152

explicitly, as we show below. The terms handled implicitly are those with spatial derivatives on the153
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same variable as the time derivative. For example, Equation (1) has the time derivative on h, so154

the terms treated implicitly should have spatial derivatives on h. Making this choice allows for the155

splitting of the two-dimensional operators into to the product of two one-dimensional operators in156

the derivation of the ADI scheme. Iterations within each timestep allow for a larger ∆t to be taken157

at the cost of some extra calculations. In general, the increase in the size of the timestep outweighs158

the extra computational work, as shown in Section 7.159

For Equation (1), the terms160

∇ ·
(

h3

µ(ϕ)
∇∇2h+

ρ(ϕ)

µ(ϕ)
h3x̂

)
(8)

can be handled implicitly. This is because the spatial derivatives on these terms are applied to h.161

Of these terms, some parts of them will be handled by approximation, as in Witelski and Bowen162

[35]. Including the first-order terms in the implicit treatment allows them to be discretized spatially163

using centered differencing to maintain stability. Solving this equation numerically assumes that164

ϕ is known, or can be approximated, and we are solving for h. First discretize the terms in (8) in165

time with backward Euler, including the time derivative,166

hn+1 +∆t∇ ·
(

h3

µ(ϕ)
∇∇2h+

ρ(ϕ)

µ(ϕ)
h3x̂

)n+1

= hn. (9)

Write out the operators in (9) fully,167

hn+1 +∆t

[
∂x

(
h3

µ(ϕ)
hxxx

)
+ ∂y

(
h3

µ(ϕ)
hyyy

)
(10)

+∂x

(
ρ(ϕ)

µ(ϕ)
h3

)]n+1

+∆t

[
∂x

(
h3

µ(ϕ)
hyyx

)
+ ∂y

(
h3

µ(ϕ)
hxxy

)]n+1

= hn.

The idea behind the ADI approach is to reduce the implicit part of (10), with derivatives in168

both x and y, to a product of two operators, each with only derivatives in either x or y. To achieve169

this, the terms involving only x-derivatives and only y-derivatives are grouped together. Define the170

operators171

Dx = ∂x

(
h3

µ(ϕ)
∂xxx +

ρ(ϕ)

µ(ϕ)
h2I

)n+1

, Dy = ∂y

(
h3

µ(ϕ)
∂yyy

)n+1

. (11)

Then replacing the terms in (10) with the definitions in (11), we have172

hn+1 +∆t(Dx +Dy)h
n+1 (12)

+∆t

[
∂x

(
h3

µ(ϕ)
hyyx

)
+ ∂y

(
h3

µ(ϕ)
hxxy

)]n+1

= hn.

In order to obtain an ADI scheme from (12), note that I + ∆tDx + ∆tDy = (I + ∆tDx)(I +173

∆tDy)−(∆t)2DxDy and so the left-hand side, with the addition of an O (∆t2) term, can be written174

as a product of two one-dimensional operators.175
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(I +∆tDx)(I +∆tDy)h
n+1 − (∆t)2DxDyh

n+1 (13)

+∆t

[
∂x

(
h3

µ(ϕ)
hyyx

)
+ ∂y

(
h3

µ(ϕ)
hxxy

)]n+1

= hn.

To handle the nonlinear terms, which occur in front of derivatives, and mixed-derivative terms in176

(13), define them as approximate, denoted by a tilde (e.g., h̃n+1). The approximate terms can be177

chosen in some reasonable manner, such as time-lagged or extrapolated. This will be discussed178

in more detail later. Subtract the mixed-derivative terms from and add the O(∆t2) term to both179

sides. This leaves a scheme in which all the terms operating on hn+1 are known, as is the entire180

right-hand side.181

(I +∆tD̃x)(I +∆tD̃y)h
n+1 = hn (14)

+

{
(∆t)2D̃xD̃y −∆t

[
∂x

(
h̃3

µ(ϕ̃)
∂yyx

)
+ ∂y

(
h̃3

µ(ϕ̃)
∂xxy

)]}n+1

h̃n+1.

For simplicity, define the operators in (14) as182

L̃x = I +∆tD̃x, L̃y = I +∆tD̃y.

Subtracting L̃xL̃yh̃
n+1 from both sides of (14), which cancels the O(∆t2) term, yields183

L̃xL̃y

(
hn+1 − h̃n+1

)
= −

(
h̃n+1 − hn

)
−∆t∇ ·

(
h̃3

µ(ϕ̃)
∇∇2h̃+

ρ(ϕ̃)

µ(ϕ̃)
h̃3x̂

)n+1

. (15)

At this point, the implicit part of the scheme is complete and the explicit terms can be added back184

into (15) using forward Euler.185

L̃xL̃y

(
hn+1 − h̃n+1

)
= −

(
h̃n+1 − hn

)
−∆t∇ ·

(
h̃3

µ(ϕ̃)
∇∇2h̃+

ρ(ϕ̃)

µ(ϕ̃)
h̃3x̂

)n+1

(16)

+∆t∇ ·
{
D(α)

[
h3

µ(ϕ)
∇ (ρ(ϕ)h)− 5

8

h4

µ(ϕ)
∇ (ρ(ϕ))

]}n

.

Define186

u = hn+1 − h̃n+1,

which can be thought of as a correction term to the approximation of hn+1, and (16) can be written187

as a three-step process: two one-directional solves (17)-(18) and an update step (19).188

L̃xv = −
(
h̃n+1 − hn

)
−∆t∇ ·

(
h̃3

µ(ϕ̃)
∇∇2h̃+

ρ(ϕ̃)

µ(ϕ̃)
h̃3x̂

)n+1

(17)

+∆t∇ ·
{
D(α)

[
h3

µ(ϕ)
∇ (ρ(ϕ)h)− 5

8

h4

µ(ϕ)
∇ (ρ(ϕ))

]}n

,
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L̃yu = v, (18)

hn+1 ≈ h̃n+1 + u. (19)

