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Abstract This work develops a global minimiza-

tion framework for segmentation of high dimen-

sional data into two classes. It combines recent

convex optimization methods from imaging with
recent graph based variational models for data seg-

mentation. Two convex splitting algorithms are

proposed, where graph-based PDE techniques are

used to solve some of the subproblems. It is shown
that global minimizers can be guaranteed for semi-

supervised segmentation with two regions. If con-

straints on the volume of the regions are incorpo-

rated, global minimizers cannot be guaranteed, but

can often be obtained in practice and otherwise be
closely approximated. Experiments on benchmark

data sets show that our models produce segmen-

tation results that are comparable with or outper-

form the state-of-the-art algorithms. In particular,
we perform a thorough comparison to recent MBO

(Merriman-Bence-Osher) [49] and phase field meth-

ods, and show the advantage of the algorithms pro-

posed in this paper.
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1 Introduction

We consider the problem of clustering general

high-dimensional data into two classes. The data
points are viewed as nodes on a graph and the sim-

ilarity between them is represented by the weight

function defined on the edges between the nodes.

Recently, there has been a growing interest in for-
mulating such problems as variational or optimiza-

tion problems, where the non-local total variation

term plays a fundamental role in constructing the

cost function.

A graphical framework is often used to exploit

underlying similarities in the data [3,17,59,63–65].
For example, spectral graph theory [19, 50] uses

this approach to perform various tasks in imaging

and data clustering. The graph Laplacian, one of

its fundamental concepts, is described in section 2.

Graph-based formulations have been used ex-

tensively for image processing applications [6, 21,

22, 25, 34, 35, 37, 46, 54]. A typical framework in-
volves the similarity graph where each two ver-

tices are given a weight measuring their similar-

ity. Buades et al. in [13] introduce a new non-local

means algorithm for image denoising and compare
it to some of the best methods. In [35], Grady de-

scribes a random walk algorithm for image seg-

mentation using the solution to a Dirichlet prob-

lem. Elmoataz et al. present generalizations of the

graph Laplacian [25] for image denoising and man-
ifold smoothing. Couprie et al. in [21] propose a

parameterized graph-based energy function that

unifies graph cuts, random walker, shortest paths

and watershed optimizations. We use a non-local
calculus formulation [28] to generalize the contin-

uous formulation to a (non-local) discrete setting,

while other non-local versions for weighted graphs

are described in [25]. A comprehensive reference
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about casting continuous PDEs in graph form is

found in [36].

Our work involves semi-supervised clustering,

where the labeling of a small set of the data points

is provided in advance. Such problems have been

studied in [4,48] in a variational framework, where

a Ginzburg-Landau functional was defined on the
graph and minimized by PDE techniques, such as

phase field [4] and the MBO (Merriman-Bence-

Osher) scheme [48]. MBO was originally formu-

lated in the Euclidean space as a numerical scheme
for solving evolution equations involving mean cur-

vature motion of a region boundary [49] and has

also been used for image segmentation [58]. Since

the energy functional is non-convex and the PDEs

evolve in the steepest descent direction, these ap-
proaches may potentially get stuck in unwanted

local minima.

On the other hand, in unsupervised clustering,

there are no a priori knowledge of the labeling
of some of the data points. In such cases, some

knowledge of the sizes of each class is typically

incorporated in order to prevent the trivial solu-

tion where all data points are assigned to the same

class. The normalized cut and the Cheeger ratio
cut [18,54] are two popular such cost functions that

favor clusterings with classes of equal size. Recent

work has been focused on greatly simplifying the

energy landscape [10, 12, 39, 55, 56] in such prob-
lems by writing them as constrained binary opti-

mization problems involving the total variation on

graphs. Even though the simplified problems are

not completely convex, experiments demonstrate

that they can often avoid bad local minima. Su-
pervised constraints can theoretically also be in-

corporated into the framework [9], although the

experiments were focused on undersupervised clus-

tering. Another interesting paper [47] generalized
well known variational image segmentation mod-

els consisting of a fidelity and regularization term

to graphs, paying particular attention to the Chan-

Vese model [15] in experiments, and generalized re-

cent convex relaxation methods [16] for the graph
versions of such models.

It is well known in combinatorial optimization

that certain graph partition problems can be for-

mulated as min-cut problems [27], which aim to
find the minimal separation of the graph into two

sets, one of them containing a predefined source

node and the other a predefined sink node. The

max-flow problem is the equivalent dual problem
and can be globally optimized by classical combi-

natorial algorithms such as Ford-Fulkerson [27] or

the push-relabel method [31]. Specialized versions

of such algorithms have recently become popular

for solving certain optimization problems in image

processing and computer vision [5, 6, 43].

There are some fundamental differences between

the imaging applications and more general clus-
tering problems on graphs. In imaging, most of

the data is incorporated in a strong fidelity term,

which measures how well each pixel fits to each

region. Edges are also defined between neighbor-
ing data points on a regular grid, but they are

mainly used for smoothing purposes. In more gen-

eral clustering problems, the data is mainly incor-

porated on edges between pairs of data points, and

the fidelity term is zero at the majority of the data
points.

The combinatorial max-flow algorithm of [5]

was developed with specific imaging problems and

a regular grid in mind. We anticipate that it is

not easily transferable to graph clustering while
still maintaining a high efficiency; one reason be-

ing that the paths between the source node and

sink node are much longer. Such combinatorial al-

gorithms also do not exploit PDE techniques to

approximate the large graph, like the approximate
eigendecomposition of the graph Laplacian as in

[4, 48].

This paper proposes an efficient global opti-

mization framework for semi-supervised clustering

problems, formulated in the same variational form

as [4, 48]. Instead of applying classical combina-
torial algorithms, we build on more recent work

from imaging, which formulates two class partition

problems as convex variational problems [8,16,32]

or variational min-cut/max-flow problems [61,62].
Convex optimization algorithms were used in [8,

32, 61, 62] to split the problems into simpler sub-

problems, each of which could be solved by PDE

techniques. In this paper, we describe the exten-

sion of the variational min-cut/max-flow duality
in [61, 62] and of the algorithm in [32, 60] to a

more general graph setting to solve a more gen-

eral clustering problem. Here, the two global min-

imization methods are referred to as “max-flow”
and “primal augmented Lagrangian” algorithms,

respectively. The new subproblems are solved by

graph-based PDE techniques. We also show how

constraints on the size of each class can be incor-

porated by a small modification of the max-flow
algorithm.

Our global minimization algorithms are tested

on several benchmark data sets, and we compare

them with the phase field [4] and MBO [48] al-

gorithms as well as with each other. One notable
finding is that if the known data points are not

distributed relatively uniformly among the entire

data set, the local minimization methods may have

difficulty finding the correct solution.
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The paper is organized as follows. In section

2, we review the graphical framework and some

previous related work. In section 3, we present our
novel graph-based clustering methods. The results

are shown in section 4. We conclude in section 5.

2 The Graphs Framework

We consider the data as vertices on a graph.

Let G be an undirected graph G = (V,E), where

V and E are the sets of vertices and edges, re-
spectively. Each edge is equipped with a weight

denoted by the weight function w(x, y), which sat-

isfies the symmetric property and measures the

similarity between vertices x and y. A big value

of w(x, y) indicates that nodes x and y are very
similar, while a small value of w(x, y) indicates

that they are dissimilar, and thus less likely to be-

long to the same class. The challenge is to use the

right weight function- the one that measures the
important classification attributes of each pair of

vertices.

One popular choice for the weight function is

the Gaussian

w(x, y) = e−
d(x,y)2

σ2 , (1)

where d(x, y) is some distance measure between

the two vertices x and y, and σ is a parameter to

be chosen. For example, if the data set consists of
points in R

2, d(x, y) can be the Euclidean distance

between point x and point y, since points farther

away are less likely to belong to the same cluster

than points closer together. For images, d(x, y) can

be defined as the weighted 2-norm of the difference
of the feature vectors of pixels x and y, where the

feature vector of a node consists of intensity values

of pixels in its neighborhood, as described in [30].

Another choice for the similarity function used
in this work is the Zelnik-Manor and Perona weight

function [52] for sparse matrices:

w(x, y) = e
− d(x,y)2√

τ(x)τ(y) , (2)

where the local parameter τ(x) = d(x, z)2, and z

is the M th closest vertex to vertex x.

Note that it is not necessary to use a fully con-
nected graph setting, which might be a compu-

tational burden. Specifically, the fully connected

graph can be approximated by a much smaller

graph by only including edges in E between the
M nearest neighbors for each node in V, i.e. only

the edges with large weight w. In this paper, we

make use of such an approximation; our edge set

includes only edges between vertices that are near

to each other. Specifically, we include an edge be-

tween vertices x and y only if x is amongM nearest

neighbors of y or vice versa.

