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Abstract.

We propose various self-exciting point process models for the times when e-mails are sent be-
tween individuals in a social network. Using an EM-type approach, we fit these models to an
e-mail network dataset from West Point Military Academy and the Enron e-mail dataset. We argue
that the self-exciting models adequately capture major temporal clustering features in the data and
perform better than traditional stationary Poisson models. We also investigate how accounting for
diurnal and weekly trends in e-mail activity improves the overall fit to the observed network data.

A motivation and application for fitting these self-exciting models is to use parameter estimates to
characterize important e-mail communication behaviors such as the baseline sending rates, average
reply rates, and average response times. A primary goal is to use these features, estimated from the
self-exciting models, to infer the underlying leadership status of users in the West Point and Enron

networks.

Keywords: conditional intensity, Hawkes process, IkeNet dataset, Enron e-mail dataset, social

networks.
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1 Introduction

Several studies on e-mail communication have shown that the times when individuals send e-mails
deviate from a stationary Poisson proceBar@lasi 2005 Malmgren et al.2008. Two important
properties of the stationary Poisson process are that the mean number of events per unit time is con-
stant, and the time intervals between consecutive events (inter-event or waiting times) follows an
exponential distributionBarakasi(2005 provided empirical evidence showing that the inter-event
times for e-mails are better approximated by a heavy-tailed power law distribution. Essentially,
this means the sending times for a typical e-mail user are highly clustered: short periods with lots

of activity are separated by long periods when no messages are sent.

To account for the clustering and uneven waiting times observed in e-nfad Baratasi(2005
proposed a priority queue model, in which high priority e-mails are responded to more quickly than
low priority e-mails. We take a éfierent approach by considering self-exciting point process mod-
els for e-mail tréfic. In general, self-exciting point processes describe random collections of events
where the occurrence of one event increases the likelihood that another event occurs shortly there-
after. E-mail tréfic may be viewed as a self-exciting point process since each e-mail received by
an individual increases the likelihood that reply e-mails are sent shortly thereafter. In other words,

sending an e-mail can trigger a chain of messages sent between individuals in rapid succession.

The application of self-exciting point processes to modeling and characterizing social networks

is a relatively new research topic. Some recent work includes self-exciting models for retaliatory
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acts of violence in a Los Angeles gang networgsofnakhin et aJ.2011 Hegemann et 812012
and face-to-face conversation sequences in a compdaguda et a.2012. As in these previ-
ous works, we model event times (e-mails) on a social network as a multivariate Hawkes process

(Hawkes 1971, Hawkes and Oake4974 with an exponential triggering function.

This paper is primarily focused on describing, modeling, and analyzing two interesting e-mail
network datasets: the IkeNet dataset collected from the log files of e-mail transactions between
22 dficers attending West Point Military Academy over a one-year period, and the Enron dataset
collected from 151 employees over a three-year period before the company’s demise. The IkeNet
dataset fiers a unique opportunity to study e-mail communication on a small and relatively flat
social network, in which all fiicers in the network are enrolled in the same academic program. The
Enron dataset, on the other hand, is much larger and users in this network exhibit a complex and
rich corporate hierarchy. Moreover, it is perhaps the only corporate e-mail corpus freely available

to the public for research. Using these datasets we seek to address the following questions:

(a) Do the estimated self-exciting models perform significantly better than stationary Poisson

models and account for the observed temporal clustering in e-mail netwéik2ra

(b) Does the incorporation of diurnal and weekly trends into the baseline (background) rate at
which e-mail conversations are initiated provide an overall better fit to the observed network

data?

(c) How can the estimated parameters be used to characterize important communication behaviors,

such as the average reply rate and response time, for individuals in the network and the network
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as a whole?

(d) How can various features of e-mail communication, estimated from the self-exciting models,

be used to predict and rank leaders within a social network?