Since the operators L̃x and L̃y involve at most fourth-order terms, the spatial discretization of189

them will lead to a five-point stencil in the x- and y-direction, respectively. This discretization is190

discussed fully in Section 5. Along each row/column of the discretized domain, this results in a191

pentadiagonal linear algebra problem. This can be solved using a pentadiagonal solver, or a more192

generic banded matrix solver.193

To help with the inaccuracy in the nonlinear and mixed-derivative terms resulting from approx-194

imation, an iterative procedure can be used at each timestep to improve the solution and size of the195

timestep. This was first suggested for the ADI scheme in the context of thin film equations [35].196

This procedure amounts to repeating the three-step process associated with solving each equation197

at each timestep and updating the approximate solution with the most recent solution, until the198

new and approximate solutions sufficiently converge. For example, one would solve (17)-(19), solve199

(29)-(31), and examine how much the approximate solution differs from this computed solution. If200

this difference is significant, one can replace the old approximate terms with the computed solu-201

tion and solve the same timestep again. This process can be continued until the approximate and202

computed solutions are close. This is similar to fixed-point iteration.203

For Equation (1), when entering the timestep, a choice must be made as to the value of h̃n+1
204

and (ϕ̃h̃)n+1. Using h as an example, two reasonable choices would be a time-lagged approximation,205

hn, which is a first-order accurate approximation in time, or an extrapolated approximation, 2hn−206

hn−1, which is second-order in time. For adaptive timestepping, this extrapolation is given by207

hn + (∆t/∆told)(h
n − hn−1), where ∆t is the prospective timestep between tn and tn+1 and ∆told208

is the timestep between tn−1 and tn. While the second choice of an approximation is second-order,209

it also requires storing an extra set of data, namely hn−1. Other choices for estimating hn+1 and210

(ϕh)n+1 based on previous data could be used as well. With this choice made, the three-step process211

for each equation can be implemented, obtaining a solution for hn+1 and (ϕh)n+1. We refer to the212

case when the solution obtained here is accepted as performing One Iteration. However, at this213

point, the approximation can be redefined, h̃n+1 = hn+1, and the process repeated. This can be214

continued until convergence between the approximate and new solution, or equivalently when the215

correction term u is small in a chosen norm. We refer to this case as Iterations since the problem216

is solved iteratively for each timestep.217

For (2), the ADI method is applied to ϕh as a whole, since the time derivative is on this term.218

The applicable terms in the equation are219

∇ ·
[
−D(α)

(
ρf

(ϕh)h2

µ(ϕ)
∇(ϕh)

)
+ ϕh

(
ρ(ϕ)

µ(ϕ)
h2 + (1− ϕ)Vsf(ϕ)w(h)

)
x̂

]
. (20)

As with (1), the time discretization of (20) is based on a backward Euler method220

(ϕh)n+1 +∆t∇ ·
[
−D(α)

(
ρf

(ϕh)h2

µ(ϕ)
∇(ϕh)

)
(21)

+ϕh

(
ρ(ϕ)

µ(ϕ)
h2 + (1− ϕ)Vsf(ϕ)w(h)

)
x̂

]n+1

= (ϕh)n.
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Writing out the operators in (21) explicitly,221

(ϕh)n+1 −∆tD(α)ρf

[
∂x

(
(ϕh)h2

µ(ϕ)
∂x(ϕh)

)
+ ∂y

(
(ϕh)h2

µ(ϕ)
∂y(ϕh)

)]n+1

(22)

+∆t∂x

[
ϕh

(
ρ(ϕ)

µ(ϕ)
h2 + (1− ϕ)Vsf(ϕ)w(h)

)]n+1

= (ϕh)n.

Define the operators in (22) involving only x-derivatives and only y-derivatives as Dx and Dy,222

respectively.223

Dx = −D(α)ρf∂x

(
(ϕh)h2

µ(ϕ
∂x

)n+1

+ ∂x

([
ρ(ϕ)

µ(ϕ)
h2(1− ϕ)Vsf(ϕ)w(h)

]
I

)n+1

, (23)

Dy = −D(α)ρf∂y

(
(ϕh)

µ(ϕ)
h2∂y

)n+1

.

Using (23), the equation can be compactly written as224

(ϕh)n+1 +∆t (Dx +Dy) (ϕh)
n+1 = (ϕh)n. (24)

Note that there are no mixed-derivative terms to handle in (24). The left-hand side can be written225

as the product of two one-dimensional operators, incurring an O(∆t2) term in the process.226

(I +∆tDx) (I +∆tDy) (ϕh)
n+1 − (∆t)2DxDy(ϕh)

n+1 = (ϕh)n. (25)

Add the O(∆t2) term to both sides of (25), and make all terms that occur nonlinearly at time227

tn+1 approximate, as before.228 (
I +∆tD̃x

)(
I +∆tD̃y

)
(ϕh)n+1 = (ϕh)n + (∆t)2D̃xD̃y(ϕ̃h̃)

n+1. (26)

Define229

L̃x = I +∆tD̃x, L̃y = I +∆tD̃y

and subtract L̃xL̃y(ϕ̃h̃)
n+1 from both sides of (26) to obtain230

L̃xL̃y

(
(ϕh)n+1 − (ϕ̃h̃)n+1

)
= −

(
(ϕ̃h̃)n+1 − (ϕh)n

)
(27)

−∆t∇ ·

[
−D(α)

(
ρf

(ϕ̃h̃)h̃2

µ(ϕ̃)
∇(ϕ̃h̃)

)
+ ϕ̃h̃

(
ρ(ϕ̃)

µ(ϕ̃)
h̃2 + (1− ϕ̃)Vsf(ϕ̃)w(h̃)

)
x̂

]n+1

.

The remaining terms can be incorporated into (27) via forward Euler.231

L̃xL̃y

(
(ϕh)n+1 − (ϕ̃h̃)n+1

)
= −

(
(ϕ̃h̃)n+1 − (ϕh)n

)
−∆t∇ ·

[
−D(α)

(
ρf

(ϕ̃h̃)h̃2

µ(ϕ̃)
∇(ϕ̃h̃)

)
+ ϕ̃h̃

(
ρ(ϕ̃)

µ(ϕ̃)
h̃2 + (1− ϕ̃)Vsf(ϕ̃)w(h̃)

)
x̂

]n+1

(28)

−∆t∇ ·
[
ϕh

(
h2

µ(ϕ)
∇∇2h−D(α)

(
h2

µ(ϕ)
∇h− 5

8

h3

µ(ϕ)
∇ (ρ(ϕ))

))
− Fdiff

]n
.
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Define232

w = (ϕh)n+1 − (ϕ̃h̃)n+1.