The matrix W is defined asWxy = w(x, y) and
the degree of a vertex x ∈ V as

d(x) =
∑

y∈V

w(x, y). (3)

We let D to be the diagonal matrix with elements
d(x) on the diagonal.

We use a graphical framework because it sim-
plifies the processing of high-dimensional data and

provides a way to deal with nonlinearly separable

classes.

2.1 Well known operators in graph form

We define operators on graphs in a similar fash-
ion as done in [28, 38], where the justification for

these choices is shown.

Assumem is the number of vertices in the graph

and let V ∼= R
m and E ∼= R

m(m−1)
2 be Hilbert

spaces (associated with the set of vertices and edges,

respectively) defined via the following inner prod-
ucts:

〈λ, γ〉V =
∑

x

λ(x)γ(x)d(x)r ,

〈ψ, φ〉E =
1

2

∑

x,y

ψ(x, y)φ(x, y)w(x, y)2q−1

for some r ∈ [0, 1] and q ∈ [ 12 , 1]. Let us also define

the following norms:

‖λ‖V =
√

〈λ, λ〉V =

√

∑

x

λ(x)2d(x)r ;

‖φ‖E =
√

〈φ, φ〉E =

√

1

2

∑

x,y

φ(x, y)2w(x, y)2q−1;

‖φ‖E,∞ = max
x,y

|φ(x, y)|.

The gradient operator ∇ : V → E is then defined

as:

(∇λ)w(x, y) = w(x, y)1−q(λ(y) − λ(x)). (4)

The Dirichlet energy does not depend on r or q:

1

2
‖∇λ‖2E =

1

4

∑

x,y

w(x, y)(λ(x) − λ(y))2. (5)

The divergence div : E → V is defined as the ad-
joint of the gradient:

(divw φ)(x) =
1

2d(x)r

∑

y

w(x, y)q(φ(x, y)−φ(y, x)),
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(6)

where we define the adjoint using the following def-

inition: 〈∇u, φ〉E = −〈u, divw φ〉V .
We now have a family of graph Laplacians△r =

divw ∇̇ : V → V :

(△wλ)(x) =
∑

y

w(x, y)

d(x)r
(λ(y) − λ(x)). (7)

Viewing λ as a vector in R
m, we can write

−△wλ = (D1−r −D−rW)λ. (8)

The case with r = 0 is the unnormalized Laplacian

L = D−W. (9)

However, the matrix L is usually scaled to guaran-

tee convergence to the continuum differential oper-

ator in the limit of large sample size [4]. Although

several versions exist, two popular versions are the
symmetric Laplacian

Ls = D− 1
2LD− 1

2 = I−D− 1
2WD− 1

2 (10)

and the random walk Laplacian (r = 1)

Lrw = D−1L = I−D−1W. (11)

The advantage of the former formulation is its sym-

metric property which allows for more efficient im-

plementations.

A family of anisotropic total variations TVw :

V → R can now be defined:

TVw(λ) = max
{

〈divw φ, λ〉V : φ ∈ E , ‖φ‖E,∞ ≤ 1
}

=
1

2

∑

x.y

w(x, y)q |λ(x) − λ(y)|. (12)

It remains to choose the parameters q and r.

We choose q = 1 as in [28], where it is shown

that for any r, TVw is the Γ -limit (Gamma con-
vergence) of a sequence of graph-based Ginzburg-

Landau (GL)-type functionals:

Theorem 1 GLǫ
Γ
−→ GL0 as ǫ→ 0 where

GLǫ(λ) = ‖∇λ‖2E +
1

ǫ

∑

x

W (λ(x))

=
1

2

∑

x,y

w(x, y)(λ(x) − λ(y))2 +
1

ǫ

∑

x

W (λ(x))

GL0(λ) =

{

TVw(λ)with q=1 for λ s.t. λ(x) ∈ {0, 1}

∞ otherwise

Proof. See Theorem 3.1 of [28].

Here W is the double-well potential W (u) =

u2(u− 1)2 having two zeros (in our case 0 and 1),

and ǫ is a small positive number. It is also shown
in the paper (specifically Theorem 3.6) that the

addition of a fidelity term is compatible with Γ -

convergence. Since one of the algorithms we com-

pare our methods to deals with the Ginzburg-Landau
functional directly, to be consistent, we use the

above definitions with q = 1 in our formulations.

Remark. It is noted in [28] that although
the first term in the continuous Ginzburg-Landau

functional

GLc(λ) = ǫ

∫

|∇λ|2dx+
1

ǫ

∫

W (λ)dx

is scaled by ǫ, the first term of GLǫ contains no

ǫ. This occurs because the Dirichlet energy in GLc

is unbounded for functions λ of bounded variation

and taking on two values of the minima of the
double-well potential (almost everywhere). However,

the difference terms of GLǫ are finite even in the

case of binary functions, and no rescaling of the

first term is necessary.

We choose r = 1 because it results in a normal-

ized random walk Laplacian and the eigenvectors

as well as the corresponding eigenvalues of the ma-
trix can be efficiently calculated. Although the ran-

dom walk Laplacian matrix itself is not symmetric,

spectral graph theory described in [19] shows that

the eigenvectors of the random walk Laplacian can

be directly computed from knowing the diagonal
matrix D and the eigenvectors of the symmetric

graph Laplacian (which is a symmetric matrix) Ls.

In particular, λ is an eigenvalue of Lrw with eigen-

vector u if and only if λ is an eigenvalue of Ls with
eigenvector w = D

1
2u. This is proved by multiply-

ing the eigenvalue equation Lrwu = λu by D
1

2

from the left and then substituting w = D
1
2u, ob-

taining Lsw = λw.

We take advantage of this property by calcu-

lating the eigenvalues and eigenvectors of the sym-

metric graph Laplacian (since symmetric matrices

allow for more efficient implementations) and then
using this information to calculate the same for the

random walk Laplacian.

To summarize, we use the above operator defi-
nitions with q = 1 and r = 1.

In this work, we use the notation λ(x) to denote

the value of λ at node x ∈ V that provides infor-
mation about the class membership of the node.

Specifically, we use λ(x) = 0 to denote the fact

that node x belongs to class 1, and λ(x) = 1 to

denote that it belongs to class 2.
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2.2 Partition problems on graphs

In this work, we are interested in solving par-

tition problems of the form

min
S⊂V

∑

(x,y)∈E : x∈S, y∈V \S
w(x, y), (13)

which is the formulation of the minimum cut prob-

lem, under supervised constraints

S ⊇ V f , V \S ⊇ V b (14)

and an optional volume constraint

|S| = a|V |,

where 0 < a < 1. V f ⊂ V is a set of nodes that are
known a priori to belong to the region S and V b ⊂
V is a set of nodes that are known to belong to

region V \S. Variations of this problem have been

vastly explored in literature. For example, in [11],
the authors describe an algorithm which minimizes

a normalized version of the cut, specifically the

balanced cut. A multiclass version of this method

is introduced in [9].

By defining a binary function

λ(x) :=

{

1, x ∈ S
0, x ∈ V \S

the above problem can be expressed as

min
λ∈B

EP (λ) = TVw(λ) +
∑

x∈V

f(λ(x), x), (15)

where

TVw(λ) =
1

2

∑

x.y

w(x, y)|λ(x) − λ(y)|

as defined earlier (with q = 1) and

B = {λ : V 7→ {0, 1}} (16)

is the set of binary functions indicating the parti-
tion. Here, f(λ(x), x) is a fidelity term which in-

corporates the supervised constraints (14). It typ-

ically takes the form of

f(λ(x), x) = η(x)|λ(x) − λ0(x)|2, (17)

where λ0 is a binary function taking value 1 in V f

and 0 in V b, and η(x) is a function that takes on

a large constant value η on fidelity points V f ∪V b

and zero elsewhere. If η is chosen sufficiently large,

it can be guaranteed that the solution λ satisfies
the supervised constraints. In [47], the authors pro-

pose solving a similar minimization problem by

introducing nonlocal global minimizers of active

contour models on graphs.

In addition, when the size of the two classes is

known, the volume of the regions may be enforced

to satisfy a constraint of the form

∑

x∈V

λ(x) = a|V |, (18)

where a is the fraction of the nodes belonging to

class 2, e.g. a = 1
2 enforces partitions of equal vol-

ume. The goal of this is to create an algorithm that

requires a much smaller fidelity set (to produce an
accurate classification) than otherwise, because we

also have the information about class size.

In previous work [4], the problem (15) was for-

mulated as the minimization of a Ginzburg-Landau

(GL) functional on graphs with a fidelity term

GLǫ(λ) = ‖∇λ‖2E +
1

ǫ

∑

x

W (λ(x)) + f(λ(x), x),

(19)

where

‖∇λ‖2E =
1

2

∑

x,y

w(x, y)(λ(x) − λ(y))2

as defined before. Note that as ǫ→ 0, in the limit

of gamma convergence, the sum of first two terms

of the energy converge to the total variation term,

making the energy exactly the same as one in (15).
The problem is solved using gradient descent and

an efficient convex splitting scheme. This method

will be referred to as “binary GL” in the paper,

and we compare it to our work.

In [48], (19) is solved numerically by a variation

of the MBO scheme [49], a method to approximate

motion by mean curvature. To make everything

consistent with the notation and theorems stated
in the paper, we include an extra scaling in our

implementation of the method in [48], and the jus-

tification is described shortly. We note that this

change in the method did not exacerbate the re-
sults as compared to those of the original method;

in fact, it produced very little change in any simu-

lation. This algorithmwill be referred to as “binary

MBO” in the paper, and we compare it to our
new algorithms. The discretized version of the al-

gorithm is the following:

Starting with some initial classification λ ∈
{0, 1}, alternate between the following two steps

until the stopping criterion is satisfied:

1. Heat equation with forcing term:

λn+
1
2 − λn

dt
= 2△wλ

n+1 −
1

d(x)r
∂f(λ(x), x)

∂λ
.

(20)
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2. Thresholding:

λn+1(x) =

{

1, if λn+
1
2 (x) ≥ 0.5,

0, if λn+
1
2 (x) < 0.5.

(21)

Here, after the second step, λn+1(x) can take only

two values of 1 or 0; thus, this method is appro-

priate for binary segmentation.

Following [48], (20) is solved by a semi-implicit

scheme, where the Laplacian term is calculated

implicitly, and the terms are considered as a lin-
ear combination of the eigenvectors of the random

walk Laplacian.

To show the general idea of the derivation, we

start with the Ginzburg-Landau (GL) functional

on graphs (19). One can rewrite it using inner

product notation:

GLǫ(λ) = ‖∇λ‖2E +
1

ǫ
〈D−rW (λ(x)), 1〉V

+ 〈D−rf(λ(x), x), 1〉V , (22)

where (D−rW (λ))(x) = d(x)−rW (λ(x)). The fac-

tor d(x)−r is needed to cancel the factor d(x)r in

the V- inner product.
The Allen-Cahn equation can then be derived

using the V-gradient flow associated with GLǫ. We
have

d

dt
GLǫ(λ+ tγ)|t=0 = −2〈△wλ, γ〉V

+
1

ǫ
〈D−rW ′(λ(x)), γ〉V +〈D−r ∂f

∂λ
(λ(x), x), γ〉V .

(23)

The Allen-Cahn equation is then

λ̇(x) = 2△wλ−
1

ǫd(x)r
W ′(λ(x))−

1

d(x)r
∂f

∂λ
(λ(x), x).

(24)

The above equation can be solved using a time-

splitting scheme, where the splitting occurs so that
the double-well potential term is separated. The

first step is

λ̇(x) = 2△wλ−
1

d(x)r
∂f

∂λ
(λ(x), x) (25)

and the second step (with the double-well poten-

tial) is just thresholding in the ǫ → 0 limit. By

alternating between these two steps, one can form

an approximate solution of the Allen-Cahn equa-
tion (24).

Such approaches (binary GL and binary MBO
methods) converge to the nearest local minimizer

from a given initialization. In general, one can-

not guarantee that the desired global minimizer

is obtained. The subject of this work is to develop

a convex optimization framework for minimizing

(15) which is guaranteed to obtain the global min-

imizer. Various algorithms are developed for solv-
ing the convex problems.

3 Global optimization for partition

problems on graphs

The problem (15) is non-convex because the
binary side constraints (16) are non-convex. We

show that the binary constraints can be replaced

by their convex hull [0, 1] to obtain an exact convex

formulation as was shown in [16] for images. Define
first the functions

Cs(x) = f(0, x) , Ct(x) = f(1, x), ∀x ∈ V,

g(φ(x), x) = Ct(x)φ(x) + Cs(x)(1 − φ(x)) , ∀x ∈ V.

(26)

The problem

min
λ∈B

EP (λ) = TVw(λ) +
∑

x∈V

g(λ(x), x) (27)

is equivalent to the formulation (15). The proof is
obvious as g(φ(x), x) = f(φ(x), x) for all binary φ.

The convex relaxed problem is formulated as
follows:

min
λ∈B′

EP (λ) = TVw(λ) +
∑

x∈V

g(λ(x), x), (28)

where

B′ = {λ : V 7→ [0, 1]}. (29)

In case of images and local differential opera-

tors, it was shown in [16] theorem 1 that the mini-

mizer of the convex problem can be thresholded
to yield a binary global minimizer of the origi-

nal problem. Generalizations were proposed in [7]

to continuous manifolds arising from patch based

non-local operators. A generalization of the the-

orem to discrete graphs was proposed in [47], al-
though a formal proof was not included. Here we

state the same result as in [47] and give a complete

proof.

Theorem 2 Let λ∗ be a minimizer of (28). De-

note by λℓ : V 7→ {0, 1} the binary function

λℓ(x) =

{

1 , if λ∗(x) ≥ ℓ

0 , if λ∗(x) < ℓ
. (30)

Then for almost every ℓ ∈ (0, 1], λℓ is a global

minimizer of the non-convex problem (27).
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Proof. For any function λ ∈ B′ and for any x ∈ V ,

if λ(x) ∈ [0, 1], then
∫ 1

0 λ
ℓ(x) dℓ = λ(x). Therefore,

for each x ∈ V ,

∫ 1

0
g(λℓ(x), x) dℓ =

∫ 1

0

λℓ(x)Ct(x) + (1 − λℓ(x))Cs(x) dℓ

= λ(x)Ct(x) + (1 − λ(x))Cs(x) = g(λ(x), x).

(31)

By the coarea formula, we have that

∫ 1

0

TVw(λ
ℓ) dℓ = TVw(λ) .

For a proof of the coarea formula on graphs, see

Appendix B of [29].

Combining the above properties, we obtain that
for any λ ∈ B′,

∫ 1

0

EP (λℓ) dℓ =
∑

x∈V

∫ 1

0

(TVw(λ
ℓ)+g(λℓ(x), x))dℓ =

∑

x∈V

TVw(λ) + g(λ(x), x) = EP (λ). (32)

For a λ that minimizes the energy, clearlyEP (λ) ≤
EP (λℓ) for any ℓ ∈ (0, 1]. However, equality (32)
can then only be true provided EP (λ) = EP (λℓ)

for almost every ℓ ∈ (0, 1]. In other words, λℓ also

minimizes the energy for almost every ℓ ∈ (0, 1].

In order to solve (28), we consider two main al-

gorithms. The first is based on solving a dual for-

mulation of the problem, which can be identified as

a maximum-flow problem, by convex optimization
techniques. It will be referred to as the “max-flow”

method in this paper. We present three versions of

this algorithm: one without hard supervised con-

straints (Algorithm 1), one with hard supervised
constraints (Algorithm 1s), and one with balancing

constraints (Algorithm 1b). The second algorithm

(Algorithm 2) solves the primal problem by the

augmented Lagrangian technique, and will be de-

noted the “primal augmented Lagrangian”method
in this paper.

3.1 Max-flow algorithm without balancing
constraints

In graph theory, the max-flow problem [27] aims
to maximize the flow from a source node s to a

sink node t, which are both connected by edges

to the nodes in V . We let ps, pt : V 7→ R denote

the flow variables on sink and source edges and

p : E 7→ R represent the flow on edges between

pairwise points in V , where E ⊂ V × V . The up-

per capacities on the source edges are denoted by
Cs and on sink edges by Ct, and there is no lower

bound on the capacities. The flows p(x, y) on the

edges (x, y) are bounded by |p(x, y)| ≤ w(x, y).

The amount of flow in the graph can be expressed
as the amount of flow on the source edges, which

we want to maximize under flow capacity and flow

conservation constraints. In this section, we de-

scribe two max-flow problems. The first is dual

to the problem (15) with fidelity term, and conse-
quently solves the original problem (13) provided

the penality parameter η is high enough. The sec-

ond max-flow problem incorporates the supervised

constraints directly without the need for a very
large penalty term. The following derivations ex-

tend the continuous max-flow problem [61,62] from

images to general graphs.