Then (28) can be written out as the three-step process (29)-(31):233

L̃xv = −
(
(ϕ̃h̃)n+1 − (ϕh)n

)
−∆t∇ ·

[
−D(α)

(
ρf

(ϕ̃h̃)h̃2

µ(ϕ̃)
∇(ϕ̃h̃)

)
+ ϕ̃h̃

(
ρ(ϕ̃)

µ(ϕ̃)
h̃2 + (1− ϕ̃)Vsf(ϕ̃)w(h̃)

)
x̂

]n+1

(29)

−∆t∇ ·
[
ϕh

(
h2

µ(ϕ)
∇∇2h−D(α)

(
h2

µ(ϕ)
∇h− 5

8

h3

µ(ϕ)
∇ (ρ(ϕ))

))
− Fdiff

]n
,

L̃yw = v, (30)

(ϕh)n+1 ≈ (ϕ̃h̃)n+1 + w. (31)

The spatial operators in the L̃x and L̃y terms are at most second-order, and spatial discretization234

leads to a three-point stencil in each direction. Similar to (17) and (18), a tridiagonal solver or235

banded matrix solver can be used to solve along each row/column.236

Solving the system, as a whole, at each timestep can be then achieved by solving (1) using (17)-237

(19) for hn+1, solving (2) using (29)-(31) for (ϕh)n+1, then recovering the particle concentration as238

ϕn+1 = (ϕh)n+1/hn+1. Note that each solve only uses values hn, h̃n+1, ϕn, and ϕ̃n+1, all of which are239

known. This scheme can be solved in other possible ways. One might choose to use, after solving240

(1), hn+1 in lieu of an approximation for h̃n+1 for solving (2). Alternatively, the equations could be241

solved in the opposite order.242

4. Adaptive Timestepping243

We use an adaptive timestepping scheme to advance the solution. The scheme utilizes the244

solution at consecutive timesteps tn−1, tn, tn+1. Based on a measure of error, it decides whether or245

not to accept the new solution, and if it is reasonable to increase the size of the timestep. This246

is a modification of the scheme used in Bertozzi et al. [4], in which it serves as an estimate of a247

dimensionless local truncation error in time. Consider the solution of the film thickness, h, at times248

tn−1, tn, and tn+1. Calculate en+1 = (hn+1 − hn)/hn and en = (hn − hn−1)/hn. The modification249

from the original method is to divide by the value hn at each point rather than hn
max = maxi,j{hn

i,j},250

since it produces a better-working adaptive scheme for this problem. Denote the timestep going251

from time tn to tn+1 as ∆t and from tn−1 to tn as ∆told. Then define252

Error =

∣∣∣∣∣∣∣∣en+1 − ∆t

∆told
en
∣∣∣∣∣∣∣∣ . (32)

This provides a dimensionless estimate of the local truncation error in time, accumulated over the253

grid. The solution will be accepted if this error is less than some tolerance, denoted Tol1. If the error254

is less than a smaller tolerance, Tol2 < Tol1, for a fixed number of steps, the timestep is increased by255

a scale factor. If the error is larger than Tol1, the maximum number of iterations within a timestep256
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is surpassed, or the solution becomes negative, the timestep is reduced by a factor of 2. An example257

for Tol1 and Tol2 would be 10−7 × ( Area of Domain) and 10−9 × ( Area of Domain) respectively,258

where the difference in the tolerances are at least an order of magnitude apart to prevent the error259

from alternating between too large to accept and small enough to increase the timestep. The form260

of these tolerances were chosen to make it convenient for various size domains without having to261

change the tolerances manually for each domain.262

Since (32) only takes into account one of the two variables, this error can be computed for ϕh,263

or merely ϕ, as well. These two errors can be combined into an overall measure of the error by264

taking the maximum of the two, or by some other reasonable combination such as adding the two265

errors together or choosing a separate set of tolerances for each.266

5. Spatial Discretization267

We use centered finite differences for all spatial discretizations. Using the notation, hi+1/2,j ≈268

(hi,j + hi+1,j)/2, the fourth-order term in (1) is269

∇ ·
(

h3

µ(ϕ)
∇∇2h

)
i,j

≈

(
h3
i+1/2,j

µ(ϕi+1/2,j)
hxxx,i+1/2,j −

h3
i−1/2,j

µ(ϕi−1/2,j)
hxxx,i−1/2,j

)
/∆x

+

(
h3
i+1/2,j

µ(ϕi+1/2,j)
hyyx,i+1/2,j −

h3
i−1/2,j

µ(ϕi−1/2,j)
hyyx,i−1/2,j

)
/∆x (33)

+

(
h3
i,j+1/2

µ(ϕi,j+1/2)
hxxy,i,j+1/2 −

h3
i,j−1/2

µ(ϕi,j−1/2)
hxxy,i,j−1/2

)
/∆y

+

(
h3
i,j+1/2

µ(ϕi,j+1/2)
hyyy,i,j+1/2 −

h3
i,j−1/2

µ(ϕi,j−1/2)
hyyy,i,j−1/2

)
/∆y.

Here, the third derivatives are calculated at half-grid points by differencing consecutive standard270

second-order approximations. Two representative examples are271

hxxx,i+1/2,j ≈ (hi+2,j − 3hi+1,j + 3hi,j − hi−1,j) /∆x3, (34)

hxxy,i,j+1/2 ≈ ((hi+1,j+1 − 2hi,j+1 + hi−1,j+1)/∆x2 (35)

−(hi+1,j − 2hi,j + hi−1,j)/∆x2) /∆y.