Max-flow formulation with supervised constraints

as fidelity term

The following problem can be interpreted as a

max-flow problem over the graph and is shown to
be dual to the convex partition problem (28).

max
ps,pt,p

{

P (ps, pt, p) =
∑

x∈V

ps(x)
}

(33)

subject to

|p(x, y)| ≤ w(x, y), (x, y) ∈ E; (34)

ps(x) ≤ Cs(x), ∀x ∈ V ; (35)

pt(x) ≤ Ct(x), ∀x ∈ V ; (36)

divw p(x)− ps(x) + pt(x) = 0, ∀ x ∈ V. (37)

where (34) is the flow capacity constraint on edges

between paiwise nodes, (35) and (36) are flow ca-

pacities on the source and sink edges, and (37)

is the flow conservation constraint. The objective

function (33) measures the total amount of flow on
the graph. Due to constraint (35), the maximiza-

tion problem (33) is bounded above by
∫

Ω
Cs(x),

which is finite provided f(φ(x), x) is bounded (true

for the data terms considered in this work).

It is well known that the maximum flow prob-
lem is equivalent to the min-cut problem, where

the goal is to find a partition that minimizes the

sum of the weights between vertices of the two re-

gions. In classical max-flow min-cut theory, to ob-
tain the final classification by solving the maximum-

flow problem, one can use the information of the

flow on the source and sink edges. If for x ∈ V ,

there is a non-saturated path between s and x,
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then x is in class 1. If there is a non-saturated

path between x and t, then x is in class 2.

In this paper, we instead solve the max-flow

problem (33) by continuous optimization. The so-
lution to the min-cut problem can be obtained di-

rectly from the Lagrange multiplier for the flow

conservation constraint (37). Introducing such a

Lagrange multiplier for the flow conservation con-
straint (37) leads to the the primal-dual formula-

tion of (33):

min
λ

max
ps,pt,p

{

E(ps, pt, p;λ) =

∑

x∈V

ps(x) +
∑

x∈V

λ(x)
(

divw p− ps + pt
)

}

(38)

subject to

|p(x, y)| ≤ w(x, y), (x, y) ∈ E; (39)

ps(x) ≤ Cs(x), ∀x ∈ V ; (40)

pt(x) ≤ Ct(x), ∀x ∈ V ; (41)

Rearranging the terms, we obtain

min
λ

max
ps,pt,p

{

E(ps, pt, p;λ) =

∑

x∈V

{(

1 − λ
)

ps + λpt + λdivw p
}

}

(42)

subject to (39), (40) and (41).

The integrand of the first two terms of (42) can

be rewritten for each x ∈ Ω as

sup
ps(x)≤Cs(x)

((1− λ)ps)(x)

=

{

((1 − λ)Cs)(x) if λ(x) ≤ 1

∞ if λ(x) > 1
(43)

sup
pt(x)≤Ct(x)

λ(x)pt(x) =

{

(λCt)(x) if λ(x) ≥ 0

∞ if λ(x) < 0.

(44)

Note that (42) is bounded above. This can be seen

by defining the zero function ∅(x) = 0 ∀x ∈ Ω.

From constraints (40) it follows that infλ P (λ) ≤
P (∅) =

∫

Ω
Cs(x) dx, which is finite since Cs is uni-

formly bounded. From (43) and (44), an optimal

variable λ must therefore satisfy the constraints

λ(x) ∈ [0, 1] ∀ x ∈ Ω. (45)

Otherwise, the primal-dual energy (42) would be

infinite, contradicting boundedness from above.

The last term of (42) can be rewritten using

the dual formulation of total variation (12) as

max
‖p‖

E,∞
≤1

〈divw p, λ〉V = TVw(λ) . (46)

Combined with the observation (45), this implies

that an optimal variable λ must be contained in

the set B′.
By combining (43), (44) and (46), we see that

by maximizing the above problem for ps, pt and

p, we obtain the closed form expression (28) sub-

ject to the constraint (29). Existence of dual and
primal-dual solutions follows by the minimax the-

orem, Prop. 2.4 of [24] Chapter VI.

Max-flow formulation with hard supervised constraints

We also describe another formulation of the

problem, which avoids using a fidelity term that is

forced to take on a very large value of η to enforce
that λ satisfies the supervised constraints. Define

first the binary functions

vf (x) =

{

1, x ∈ V f

0, otherwise
, vb(x) =

{

0, x ∈ V b

1, otherwise
,

and consider the following modification of the max-

flow problem (75):

max
ps,pt,p

∑

x∈V

(vbps − vfpt) (47)

subject to

|p(x, y)| ≤ w(x, y), (x, y) ∈ E; (48)

ps(x) ≤ 0, ∀x ∈ V ; (49)

pt(x) ≤ 0, ∀x ∈ V ; (50)

divw p(x)− ps(x) + pt(x) = 0, ∀ x ∈ V. (51)

Introducing the Lagrangemultiplier λ for constraint

(37), we obtain the following Lagrangian formula-
tion after rearrangement of the terms:

min
λ

max
ps,pt,p

{

E(ps, pt, p;λ) =

∑

x∈V

{(

vb − λ
)

ps + (λ − vf )pt + λdivw p
}

}

(52)

As there are no lower bounds on ps and pt, it can

be observed that optimal solutions λ must satisfy

the constraints

vf ≤ λ ≤ vb, (53)

otherwise the energy could be made arbitrarily

large. By maximizing for the flows ps, pt and p,
we therefore obtain the primal problem

min
λ∈B′

TVw(λ) (54)

subject to (53). If λ∗ is a solution to (54), then λ∗

is obviously also a solution to (28) provided the

penalty parameter η in the fidelity term of (28) is

chosen sufficiently high.
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Algorithms

The dual problems (33) or (47) are solved by

the augmented Lagrangian method as in [61, 62].

To solve (33), construct first the augmented La-
grangian function corresponding to (33):

Lc(ps, pt, p, λ) =
∑

x∈V

{

ps + λ(divw p− ps + pt)
}

−
c

2
‖divw p− ps + pt‖

2
2 , (55)

where ‖s‖22 =
∑

x∈V |s(x)|22 . An augmented La-

grangian method can be applied by alternatively

maximizing Lc for the dual variables ps, pt and p
with constraints (39)-(41) and updating the La-

grange multiplier λ. The max-flow algorithm for

(33) with supervised constraints as a fidelity term

is outlined as “Algorithm 1”. The max-flow algo-

rithm for (47) with hard supervised constraints is
outlined as “Algorithm 1s”

Algorithm 1 Max-flow Algorithm

Initialize p1s, p
1
t , p

1 and λ1. For k = 1, ... until

convergence:

• Optimize p flow

pk+1 = arg max
|p(e)|≤W (e) ∀e∈E

−
c

2

∥

∥divw p− F k
∥

∥

2

2
,

(56)

where F k = ps
k − pt

k + λk

c
is fixed.

• Optimize source flow ps

pk+1
s = arg max

ps(x)≤Cs(x) ∀x∈V

∑

x∈V

ps−
c

2

∥

∥ps −Gk
∥

∥

2

2
,

(57)

where Gk = pt
k + divw p

k+1 − λk

c
is fixed.

• Optimize sink flow pt

pk+1
t = arg max

pt(x)≤Ct(x) ∀x∈V

−
c

2

∥

∥pt −Hk
∥

∥

2

2
,

(58)

where Hk = ps
k+1 − divw p

k+1 + λk

c
is fixed.

• Update λ

λk+1 = λk − c (divw p
k+1 − pk+1

s + pk+1
t ) .

To solve (47), construct the augmented Lagrangian

function:

Lc(ps, pt, p, λ) =
∑

x∈V

{

vbps−v
fpt+λ(divw p−ps+pt)

}

−
c

2
‖divw p− ps + pt‖

2
2 . (59)

The augmented Lagrangian method for (47) be-

comes:

Algorithm 1s Supervised Max-flow Algorithm

Initialize p1s, p
1
t , p

1 and λ1. For k = 1, ... until

convergence:

• Optimize p flow

pk+1 = arg max
|p(e)|≤W (e) ∀e∈E

−
c

2

∥

∥divw p− F k
∥

∥

2

2
,

(60)

where F k = ps
k − pt

k + λk

c
is fixed.

• Optimize source flow ps

pk+1
s = arg max

ps(x)≤Cs(x) ∀x∈V

∑

x∈V

vbps −
c

2

∥

∥ps −Gk
∥

∥

2

2
,

(61)

where Gk = pt
k + divw p

k+1 − λk

c
is fixed.

• Optimize sink flow pt

pk+1
t = arg max

pt(x)≤Ct(x) ∀x∈V

−
∑

x∈V

vfpt −
c

2

∥

∥pt −Hk
∥

∥

2

2
,

(62)

where Hk = ps
k+1 − divw p

k+1 + λk

c
is fixed.

• Update λ

λk+1 = λk − c (divw p
k+1 − pk+1

s + pk+1
t ) .

Due to the relation between problem (52) and

problem (28), the output λ at convergence will be a
solution to (28). Similarly, if η is chosen sufficiently

high in (28), then solution λ to (42) will also be a

solution to (28).

By Theorem 1, one can obtain a partition which

solves (27) by the thresholding procedure described
in (30).

The subproblems (56) and (60) for updating p

can either be solved by inexactly a few iterations

of Chambolle’s algorithm [14], or in one gradient
ascent step as follows:

pk+1 = ΠW

(

pk + c∇w(divwp
k − F k)

)

. (63)

Above, ΠW is a projection operator which is de-
fined as

ΠW (p(x, y)) =
{

p(x, y) if |p(x, y)| ≤ 1,

sgn(p(x, y))W (x, y) if |p(x, y)| > 1,
(64)

where sgn is the sign function. There are extended

convergence theories the augmented Lagrangian

method in case one of the subproblems are solved
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inexactly, see e.g. [26, 32]. In our experience, one

gradient ascent iteration leads to the fastest overall

speed of convergence.

The subproblems (57) and (58) can be solved

by

ps(x) = min(Gk(x) +
1

c
, Cs(x)); (65)

pt(x) = min(Hk(x), Ct(x)). (66)

The subproblems (61) and (62) can be solved by

ps(x) = min(Gk(x) +
vb

c
, Cs(x)); (67)

pt(x) = min(Hk(x)−
vf

c
, Ct(x)). (68)

Note that the gradient and divergence operators in

the algorithm are constructed using the graphical

framework, as shown by equations (4) and (6).

3.2 Max-flow algorithm with balancing

constraints

This section demonstrates how to incorporate

balancing constraints of the form (18), which take
into account the size of the classes. Volume con-

straints have been proposed for image segmenta-

tion models in a convex framework in [42, 51]. We

propose an efficient algorithm for incorporating the

hard volume constraint (18) on graphs by slightly
modifying the dual max-flow problem using a new

variable ρ : V → R as follows:

max
ps,pt,p,ρ

{

P (ps, pt, p) =
∑

x∈V

(ps(x)− aρ)
}

(69)

subject to

|p(x, y)| ≤ w(x, y), (x, y) ∈ E;

(70)

ps(x) ≤ Cs(x), ∀x ∈ V ; (71)

pt(x) ≤ Ct(x), ∀x ∈ V ; (72)

divw p(x)− ps(x) + pt(x) + ρ = 0, ∀x ∈ V ; (73)

ρ is a constant function. (74)

Introducing a Lagrange multiplier λ for the

constraint (73) yields the primal-dual model

min
λ

max
ps,pt,p

{

E(ps, pt, p, ρ;λ) =
∑

x∈V

(ps(x) − aρ)

+
∑

x∈V

λ(x)
(

divw p− ps + pt + ρ
)

}

(75)

subject to

|p(x, y)| ≤ w(x, y), (x, y) ∈ E; (76)

ps(x) ≤ Cs(x), ∀x ∈ V ; (77)

pt(x) ≤ Ct(x), ∀x ∈ V ; (78)

ρ is a constant function. (79)

Rearranging the terms, we obtain

min
λ

max
ps,pt,p,ρ

{

E(ps, pt, p, ρ;λ) =

∑

x∈V

{(

1− λ
)

ps + λpt + ρ
(

λ− a) + λdivw p
}

}

(80)

subject to (76) - (79).

The intuition of having the above model lies

in the following. Following the same arguments as

in Section 3.1, we observe that if λ /∈ B
′, the en-

ergy can be arbitrarily large by choosing ps or pt
arbitrarily small, contradicting boundedness from

above. From the second last term of (80), it fol-

lows that if the balancing constraint (18) is not
satisfied, the energy can be made arbitrarily large

by choosing ρ arbitrarily high or low. Therefore,

by maximizing for ps, pt, p and ρ, we obtain the

closed form expression (28) subject to the con-

straints (29) and the balancing constraint (18).

In contrast to the case with the model without
balancing constraints, it cannot be guaranteed in

advance that a global minimizer is obtained by the

thresholding procedure described in Theorem 2. If

the solution is binary, it must also be a global min-
imizer of the binary constrained problem, since the

convex set B′ contains the binary set B. In the ex-

periments, the solution tends to be binary or very

close to binary, indicating that a global minimizer,

or close approximation, can be obtained.

We again construct the augmented Lagrangian
functional

Lc(ps, pt, p, λ) =
∑

x∈V

−aρ+ps+λ(divw p−ps+pt+ρ)

−
c

2
‖divw p− ps + pt + ρ‖22 , (81)

which is exactly (59) if ρ is zero.

We have the following primal augmented La-

grangian algorithm for minimizing the above func-

tional, where we alternate between maximizing Lc

for the dual variables and updating the Lagrange

multiplier λ:

Algorithm 1b Balancing Constraints

Initialize p1s, p
1
t , p

1 and λ1. For k = 1, ... until

convergence:



Global binary optimization on graphs for classification of high dimensional data 11

• Optimize p flow

pk+1 = arg max
‖p(e)‖≤ W (e) ∀e∈E

−
c

2

∥

∥divw p− F k
∥

∥

2

2
,

(82)

where F k = ps
k − pt

k + λk

c
− ρk is fixed.

• Optimize source flow ps

pk+1
s = arg max

ps(x)≤ Cs(x) ∀x∈V

∑

x∈V

ps −
c

2

∥

∥ps −Gk
∥

∥

2

2
,

(83)

where Gk = pt
k +divw p

k+1 − λk

c
+ ρk is fixed.

• Optimize sink flow pt

pk+1
t := arg max

pt(x)≤ Ct(x) ∀x∈V

−
c

2

∥

∥pt −Hk
∥

∥

2

2
,

(84)

where Hk = ps
k+1 − divw p

k+1 + λk

c
− ρk is

fixed.

• Optimize ρ

ρk+1 = arg max
ρ

∑

x∈V

aρ−
c

2

∥

∥ρ− Jk
∥

∥

2

2
, (85)

where Jk = −pk+1
t − divwp

k+1 + λk

c
+ pk+1

s is

fixed.
• Update λ

λk+1 = λk − c (divw p
k+1 − pk+1

s + pk+1
t + ρk+1) .

The optimization problem (82) for p can be

solved by one step of the projected gradient method
as follows:

pk+1 = ΠW (p+ c∇w(divwp
k − F k)), (86)

where ΠW is the projection defined in (64).

The subproblems (83) and (84) can be solved

by

ps(x) = min(Gk(x) +
1

c
, Cs(x)); (87)

pt(x) = min(Hk(x), Ct(x)). (88)

We solve (85) using

ρk+1 = mean(−ps
k+1 + pt

k+1 + divw p
k+1 + ρk

−
λk

c
−
a

c
). (89)

In step (89), the constraint that ρ should be

constant is imposed exactly by computing the av-

erage of the pointwise unconstrained maximizers
ρ(x) for x ∈ V , and then the average value is as-

signed to ρ(x) ∀ x ∈ V .

Just like in the previous cases, the final classi-

fication is obtained by thresholding λ.

3.3 Extension of primal augmented Lagrangian

method to graphs

In this section, we describe another algorithm

for solving the convex problem (27), by extend-
ing the Split-Bregman algorithm [33] for geomet-

ric problems [32] to general graphs. It has recently

been shown [53, 60] that the Split-Bregman algo-

rithm is equivalent to solving a specialized decom-

position of total variation regularized problems by
the augmented Lagrangian method. We use the

augmented Lagrangian notation when describing

the algorithm, since this notation has already been

introduced in Section 3.1 when deriving the max-
flow algorithms.

Consider the general minimization problem

min
λ

TVw(λ) +
∑

x∈V

g(λ(x), x). (90)

The ROF model is a special case of (90) in the case
that V is a regular image domain, λ0 is the noisy

input image and g(λ(x), x) = |λ(x) − λ0(x)|2.
In our case, we wish to choose g according to

(26) and impose the constraint λ ∈ B
′. The idea is

to solve

min
λ,q

‖q‖1 +
∑

x∈V

g(λ(x), x)

s.t. q = ∇wλ, (91)

where ‖s‖1 =
∑

x∈V |s(x)|, by the augmented La-

grangian method.
We introduce a Lagrange multiplier φ for the

constraint (91). This results in the augmented La-

grangian functional

Lc(λ, q, φ) = ‖q‖1+
∑

x∈V

{

g(λ(x), x)+φ·(q−∇wλ)
}

+
c

2
‖q −∇wλ‖

2
2 (92)

where c is a constant and ‖s‖22 =
∑

x∈V |s(x)|2.
We want to find a saddle point of (92) over λ, q

and φ:

max
φ

min
λ,q

Lc(λ, q, φ) (93)

by alternating between minimizing for λ and q

(λk, qk) = argmin
λ,q

Lc(λ, q, φ
k) (94)

and updating the Lagrange multiplier by one step

of gradient ascent:

φk+1 = φk + c(qk+1 −∇λk+1). (95)

The minimization problem (94) can be sepa-

rated into two subproblems:

min
λ

∑

x∈V

{

g(λ(x), x)− φk · ∇wλ
}

+
c

2
‖q −∇wλ‖

2
2 ;
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(96)

min
q

‖q‖1 +
∑

x∈V

φk · q +
c

2
‖q −∇wλ‖

2
2 . (97)

Therefore, the algorithm is the following:

Algorithm 2 Augmented Lagrangian Algorithm

Initialize φ1, q1 and λ1. For k = 1, ... until con-

vergence:

• Optimize λ

λk+1 = min
λ

∑

x∈V

{

g(λ(x), x)−φk ·∇wλ
}

+
c

2

∥

∥qk −∇wλ
∥

∥

2

2
.