The two second-order terms are discretized as272

∇ ·
(

h3

µ(ϕ)
∇(ρ(ϕ)h)

)
i,j

≈

(
h3
i+1/2,j

µ(ϕi+1/2,j)
(ρ(ϕi+1,j)hi+1,j − ρ(ϕi,j)hi,j)−

h3
i−1/2,j

µ(ϕi−1/2,j)
(ρ(ϕi,j)hi,j − ρ(ϕi−1,j)hi−1,j)

)
/∆x2(36)

+

(
h3
i,j+1/2

µ(ϕi,j+1/2)
(ρ(ϕi,j+1)hi,j+1 − ρ(ϕi,j)hi,j)−

h3
i,j−1/2

µ(ϕi,j−1/2)
(ρ(ϕi,j)hi,j − ρ(ϕi,j−1)hi,j−1)

)
/∆y2,
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∇ ·
(

h4

µ(ϕ)
∇(ρ(ϕ))

)
i,j

≈

(
h4
i+1/2,j

µ(ϕi+1/2,j)
(ρ(ϕi+1,j)− ρ(ϕi,j))−

h4
i−1/2,j

µ(ϕi−1/2,j)
(ρ(ϕi,j)− ρ(ϕi−1,j))

)
/∆x2 (37)

+

(
h4
i,j+1/2

µ(ϕi,j+1/2)
(ρ(ϕi,j+1)− ρ(ϕi,j))−

h4
i,j−1/2

µ(ϕi,j−1/2)
(ρ(ϕi,j)− ρ(ϕi,j−1))

)
/∆y2.

The advective term is discretized using a standard centered-differencing scheme.273

The terms in (2) are discretized in the same manner since many of them are similar to those in274

(1). The fourth- and second-order terms that come from vav are discretized as in (33)-(37), with h275

replaced by ϕh. Both advective terms are discretized via standard centered differencing.276

The shear-induced diffusion term is discretized the same way as (36)-(37).277

∇ ·
(
D̂(ϕ)

h2ρ(ϕ)

µ(ϕ)
∇ϕ

)
i,j

≈

(
D̂(ϕi+1/2,j)

h2
i+1/2,jρ(ϕi+1/2,j)

µ(ϕi+1/2,j)
(ϕi+1,j − ϕi,j)− D̂(ϕi−1/2,j)

h2
i−1/2,jρ(ϕi−1/2,j)

µ(ϕi−1/2,j)
(ϕi,j − ϕi−1,j)

)
/∆x2

+

(
D̂(ϕi,j+1/2)

h2
i,j+1/2ρ(ϕi,j+1/2)

µ(ϕi,j+1/2)
(ϕi,j+1 − ϕi,j)− D̂(ϕi,j−1/2)

h2
i,j−1/2ρ(ϕi,j−1/2)

µ(ϕi,j−1/2)
(ϕi,j − ϕi,j−1)

)
/∆y2.

Centered differencing is not used for the moving reference frame, if one is employed. Instead, a278

second-order upwind differencing scheme is used, which will be discussed in the next section.279

6. Reference Frame280

The area of interest in the simulations is near the front of the flow, where effects like the capillary281

and particle-rich ridges occur. With a fixed reference frame, the spatial domain would need to be282

taken as the entire area over which the flow would evolve, leading to large portions of the domain283

where no change is occurring. This issue can be easily addressed by using a moving reference frame.284

To implement a moving reference frame, we add an extra term to each equation, −shx on the285

left-hand side of (1) and −s(ϕh)x on (2). Here, s > 0 is the speed at which the moving reference286

frame travels. Zhou et al. [36] approximate the front speed by removing all terms from the equations287

which are higher than first order, leaving only the advective terms. They observe that these terms288

capture the large scale dynamics, including the speed of the shocks, and the ridges that develop in289

h and ϕ. This leaves a 2× 2 system of conservation laws of the form290

ht + [F (h, ϕh)]x = 0, (38)

(ϕh)t + [G(h, ϕh)]x = 0, (39)

F (h, ϕh) =
ρ(ϕ)

µ(ϕ)
h3,

G(h, ϕh) =
ρ(ϕ)

µ(ϕ)
(ϕh)h2 + (ϕh)(1− ϕ)Vsf(ϕ)w(h).
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The initial conditions for (38)-(39) are291

h(x, 0) =

{
hl, x ≤ 0,
hr, x > 0,

(40)

(ϕh)(x, 0) =

{
ϕ0hl, x ≤ 0,
ϕ0hr, x > 0.

(41)

where hl and hr in (40) and (41) are the initial film thickness and the height of the precursor b,292

respectively, and ϕ0 in (41) is the initial particle concentration of the fluid. These initial conditions293

specify a Riemann problem [19]. From the initial shock in both equations, an intermediate state294

emerges, (hi, (ϕh)i). The weak form of this system produces two Rankine-Hugoniot jump condi-295

tions, which define the shock speeds, ahead and behind the intermediate states. For s1, the speed296

of the shock behind the intermediate state, and s2, the speed ahead, these conditions are given by297

s1 =
F (hi, (ϕh)i)− F (hl, (ϕh)l)

hi − hl

=
G(hi, (ϕh)i)−G(hl, (ϕh)l)

(ϕh)i − (ϕh)l
, (42)

s2 =
F (hr, (ϕh)r)− F (hi, (ϕh)i)

hr − hi

=
G(hr, (ϕh)r)−G(hi, (ϕh)i)

(ϕh)r − (ϕh)i
.

Figure 4: The intermediate states that develop in the film thickness (left) and particle concentration (right) for the
first-order system of equations.

The intermediate states and shocks can be seen in Figure 4. This nonlinear system (42) of298

four equations and four unknowns, hi, (ϕh)i, s1, and s2, can be solved via Newton’s method. For299

the simulations shown in Section 7, our reference frame speed is an average of the two speeds,300

s = (s1 + s2)/2.301

The discretization of the terms for the moving reference frame is done explicitly using forward302

Euler combined with second-order upwind-differencing,303

−shx ≈ −s
−hi+2,j + 4hi+1,j − 3hi,j

2∆x
.