(98)

• Optimize q

qk+1 = min
q

‖q‖1+
∑

x∈V

φk ·q+
c

2

∥

∥q −∇wλ
k+1

∥

∥

2

2
.

(99)

• Update Lagrange multipliers

φk+1 = φk + c(qk+1 −∇λk+1). (100)

Again, as in the max-flow algorithm, the final

binary classification is obtained by thresholding λ
to either 0 or 1.

The subproblem (98) gives the Euler-Lagrange

equation:

∂g

∂λ
+ c divw(q

k −∇wλ) + divw(φ
k) = 0, (101)

where in this case ∂g
∂λ

= Ct − Cs.

We solve the above subproblem using one step

of forward Euler:

λk+1 − λk

dt
= −(Ct − Cs + c divw(q

k −∇wλ
k)

+ divw(φ
k)). (102)

This becomes

λk+1 − λk

dt
= −(Ct − Cs + c divw(q

k)− c△wλ
k)

+ divw(φ
k)). (103)

All the operators, as was stated before, are formu-

lated in a graph setting.
We solve subproblem (99) in the same way as

it is done in [60]:

qk+1(x) =

{

1
c
(1− 1

|b(x,y)|)b(x, y), if |b(x, y)| > 1,

0, if |b(x, y)| ≤ 1,

(104)

where b = |c∇λ− φk|.

We have tried solving the subproblem (98) above

in another way. A similar scheme is used, except
the Laplace operator is calculated implicitly, and

we proceed further by considering its terms as a

linear combination of the eigenvectors of the ran-

dom walk Laplacian, in a similar way as in [4]
and [48]. Only a small fraction of the eigenvec-

tors are used. This way of solving the subproblem

turns out to be several times faster than the one

previously discussed, but because it does not per-

form well in the case of non-random fidelity, we
did not use it. A disadvantage of this method is

that it only uses a small fraction of the eigenvec-

tors, which might not contain enough information

to result in an accurate classification, as was the
case with experiments with non-random fidelity.

However, it also has some advantages, which are

discussed in the next section.

Avoiding trivial global minimizers

If the number of supervised points V f ∪ V b are

very low, the global minimizer of (13) may just be

the trivial solution S = V f or S = V b. This was

the case for a small number of our experiments.
In order to avoid this problem, the cost of these

trivial solutions can be increased by increasing the

number of edges incident to the supervised points

V f ∪V b, which amounts to adding nonlocal behav-

ior. Non-supervised points in the graph are con-
nected by edges to their M nearest neighbors. Su-

pervised points can instead be connected to their

K nearest neighbors, where K > M , thereby in-

creasing the cost of the partitions S = V f and
S = V b.

An interesting observation is that if the sub-

problem (98) in the primal max-flow algorithm

is solved via the approximate eigendecomposition,

the algorithm does not result in the trivial solu-
tion S = V f and S = V b, even when the number

of supervised points are very low. The reason for

this seems to be that the approximation resulting

from not using all the eigenfunctions erases the un-
wanted trivial global minimizers from the energy

landscape.

Note that the second eigenvector of the Lapla-

cian already provides a solution to a cut using
a spectral clustering approximation approach. Al-

though we experiment with using that approxima-

tion as an initialization, the methods work just as

well when random initialization is used.
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4 Results

The results for several data sets are summa-

rized in Table 2, with those of the best method

highlighted. In all experiments, we have constructed

the graph using the M nearest neighbors and ap-
proximated the eigendecomposition of the Lapla-

cian using only theM largest eigenvalues. By “ran-

dom fidelity”, we mean choosing supervised points

randomly. By “corner fidelity”, we mean choosing

supervised points in a certain portion of the data
set only, in this case in the “corner” portion of

the eigenvector graph. The technique described in

Section 3.3 for avoiding trivial global minimizers,

was used on the two moons data set in Fig. 2 in
case of less than 3.25 % supervised points. Below,

we provide details about each of the data sets that

we used. The results were computed on a 2.4 GHz

Intel Core i2 Quad.

In the case when we need to compute the eigen-

vectors and eigenvalues of the random walk graph
Laplacian, we first use a fast numerical solver called

the Rayleigh-Chebyshev procedure [1] to compute

those of the symmetric graph Laplacian. One can

then use the previously described relationship be-

tween the eigendecomposition of the symmetric
graph Laplacian and that of the random walk graph

Laplacian. The Rayleigh-Chebyshev procedure it-

self is a modification of an inverse subspace itera-

tion method using adaptively determined Cheby-
shev polynomials. It is also a robust method that

converges rapidly and that can handle cases when

there are eigenvalues of multiplicity greater than

one. The calculations are made even more efficient

by the fact that only a small portion of the eigen-
vectors need to be calculated, as the most signifi-

cant nodes contain enough information to produce

accurate results. To have a fair comparison, we use

the same number of eigenvectors per data set for
all methods.

We have used

f(λ(x), x) = η(x)|λ(x) − λ0(x)|
2 (105)

for all our computations. Here, λ0 is the initial

value of λ, and η(x) is a function that takes on a

value of a constant η on fidelity points and zero

elsewhere.

Below, we provide more detail on the results

for each of the benchmark data sets, as well as
a description of the data set itself. In addition,

we provide a comparison of the results to those

of some of the best methods, including the binary

MBO and GL algorithms.

Fig. 1 Examples of digits from the MNIST data base

4.1 MNIST

The MNIST digits data set [45], available at
http://yann.lecun.com/exdb/mnist/, is a data set

of 70000 28×28 images of handwritten digits from

0−9. However, since our method is only binary, we

obtained a subset of this set to classify, in particu-

lar, digits 4 and 9 (since these digits are sometimes
hard to distinguish, if handwritten). This created

a set of 13782 digits, each either 4 or 9. Starting

from some initial classification of the points and

using only a small fraction of the set as fidelity,
the goal is to classify each image into being either

a 4 or 9. We used M = 10.

Using random initialization and random fidelity,
the max-flowmethod obtained an accuracy of around

98.48% averaged over 100 runs with different fi-

delity sets of 500 randomly chosen points (or only

3.62% of the set). The primal augmented Lagrangian
method’s accuracy was around 98.44%. The accu-

racy of binary MBO graph method from [48] and

the binary GL graph method from [4] was slightly

lower than that of our methods; the algorithms

were able to achieve an average accuracy of around
98.37% and 98.29%, respectively. Table 2 summa-

rizes the above and also shows results in the case

when the initialization is constructed using the

thresholded second eigenvector of the Laplacian or
when the fidelity region is chosen nonrandomly by

only considering points that give values in the cor-

ners of leftmost image in Figure 4(a). More detail

on the latter information will be given in Section

4.6. The parameters for Algorithm 1 were: c = 0.5,
η = 50. For Algorithm 2, they were: c = 0.008,

η = 400, dt = 0.032.

To compare with other methods, we note a re-
cent result by Hu et al. [40], which is an unsu-

pervised method. The authors of the paper also

tested only digits 4 and 9 and obtained a purity

score (measures the fraction of the nodes that have
been assigned to the correct community) of 0.977.

The GenLouvain algorithm obtained a purity score

of 0.975. In addition, many other algorithms have

used the full MNIST data set with all 10 digits.
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For example, Cheeger cuts [56], boosted stumps

[41, 45], and transductive classification [57] have

obtained accuracies of 88.2%, 92.3%-98.74%, and
92.6%, respectively. Also, papers on k-nearest neigh-

bors [44, 45], neural or convolutional nets [20, 44,

45], nonlinear classifiers [44, 45] and SVM [23, 44]

report accuracies of 95.0%-97.17%, 95.3%-99.65%,
96.4%-96.7%, and 98.6%-99.32%, respectively. The

aforementioned approaches are supervised learn-

ing methods using 60, 000 out of 70, 000 digits (or

about 85.71% of the whole data set) as a train-

ing set. Morever, we compare our method with [9],
which obtains 98.05% accuracy by knowing 10%

of the labels, 97.78% by knowing 5% of the labels,

and 97.72% by knowing 2.5% of the labels. Our

algorithms, taking only 3.6% of the data set as fi-
delity, obtain around 98.5% accuracy, and thus are

competitive with, and in most cases outperform,

these methods. Moreover, we have not performed

any preprocessing or initial feature extraction on

the data set, unlike most of the mentioned algo-
rithms.

4.2 Banknote Authentication Data Set

The banknote authentication data set, from the
UCI machine learning repository [2], is a data set

of 1372 features extracted from images (400× 400

pixels) of genuine and forged banknotes. Wavelet

transform was used to extract the features from the

images. The goal is to segment the banknotes into
being either genuine or forged. We used M = 15.

The results are shown in Table 2. With the

max-flow method, for a 5.1% fidelity set, we were

able to obtain an average accuracy (over 100 dif-
ferent fidelity sets) of around 99.09%, while the

primal augmented Lagrangian method achieved a

similar accuracy of 98.75%. The results did not

deteriorate much for a smaller fidelity set of 3.6%,

with the two methods achieving an accuracy of
98.83% and 98.29%, respectively. The parameters

for Algorithm 1 were: c = 0.15, η = 250. For Algo-

rithm 2, they were: c = 0.08, η = 50, dt = 0.5.

We compare this result to the binary MBO al-
gorithm, which achieved a lower accuracy of 95.43%

and 93.48% for 5.1% and 3.6% fidelity sets, respec-

tively. For the binary GL method, the results were

also not as good- 97.76% and 96.10%, for 5.1% and

3.6% fidelity sets, respectively.

4.3 Two Moons

This data set is constructed from two half cir-

cles in R
2 with a radius of one. The centers of the

Fig. 2 Two moons example with max-flow method

two half circles are at (0, 0) and (1, 0.5). A thou-

sand uniformly chosen points are sampled from

each circle, embedded in R
100 and i.d.d. Gaussian

noise with standard deviation 0.02 is added to each
coordinate. Therefore, the set consists of two thou-

sand points. Starting from some initial classifica-

tion of the points, the goal is to segment the two

half circles. We used M = 10.

For the max-flow method, in the case of 65 or

lower number of fidelity points (3.25 %), we in-

creased the number of edges of supervised points to

others to avoid the trivial global minimizer where
all points but the supervised ones are classified as

one class.

Using random initialization and random fidelity,
for the max-flow method, we obtained an aver-

age accuracy (over 100 different fidelity sets) of

97.10% and 97.05% in the case of 100 and 50 fi-

delity points, respectively. An example of a solu-

tion is shown in Figure 2, with the two classes col-
ored in red and blue. The primal augmented La-

grangian method achieved an accuracy of around

97.07% for 100 fidelity points and around 96.78%

for 50 fidelity points. The parameters for Algo-
rithm 1 were: c = 0.5, η = 50. For Algorithm 2,

they were: c = 0.32, η = 100, dt = 0.008.

To compare this with binary MBO, the method

obtained 98.41% and 97.53% accuracy for 100 and
50 fidelity points, respectively, which is very simi-

lar to the results of the binary GL graph method.

4.4 Rods

We have also tested this algorithm on two other

synthetic data sets created using the rods pictured

in Figure 3. Around two thousand uniformly cho-

sen points were sampled from each image, and then
embedded in R

100. Finally, noise was added to each

of the points, much like the case with the two

moons data set. We used M = 25.

In the case of random fidelity region, we ob-

tained accuracy in the 98th or 99th percentile, no

matter what initialization. In the case of fidelity re-

gion in the corner, we obtained interesting global
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minimizers for the two data sets. The compari-

son of our results with the binary MBO and GL

method is detailed in the next section. The pa-
rameters for Algorithm 1 were: c = 0.01, η = 50.

For Algorithm 2, they were: c = 0.016, η = 500,

dt = 0.512.

4.5 Comparison of the balancing constraints

max-flow method to the regular max-flow method

We tested our balancing constraints max-flow

method on several data sets using random initial-
ization and fidelity, and compared it to the reg-

ular max-flow meethod. It handles the case of a

small fidelity region better than the original max-

flow method (Algorithm 1) and gives higher ac-
curacy everywhere. We used the same M as de-

scribed in the previous section. The results are

displayed in Table 1, and those of the best method

(compared to Algorithm 1) are highlighted. In gen-

eral, the solution is very close to binary, with some
small differences that may be explained by the fi-

nite stopping criterion of the algorithm, indicat-

ing that close approximations to global minimiz-

ers are obtained. To measure how close the solu-
tion λ is to binary, we have computed the norm
∑

x∈V
|λ(x)−λℓ(x)|

|V | , where λℓ is defined in (30) and

ℓ = 0.5. The norm should be 0 if λ is binary. In

the experiments, the values of the norm range from
0.0005 to 6 ∗ 10−18.

For the two moons example, starting from
20 fidelity points, we obtained very reasonable re-

sults. For 50, 40, 30 and 20 fidelity points, we ob-

tained 97.19%, 97.12%, 97.11% and 96.11% aver-

age accuracy (over 100 different fidelity sets), re-

spectively. While the results of the binary MBO
method (without any zero means constraint) for

the two moons data set achieves slightly better

accuracy for 50 and 100 fidelity points (being of

97.53% and 98.41%, respectively), we noticed that
if the number of fidelity points is too low, the

method is unable to perform well, as the results

vary not insignificantly depending on the fidelity

set. The same is the case with the max-flowmethod

with no balancing constraint. For example, for 20
fidelity points, the average accuracy accuracy we

obtained for the method was 88.22%. However,

with the balanced method, we still obtain a good

result (96.11%) for a fidelity set containing as little
as 20 points. Thus, the advantage of the method

is that it performs well with even a very small fi-

delity region. The results are summarized in Table

1.

For the MNIST data set, we obtained very

good results even for a small number of fidelity

points. For 500, 400, 300 and 210 fidelity points

(or 3.6%, 2.9%, 2.2% and 1.5% of the data, respec-

tively), we obtained an average accuracy (over 100
different fidelity sets) of 98.59%, 98.48%, 98.45%

and 98.41%, respectively. A comparison to the re-

sults of the regular max-flow method is in Ta-

ble 1. Note that in addition to giving at least a
slightly higher accuracy everywhere, it handles the

case of a small number of fidelity points better

than the original method. For example, for 210 fi-

delity points, the method obtained an accuracy of

98.41%, while the regular max-flowmethod achieved
a much lower accuracy of 93.68%.

For the banknote authentication data set

from the UCI Machine Learning Repository [2],

we obtained reasonable results for as little as 20
fidelity points. The results are shown in Table 1.

The balancing constraints method obtains better

results than the original max-flow method, achiev-

ing an average accuracy (over 100 different fidelity

sets) of 98.55% for only 20 fidelity points, as op-
posed to the accuracy of 96.78% of the original

max-flow method.

For the first rod data set, we obtained rea-

sonable results starting from around 10 fidelity
points out of around two thousand that are in the

rods data set. For 10 to 20 fidelity points, the accu-

racy was around around 96%. Testing 50 and 100

fidelity points, we obtained around 99% accuracy.

4.6 Comparison of our convex algorithms to
binary MBO and GL methods

After comparing the results of our convex algo-
rithms to the binary MBO [48] and binary GL [4]

graph methods, we have reached the following con-

clusions based on our work:

• As long as the fidelity points are well repre-
sented for each class (meaning the fidelity points

represent a whole variety of points in the class),

the binary MBO method and the binary GL

method have no trouble finding the correct min-
imizer or something very close. The initializa-

tion might not matter; even with a bad initial-

ization, the local minimizer will still be found.