This was chosen over explicit first-order upwind and implicit centered differencing. For a test run to304

time t = 10 with no variation in the y-direction, implicit centered differencing produced the highest305

particle-rich ridge, but introduced small oscillations ahead of the flow that were approximately 2%306
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of the height of the ridge. First-order upwind was dissipative and lead to the ridge being 28%307

smaller than implicit centered differencing. The effects of choosing second-order upwind appear to308

be some minor dissipation, about 17% as compared to implicit centered differencing, and dispersion,309

which was not seen in this test case, behind the particle-rich ridge.310

The moving reference frame can be used for both the one- and two-dimensional cases (see Figures311

5 and 6). To demonstrate this, simulations were run under the same conditions as those in Section312

7. The theory-based solution for the problem without higher-order terms (38)-(41) aligns well with313

the one-dimensional numerical solution for the full problem. The two-dimensional solution for the314

full problem with a perturbation to the initial film thickness leads to a finger that moves faster315

than the one-dimensional case and the troughs, to the sides of the finger, move slower.316

This can be viewed more succinctly in Figures 7 and 10, where the contours of the perturbed317

two-dimensional case are shown. The position of the finger runs ahead of the one-dimensional front,318

which is approximately at x = 15, while the troughs lag behind. The averaging of the front position319

was first investigated by Huppert [14] for experiments involving clear fluids. Both simulations start320

with the same volume and, after an initial transient, the average front positions for the one- and321

perturbed two-dimensional case (measured at h = 0.5) stay close to each other (Figure 8). Figure322

9 shows the position of the finger and the trough in the two-dimensional case over time.323

0 5 10 15 20 25 30
0

0.25

0.5

0.75

1

1.25

1.5

1.75

x

h

Figure 5: Comparison of theory and simulations at time t = 100 for the film thickness, h: theory without higher-
order terms (solid line), one-dimensional solution to the full problem (dashed line), perturbed two-dimensional finger
(dotted line), and perturbed two-dimensional trough (dot-dashed line). The domain in the y-direction is 15 units
long, with the finger slice taken at y = 7.5 and the trough slice taken at y = 1 (see Figure 7).

7. Simulations324

A rectangular domain is used with the x-direction oriented down the inclined plane and the325

y-direction across the inclined plane. In all cases, the particle concentration is initially taken to be326
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Figure 6: Comparison of theory and simulations at time t = 100 for the particle concentration, ϕ. The labels are
the same as in Figure 5.
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Figure 7: A contour plot of the simulation at times t = 0 (left) and t = 100 (right) for the film thickness, h, in the
perturbed two-dimensional case. The perturbation in two dimensions leads to a fingering instability not seen in the
one-dimensional case.

ϕ(x, y, 0) = ϕ0, where 0 ≤ ϕ0 ≤ ϕmax. This corresponds to having a well-mixed initial fluid. The327

film thickness far behind the contact line is set at h(x, y, 0) = 1 and ahead of the flow, a precursor328

of height h(x, y, 0) = b is assumed. At the contact line, a perturbation to a linear front can be329

applied to induce behavior such as a fingering instability. The parameters in the model are taken330

to be: a = 0.1, ρf = 1.7, Ca = 10−3, α = π/4. The constant ϕmax is taken to be 0.67, in line with331

the simulations in Cook et al. [7]. The initial timestep is set to ∆t = 10−6 and the mesh width is332
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Figure 8: The average front position of the film thickness, h, of the one-dimensional and perturbed two-dimensional
case up to time t = 100. After an initial transient, the average front positions stay close to each other.
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Figure 9: The front position of the film thickness, h, of the perturbed two-dimensional case up to time t = 100 along
the finger and trough.

∆x = ∆y = 0.05.333

For the model, two sources contribute to the height of the film thickness and particle concentra-334
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Figure 10: A contour plot of the simulation data at time t = 100 for the particle concentration, ϕ, in the perturbed
two-dimensional case. The perturbation leads to a particle-rich ridge that outlines and begins to fill in the finger.

tion near the front of the flow. The first is the higher-order terms, such as surface tension, which335

produce smooth ridges in both h and ϕ. Second, even without these terms, an intermediate state336

at the front emerges for both variables, higher than either of their respective left or right states.337

These heights are dependent on the precursor b.338

The height of the precursor in the following simulations is chosen to be the same as ∆x. In339

general, the choice of precursor has a small effect on the speed of the flow, but a large effect on340

both the film thickness and particle concentration. To illustrate this, Table 1 shows the height of341

the intermediate states for both h and ϕ as well as the speeds of the trailing and leading shocks342

obtained from the theory-based solution to the system of conservation laws (38)-(41) (see Section343

6 for a more in-depth discussion). The intermediate film thickness hi and particle concentration ϕi344

increase as the height of the precursor b decreases. For the shock speeds, a smaller precursor leads345

to the trailing shock speed s1 staying relatively the same, but the leading shock speed s2 slows346

down and approaches s1. These results agree with the previous ones related to solving the system347

of conservation laws [6, 36]. For this model, the smallest precursor for which a solution exists is348

b ≈ 9 × 10−4 [6]. A precursor close to this case, b = 0.001, produces shocks speeds which are349

close together and an intermediate particle concentration near the maximum packing fraction. An350

alternative settling function that permits solutions with smaller precursors, fB(ϕ) = (1−ϕ/ϕmax)
5,351

is examined in Cook et al. [6].352

The boundary conditions for h are Dirichlet in front and behind, in the x-direction, the flow353

and Neumann on the sides, in the y-direction. The same is employed for ϕ. In addition, all third354

derivatives in h, normal to the boundary, are set to 0. More specifically, for a rectangular domain355

with length X0 and width Y0, the boundary conditions are356
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b hi ϕi s1 s2
0.1 1.01653 0.307566 0.459323 0.510221
0.05 1.03478 0.315538 0.459314 0.483782
0.025 1.07107 0.330331 0.459301 0.471418
0.0125 1.1427 0.356006 0.459289 0.465441
0.00625 1.28276 0.396078 0.459294 0.462488
...

...
...

...
...

0.001 9.14247 0.635545 0.459788 0.459916

Table 1: The intermediate states and shock speed solutions from Equation (42) based on the precursor thickness b.
As the precursor decreases, both hi and ϕi increase and the shock speeds converge.

h(0, y) = 1, hxxx(0, y) = 0, h(X0, y) = b, hxxx(X0, y) = 0,

hy(x, 0) = 0, hyyy(x, 0) = 0, hy(x, Y0) = 0, hyyy(x, Y0) = 0,

ϕ(0, y) = ϕ0, ϕ(X0, y) = ϕ0, ϕy(x, 0) = 0, ϕy(x, Y0) = 0.

The simulations are all run using moving reference frames, with the speed of the frame determined357

as in Section 6.358
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Figure 11: The speed-up gained by going from 1 to N processors using OpenMP. The line y = N is shown as a point
of reference.