Our convex methods find the local minimizer

easily.
• Problems occur when the fidelity is not cho-

sen randomly. In this case, even if the initial-

ization is random, the convergence might not

occur for the binary MBO and GL methods.
In all our experiments with the rods data sets

and MNIST, the local minimizer was not found

by the two methods. However, our convex algo-

rithms still found the correct local minimizer.
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Table 1 Comparison of balancing constraints max-flow method and regular max-flow method

Number of fidelity points 50 40 30 20

Two moons- Max-flow method (regular) 97.05% 96.92% 96.86% 88.22%

Two moons- Max-flow method (balancing constraints) 97.19% 97.12% 97.11% 96.11%

Number of fidelity points 500 400 300 210

MNIST- Max-flow method (regular) 98.44% 98.40% 98.36% 93.68%

MNIST- Max-flow method (balancing constraints) 98.59% 98.48% 98.45% 98.41%

Number of fidelity points 50 40 30 20

Banknote Authentication Data Set (regular) 98.83% 98.72% 98.21% 96.78%

Banknote Authentication Data Set (balancing constraints) 98.83% 98.91% 98.72% 98.55%

Table 2 Comparison of methods

max-flow primal augmented binary binary

Lagrangian MBO GL

MNIST (3.6% fidelity) random initialization, random fidelity 98.48% 98.44% 98.37% 98.29%

MNIST (3.6% fidelity) 2nd eigenvector initialization, random fidelity 98.48% 98.43% 98.36% 98.25%

MNIST (3.6% fidelity) random initialization, corner fidelity 98.47% 98.40% 62.35% 64.39%

MNIST (3.6% fidelity) 2nd eigenvector initialization, corner fidelity 98.46% 98.40% 63.87% 63.19%

Banknote Authentication Data Set (5.1% fidelity) 99.09% 98.75% 95.43% 97.76%

Banknote Authentication Data Set (3.6% fidelity) 98.83% 98.29% 93.48% 96.10%

two moons (5% fidelity) 97.10% 97.07% 98.41% 98.31%

two moons (2.5% fidelity) 97.05% 96.78% 97.53% 98.15%

Fig. 3 Rod 1 and Rod 2

These conclusions are supported by the work

done on the MNIST digits data set, using digits 4
and 9 only. The second vs. third eigenvector of the

symmetric graph Laplacian are graphed in Figure

4(a), with one digit represented by blue and an-

other by red. The results of experiments on this

data set are found in Figure 4. Each row repre-
sents a different experiment: first two rows con-

tain experiments with random initialization, while

last two rows contain experiments with fidelity in

a constrained area. The initialization is random
for experiments in first and third row, and is con-

structed by thresholding the second eigenvector of

the Laplacian for the results in the second and

fourth row. The first column represents the initial-

ization, while the second and third columns are
results for the max-flow and binary MBO algo-

rithm, respectively. The fidelity points are marked

by yellow and magenta for the two classes.

We see that if the fidelity region is well rep-

resented in the data set, no matter what initial-
ization, none of the algorithms have a problem

finding a close to perfect solution (accuracy is be-

tween 98 and 99 percent- see Table 2). However,

when the fidelity region is not random (in this case

constrained to only the nodes whose correspond-
ing entry in the second or third eigenvector of the

Laplacian match a certain range), we see that the

binary MBO and GL algorithms fail to obtain an

accurate solution; its accuracy is below 70 percent.
However, the max-flow algorithm and the primal

augmented Lagrangian methods achieve an almost

perfect solution of 98.47% and 98.40% accuracy,

respectively.

The two conclusions are also supported by

the work done on the two rod data sets created
from images displayed in Figure 3. Experiments

with the first and second rod image are shown in

Figures 5 and 6, respectively. The first two rows

represent cases with a random fidelity set, while
the last two rows are experiments with corner fi-

delity. Cases with random initialization are in first

and third rows, and second eigenvector initializa-

tion is used in experiments in the second and fourth
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Fig. 4 MNIST. Left: initialization, supervised points are marked in yellow and magenta. Middle: max-flow algorithm
result. Right: binary MBO result
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row. The first column is the initialization, second

column is the max-flow algorithm result, and third

column is the binary MBO result.

For rod 1, we found that when the fidelity is

chosen randomly, the minimizer divides the bot-

tom two rods from the rest of the image. When

the fidelity is chosen at the corners, the minimizer
is shown in the bottom two rows of the second col-

umn. The convex max-flow and primal augmented

Lagrangian algorithms are able to attain these min-

imizers, while the binary MBO and GL algorithms

struggle in the case of non-random fidelity. The sit-
uation is similar with rod 2.

Note about MBO algorithm

As noted in [48], the first step of the MBO al-

gorithm (heat equation with an extra term) was

solved using the eigenvalue and eigenvector decom-
position of the Laplacian. However, a disadvantage

of solving equations using this method is that, for

it to be efficient, only a fraction of eigenvectors are

used, and they might not contain enough informa-

tion to result in an accurate classification. Nat-
urally, the more eigenvectors one computes, the

longer the process will take.

As an alternative way of solving the first step

(20) of the MBO algorithm, we have tried using
just the simple forward heat equation solver. How-

ever, this did not result in an accurate segmenta-

tion in the case of non-random fidelity, thus not im-

proving the results from the original way of solving

it. This shows that the algorithm is getting stuck in
a local minimum, since the problem is clearly not

the lack of information encoded within the small

number of eigenvectors used.

4.7 Comparison of convergence, speed, and energy

The stopping criterion used for all algorithms

was taken to be the point at which the square of
the relative L2 norm between the current and pre-

vious iterate is negligible, or below a certain con-

stant α. With the exception of the MNIST data set

(where α = 5∗1e−10), the max-flow, binary MBO
and GL algorithms stabilize around α = 1e−17 or

1e−16. The primal augmented Lagrangian method

stabilizes around α = 1e− 08 or 1e− 09.

Table 3 includes information about the number
of iterations needed to reach stability, and also the

timing results for each data set.

We have also computed the initial and final en-

ergy for each data set. The energy was calculated

using

E(λ) =
1

2

∑

x,y∈V

w(x, y)|λ(x) − λ(y)|, (106)

where λ(x) is 0 if node x was classified to be in

the first class, and 1 if it was classified to be in

the second class. Note that the energy here is ex-

actly TVw(λ). Table 4 includes information about
the initial and final energy for each method. We

see that the max-flow algorithm is able to obtain

the lowest energy in each case. In general, one can

see that the convex algorithms are able to obtain

the global minimizer in all cases, while the binary
MBO and GL algorithms struggle in the case of

non-random fidelity.

It can be observed that the max-flow method

obtains marginally lower energy than the primal
augmented Lagrangianmethod. The reason for this

is that the max-flow method stabilizes around a

lower precision in terms of relative L2 difference

between successive iterations, as explained above.

We believe this difference is caused by the point-
wise projection step of λ onto the set [0, 1] each it-

eration in the primal augmented Lagrangian, which

is avoided in the max-flow algorithm.

5 Conclusion

We have described two convex methods for data

segmentation using a graphical framework. The
first solves a dual maximum flow problem by con-

tinuous optimization techniques, and the second

method solves the primal problem directly. It was

proved the algorithms were guaranteed to produce
global minimizers for semi-supervised data segmen-

tation problems with two classes. In case where the

class sizes are known precisely or approximately,

the first model could be slightly modified to pro-

duce more stable and accurate results by incorpo-
rating constraints on the class sizes. Simulations

showed that the methods were comparable with

or outperformed the state-of-the-art algorithms. In

fact, our convex models had the advantage over
non-convex methods in that the latter could oc-

casionally get stuck in local minima. Moreover, a

thorough comparison to a non-convex binary MBO

and GL method [48] revealed that the latter may

not produce an accurate result in case when the
fidelity region is not chosen randomly, but that

did not affect the proposed convex methods. To

speed up the timing of the algorithms, we made

use of a fast numerical solver described in [1] to
solve some of the subproblems involving graph-

based PDEs. Future work includes an extension

to multiple classes and experimentation with other

ways to incorporate knowledge about class sizes.
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(a) Random initialization, random fi-
delity

(b) max-flow result (c) binary MBO result

(d) 2nd eigenvector initialization (e) max-flow result (f) binary MBO result

(g) Random initial., corner fidelity (h) max-flow result (i) binary MBO result

(j) 2nd eigenvector initialization (k) max-flow result (l) binary MBO result

Fig. 5 Results for Rod 1. Left: initialization, supervised points are marked in yellow and green. Middle: max-flow
algorithm result. Right: binary MBO result
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(a) Random initialization, random fi-
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20. Cireşan, D., Meier, U., Masci, J., Gambardella, L.,
Schmidhuber, J.: Flexible, high performance convo-
lutional neural networks for image classification. In:
Proceedings of the 22nd International Joint Confer-
ence on Artificial Intelligence, pp. 1237–1242 (2011)

21. Couprie, C., Grady, L., Najman, L., Talbot, H.:
Power watershed: A unifying graph-based optimiza-
tion framework. IEEE Trans. Pattern Anal. Mach.
Intell. 33(7), 1384–1399 (2011)

22. Couprie, C., Grady, L., Talbot, H., Najman, L.:
Combinatorial continuous maximum flow. SIAM J.
Imaging Sci. 4(3), 905–930 (2011)

23. Decoste, D., Schölkopf, B.: Training invariant sup-
port vector machines. Mach. Learn. 46(1), 161–190
(2002)
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