The code is written in parallel using the C++ OpenMP package. This choice of parallelization359

was made since the majority of calculations are done via for loops and OpenMP works well with360

loop-heavy code. This includes the calculation of all finite differences and the solves along rows and361
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columns associated with the ADI part of the scheme. This is especially useful since rows/columns362

can be solved independently of each other for each equation. In addition, writing special solvers363

for linear systems of equations across multiple processors [25, 28] is avoided by this approach. The364

speed-up attained using N processors is calculated by dividing the runtime for one processor by365

the runtime for N processors (Speed-Up = Time(1 Processor)/Time(N Processors)).366

Based on Figure 11, the scaling is close to linear up to 4 processors, with a small drop-off in367

performance as the number increases. This almost-linear behavior is a result of all of the code,368

outside of a few minor calculations and the recording of the data, being amenable to parallelization.369

To test some preferences that need be chosen a priori in the simulation, we conducted short-370

time tests to gauge the effectiveness of each approach. The ones considered here are (a) whether to371

time-lag or extrapolate the approximate terms and (b) whether or not to perform iterations past372

a single solve to improve the approximate terms, and therefore the solution at each timestep (see373

Table 2).374

(a) Approximate Terms Time-Lagged Extrapolation
(b) Number of Iterations One Iteration Iterations

Table 2: The two choices to be made when implementing the numerical scheme. One must choose whether to (a)
time-lag or extrapolate the approximate terms and (b) whether or not to perform additional iterations past the
initial solve.

Consider an initial condition of ϕ0 = 0.3 and a front perturbed from Riemann initial data,375

h(x, y, 0) = 1 far behind the front, h(x, y, 0) = 0.05 far ahead of the front. At the jump from fluid376

to precursor, the shape of the front is given as xfront = X0/2 − cos(2πy/Y0). This initial data is377

then smoothed using hyperbolic tangent and matched to the boundary condition (see Figure 14).378

This has the effect that the initial timestep can be taken more leniently.379

We ran this initial simulation for each of the four combinations in Table 2 to time t = 1 and380

the maximum timestep allowed, average number of iterations per timestep, and the total runtime,381

in seconds, are listed in the table below (Table 3). This and Table 4 provide some global measures382

to compare the different schemes rather than illustrating convergence studies for any particular383

method. The choice of t = 1 was made as the timestep changes dramatically over this time interval384

and can provide insight as to what methods seem practical for long-time runs. Since adaptive385

timestepping is utilized here, the tolerances are tuned so as to ensure that the simulation stays386

stable, not only to time t = 1 but for some time afterwards as well (it is taken up to t = 100 in387

this case, which is the length of the long-run simulations).388

∆tmax Avg. Iter. Runtime
Time-Lagged and One Iteration 0.000568341 1.0 518.2
Time-Lagged and Iterations 0.00183296 2.20997 601.468
Extrapolation and One Iteration 4.07743× 10−5 1.0 19596.1
Extrapolation and Iterations 0.00486338 1.29668 376.603

Table 3: Results for time t = 1 based on various choices for implementation.
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Using Iterations performs well for both choices of approximate terms in that the total runtimes389

are low, the maximum timesteps are large, and the number of iterations stays close to 1. Between390

these two, Extrapolation and Iterations does best, with nearly one fewer iteration required per391

timestep, on average, and a runtime that is 37% shorter. Performing One Iteration, the runtime for392

Time-Lagged is in between the two cases with Iterations, but for Extrapolation, it performs poorly,393

producing a runtime that is 33 to 52 times worse than the other three options. This is due to the394

small maximum timestep that is associated with this approach, which is 14 to 119 times smaller395

than the other three. At this point, it makes sense to discard the Extrapolation and One Iteration396

approach due to its excessive runtime and explore the remaining ones.397

Under the same conditions, we ran a longer simulation, this time to t = 100. Using the best398

remaining options, we can glean some idea as to which one(s) will work best for a longer simulation.399

∆tmax Avg. Iter. Runtime
Time-Lagged and One Iteration 0.00107169 1.0 17811.3
Time-Lagged and Iterations 0.00329173 2.95498 13153.8
Extrapolation and Iterations 0.0106161 2.01204 3364.93

Table 4: Results for time t = 100.

Comparing Tables 3 and 4, the maximum timestep for each approach has increased. Using400

Iterations, the average number has gone up in for both Time-Lagged and Extrapolation. However,401

the average number of iterations per timestep for Extrapolation is approximately one iteration fewer402

than for Time-Lagged. Also the runtime takes about 2.9 times longer for Time-Lagged compared to403

Extrapolation. One can see the benefit of performing iterations instead of using a smaller timestep in404

comparing the results for Time-Lagged and One Iteration and Time-Lagged and Iterations. Time-405

Lagged and One Iteration advances the solution approximately the same time forward with three406

timesteps as Time-Lagged and Iterations does with one timestep and three iterations. However,407

doing two extra timesteps costs more than two extra iterations, as seen in their respective runtimes.408

This is because the explicit terms do not need to be re-calculated for each iteration while they do409

for each timestep. Therefore, the only two options which make sense to use are the ones involving410

Iterations. Of these, Extrapolation is the clear favorite.411

In Figure 12, we see that by time t = 8, all three approaches have settled into a respective412

timestep. The timestep for Extrapolation and Iterations does best, followed by Time-Lagged and413

Iterations and Time-Lagged and One Iteration. The timestep for Extrapolation and Iterations is414

3.2 times better than Time-Lagged and Iterations and 9.9 times better than Time-Lagged and One415

Iteration. The benefit of the larger timestep for both approaches with Iterations is partially offset416

by the need for extra calculations related to the iterations.417

Figure 13 shows the number of iterations required throughout the simulation. For Extrapolation418

and Iterations, the increase in iterations approximately between times t = 20 and t = 30 corresponds419

to the finger forming and stretching out ahead of the flow in the film thickness and the particle-rich420

ridge growing higher and outlining the finger. While the number of iterations jumps once to 3 and421

then back down to 2 for Extrapolation and Iterations, it remains constant at 3 for Time-Lagged422

and Iterations. The cost of storing extra data and performing a small computation to find the423

extrapolated approximations seems a small price to pay to save one iteration per timestep, which424

includes recalculating values involving the approximate terms and performing the ADI solves.425
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Figure 12: The adaptive timestep up to time t = 20. The timestep, ∆t, is recorded in intervals of 0.25 for the three
cases. Extrapolation and Iterations has a significantly larger timestep than either Time-Lagged and One Iteration
or Time-Lagged and Iterations.
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Figure 13: The number of iterations up to time t = 100. The iterations are recorded in intervals of 0.25 for the two
cases. Using Extrapolation and Iterations does better than Time-Lagged and Iterations in terms of fewest number
of iterations.

Using the simulation data up to t = 100, we can examine the effects of the initial perturbation426

graphically. For the film thickness, a small capillary ridge forms in the center of the perturbation427

(Figure 15) and begins to stretch out ahead of the bulk flow (Figures 16 and 17). This is the428

well-known fingering instability present in thin film flows. For the particle concentration, a particle-429

rich ridge initially forms at the contact line (Figure 15) and, as the fingering instability evolves,430

outlines the shape of the finger (Figures 16 and 17). Directly behind the ridge, a pocket of lower431
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Figure 14: The initial film thickness. It is perturbed by a cosine wave along y and smoothed along x by hyperbolic
tangent.

Figure 15: Film thickness (left) and particle concentration (right) at time t = 25. A small ridge forms in both, with
the highest point in the perturbation.

concentration forms. The interior of the finger is slowly encroached upon by the particles that have432

accumulated near the back and sides of the finger. This can be seen in Figure 17 as an interior433

layer along the inside of the particle-rich ridge. It is possible that this phenomenon is not physical,434

meaning that it occurs only in the simulations and not in the experiments, and may be a result of435

the current model not containing all of the necessary physics.436
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Figure 16: Film thickness (left) and particle concentration (right) at time t = 50. A fingering instability and
particle-rich ridge form.

Figure 17: Film thickness (left) and particle concentration (right) at time t = 100. The fluid finger stretches out
ahead of the bulk flow. The particle-rich ridge increases in concentration and has a higher concentration in and
around the fingering instability.

8. Comparison to Experiments437

Experiments for particle-laden thin film flows have been compared in one dimension to the438

solution, both analytically and numerically, for constant-volume clear fluid flows. The average439

front position for clear fluids is given by a power law, where the location of the front scales like440

Ct1/3, where C is a scaling constant [14]. Ward et al. [33] compare the average front position of the441

flow to this scaling and find agreement for particle concentrations below ϕ = 0.45 and deviations442

at later times for higher concentrations. Grunewald et al. [12] compare the average front position443

to a re-derived one-dimensional model, based on results from Huppert [14] with a precursor, and444

to experiments and numerical solutions of the one-dimensional problem. The Ct1/3 scaling appears445

valid for concentrations of 0.25 to 0.45, and the scaling constant for experiments and numerics446

are within 20% of the theoretical constant. We seek to compare the numerical solution in two447
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dimensions to images of experiments, taking into account that variations occur across the front of448

the flow.449

We use 1000 cSt polydimethylsiloxane (PDMS), a silicone oil, for the liquid component of the450

fluid. For the particles, glass beads with diameters in the range of 250 − 425 µm are used. The451

two components are then well-mixed and released down an inclined plane from a reservoir. This452

corresponds to a constant-volume experiment, whereas our simulations are constant-flux. The453

approximation of a constant-volume problem by a constant-flux one may be invalid at early times,454

as the height of the fluid will be changing rapidly. However, the height of the flow changes slower455

at later times, at which point a constant-flux approximation may be valid.456

The experiment, which we will compare to simulation, is a fluid of approximately 90 cm3
457

containing a volume which is 35.9% particles. The plane is inclined at a 32-degree angle. The fluid is458

allowed to flow down the plane, which is 14 cm across and 90 cm down. In the experiments, the flow459

starts out close to uniform across the front, away from the edges, and over time develops instabilities,460

in the form of fingers stretching out ahead of the bulk flow. Since, for simulations, starting with a461

uniform front along the y-direction leads to a uniform solution, we start the simulation some time462

after the start-time to add a perturbation to the initial data, which induces the type of behavior463

seen in the latter stages of the experiments.464

In order to avoid simulating the problem over the entire domain, we truncate the solution near465

the front and treat the problem locally as being constant-flux. We are interested in the dynamics466

of finger formation during which time the film thickness only changes by at most 20% , so a local467

approximation by constant-flux is reasonable.468

Figure 18: The initial condition of the experiment, used for comparing with the simulation. At this point, the front
of the flow has begun to develop perturbations, which will lead to fingering instabilities.

We use two images, taken three minutes apart, to compare with the simulation (Figures 18 and469

20). The first image is taken when the front of the flow has reached approximately 53 cm down470
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the plane. The shape of the front is parabolic-like with two large perturbations at either end of the471

front. In between, smaller perturbations exist which lead to fingering instabilities. The two outer472

perturbations lead to longer and thicker fingers than the smaller inner perturbations. We take a473

front similar to this in our simulation.474

The scales for a constant-flux problem can be taken from Cook et al. [6], which are the same as475

for the clear fluid case. The height scale is taken to be h0 = 1 mm. The length scale is x0 = (l2h0)
1/3,476

where the capillary length, l, is l =
√
γ/ρlg∥. The constants are γ, the coefficient of surface tension;477

ρl, the liquid density; and g∥, the component of gravity parallel to the inclined plane. The time478

scale is t0 = (3µl/γ)x0l
2/h2

0, where µl is the dynamic liquid viscosity. The capillary number is given479

by Ca = µlx0/γt0 = h2
0/3l

2.480

The scales, given these parameters, are h0 = 0.001 m, x0 = 0.00161396 m, l = 0.00205041 m,481

t0 = 0.93235 s, and Ca = 0.0792863. Using this, we can construct an initial condition which482

resembles the experiment and will produce similar results. This is done by measuring the features483

of the initial image and creating a similar condition. While the flow in the experiment is asymmetric,484

we take a symmetric initial condition in the simulation which has features that are approximately,485

in both location and size, the same as in the experiment. The track is taken to be 86.75 units wide486

(rounded up to the nearest 0.05 increment, which is the value of ∆x,∆y), which corresponds to the487

14 cm wide track. The precursor in the simulation is set to b = 0.05, as in the previous simulations.488

A moving reference frame is used since this is taken to be a constant-flux problem locally. The489

speed of the moving reference frame is approximately s = 0.343198, calculated as in Section 6.490

Running a simulation over the course of three minutes leads to a distance traveled for the frame of491

approximately 10.69 cm, where the actual displacement, based on experiments, is around 12 cm, so492

using the constant-flux assumption seems to produce a decent approximation of the distance the493

fluid will flow.494

Figure 19: The initial condition for the film thickness, h, used in the simulation. This is an artificially-created
starting condition to be representative of the state shown for the experiment. The height is in mm.
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The initial data is generated using a sine wave to form the two large perturbations and the space495

away from the edges. The three fingers that develop between these two perturbations are simulated496

with a cosine wave of small amplitude, 0.25 in dimensionless units (Figure 19). The simulation is497

run to t = 193.06, the equivalent of three minutes of real-time.498

Figure 20: The evolution of the experiment after three minutes. The fingering instability starts to form at the front.

Over the course of the three minutes, the exterior of the outer fingers in the experiments go499

from 4 cm and 6.5 cm on the left and right, respectively, to 7.5 cm and 12 cm. The interior of these500

fingers go from less than 1 cm on each side to about 3 cm. The interior fingers are not discernable501

in the initial image. The flow as a whole, measured from where the fluid touches the walls, has502

moved about 11 cm down the plane. The interior fingers in the experiment, extend about 0.5 cm503

ahead of the flow.504

In the simulation (Figure 21), the moving reference frame accounts for 10.69 cm of movement,505

so the position where the fluid touches the edges has moved approximately 11.4 cm. The evolution506

of the fingers in the simulation is slightly less pronounced than in the experiments. This is likely507

due to the simulation initially undergoing a transient state where the fluid travels slower than at508

later times, while the transient in the experiment has occurred prior to this three-minute interval.509

The exterior of the outer fingers is approximately 4.2 cm and interior 1.2 cm. The interior fingers510

extend ahead of the flow about 0.8 cm. The tip of the longest finger in the experiments has moved511

15 cm while in the simulations, it has advanced approximately 11.4 cm. The tips of the fingers, in512

the z-direction, reach up to 1.37 mm.513

The particle concentration cannot be determined accurately at the particle-rich ridge in the514

experiment, but the increased opacity at the leading edge of the flow indicates an increase in the515

concentration, relative to the ambient concentration. This change in shade is approximately 1 cm516

long in the direction of the flow. In the simulation (Figure 22), the thickness of the ridge ranges517

from 0.6 to 1.1 cm, which is consistent with the experiments.518
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Figure 21: The evolution of the film thickness, h, in the simulation after three minutes. Both the experiment and
simulation exhibit a fingering instability, but the instability in the simulation is less pronounced. The height is in
mm.

Figure 22: Particle concentration, ϕ, for the film thickness in Figure 21.

9. Discussion519

Schemes originally derived for numerically solving high-order parabolic problems have recently520

been extended to high-order systems, such as the case of surfactants and particle-laden thin films.521
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Handling the higher-order terms in a practical way is necessary for fast and efficient computation.522

The scheme we have presented here for particle-laden thin film flow provides an easy-to-program523

and effective way to solve this high-order coupled system. This scheme can provide a blueprint for524

approaches to solving similar problems.525

The numerical scheme developed for particle-laden thin film flow has several nice attributes.526

The timestep required for this scheme is in the range of O(∆x2), which is much better than the527

O(∆x4) for a fully explicit scheme. The structure of the scheme allows for the possibility of solving528

each equation with its own unique timestep for better efficiency, as the particle concentration is529

typically the equation that fails the timestep restriction criteria. The linear algebra problem that530

results from an implicit time discretization along with the nonlinearity is reduced to a series of tri-531

and pentadiagonal solves, which can be done in parallel along the rows/columns of the grid.532

The parallelization of the code is straightforward using OpenMP. The loops for computing the533

explicit and approximate terms as well as the solves along rows and columns can be done in parallel,534

leading to a code that scales close to linearly for up to 8 processors, getting close to 8 times speed-535

up. Adding OpenMP implementation to C++ code on any multicore machine is easy to implement,536

as it only requires adding a few lines of code to existing for loops and needs no managing of the537

movement of data on the programmer’s part. Since the code is predominantly such loops, it is easy538

to parallelize and is highly effective in getting better runtimes.539

Implementing Iterations within each timestep, which is first presented in Witelski and Bowen540

[35], but not used in Warner et al. [34], seems to work best for this problem, in terms of allowing541

for a larger timestep and producing an accurate solution. Among the choices for the approximate542

terms when performing Iterations, Extrapolation seems to produce the best runtime and fewest543

iterations. Implementation requires only storing an extra set of data used in extrapolating the544

approximate terms but, using the adaptive timestepping discussed here, this data is stored anyway.545

The choice of Extrapolation and Iterations may work best for this problem, but for other prob-546

lems or initial conditions, another choice may fare better. It is recommended, as in this case, that547

a short-term simulation be performed for the different choices of approximate terms and whether548

or not to perform extra iterations. The small cost of these short runs may allow for a more efficient549

run for actual simulations. It is also recommended that one examines the results to make sure that550

the scheme is not only fast with the choice, but sufficiently accurate.551

The numerical solution agrees reasonably well with the behavior seen in experiments. This is552

in part because the model was derived for the case when a particle-rich ridge forms. This is seen553

in the experiments for high angles of inclination and high concentrations, but will occur in the554

model for all concentrations and angles. The particle-rich ridge in the simulations is two thin layers555

of particles, one which originates at the front of the flow and the other from the troughs of the556

emerging fingers, which may not be physical.557

The current model assumes a constant, or average, particle concentration throughout the fluid558

layer in the z-direction. The same is true for the velocity, which is averaged in the z-direction.559

Theory exists for the vertical movement of the particles [5], whether they will settle to the inclined560

plane or form a ridge, and incorporating this behavior into a new model is the current research of561

the authors. It is hoped that the current numerical scheme will be adaptable to this new model.562
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