The prediction of network leadership from communication patterns is an important question. Many
methods have been proposed in the literature to address this &sety(and Adiki2005 Tyler

etal, 2005 Creamer et aj2009. Our contribution is to show that a point process analysis provides
additional insight into the leadership roles and hierarchy underlying a communication network. A
distinctive aspect of both the IkeNet and Enron datasets is that ground-truth about the actual lead-
ership status of individuals in these networks is readily available, and provides a means to evaluate

and validate our proposed covariates for inferring leadership.

This paper is organized as follows: In Sect®mwe provide some descriptive statistics for the
IkeNet dataset. In SectioBwe propose various self-exciting models for e-mail communication
networks and fit these to the IkeNet data using an EM-type procedure. In Séutedescribe how
to use our parameter estimates to characterize communication behaviors and predict leadership for
the lkeNet social network. In Sectidghwe also discuss model comparisons and diagnostics. In
Section5 we compare the models fit to the Enron and IkeNet datasets and use parameter estimates
for the Enron e-mail network to describe and discriminate leadership roles within the corporate
hierarchy. In the Discussion Section we summarize and speculate about our results and suggest
possible future directions for this research. In Appendix 1 we spell out the simulation algorithm

we use to generate realizations of the IkeNet e-mail network from the fitted self-exciting models.
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2 |keNet Dataset and Descriptive Statistics

The IkeNet dataset contains the sender, receiver, timestamp, and identification for each message
sent between 22fficers in a closed network over a one-year period beginning in May 2010. E-
mails were sent with Blackberries, which were given to th&ers as incentive for their partici-

pation in the study. Theficers were anonymized in the data for privacy, therefore we will refer

to them by number (1-22) instead of name. OnB§98 of e-mails sent in the IkeNet dataset have
more than one recipient; thus for simplicity we treat each sender-recipient pair as an e-mail (e.qg.
one e-mail sent to three recipients is coded as three separate e-mails). After removing duplicates
and instances wherfiicers sent messages to themselves, we are left with a total of approximately

8400 e-maiils.

Each dficer was asked in a questionnaire to list tiecers, within the network, whom they
considered strong team and military leaders. This supplementary survey data, provided with the
IkeNet e-mail data, allows for a particularly unique opportunity to make connections between e-
mail communication behaviors and leadership attributes. Many previous studies of e-mail activity
have only focused on describing and modeling temporal communication pattern®ésajasi
(2005; Malmgren et al(2008), and have not looked at the relationships between those commu-
nication patterns and the attributes and perceptions of users in the network. Questions such as how
one might predict perceived leadership status using only observations of network communication

are addressed in Sectidn
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Descriptive statistics for the IkeNet dataset reveal daily, weekly and seasonal trends in e-mail
traffic. Figure lis a histogram of the number of e-mails sent in the network each hour of the day,
over the yearlong observation window. This plot reveals a clear diurnal rhythm: e-mails were most
frequently sent mid-day and activity diminished during the night. Decreased activity during lunch
and dinner is also visible, around noon and seven g=igure 2is a bar plot of the number of
e-mails sent each day of the week. The e-mail activity among théisers was evidently substan-

tially greater during weekdays (Mon.—Fri.) than on the weekend.

Figure 3is atime series plot of the number of e-mails sent in the network each day. The smoother
curve helps reveal monthly trends. For instance, there was a drop in network activity in January;
this was probably due to the holidays arffiaers being out of town. The time series plot exposes
two days with an unusually high amount of e-mailffi@ The first peak occurred on 02 February
2011 (162 e-mails sent) and coincided with escalating violence in the Egyptian revolution. The
second peak occurred on 02 May 2011 (166 e-mails sent) and coincided with the assassination of
Osama bin Laden. These outliers are also presehtgare 4 a right skewed histogram which

shows that on a typical day, fewer than thirty e-mails are sent within the network.

The e-mail network itself is shown iRigure 5with node sizes proportional to the number of
e-mails sent by eaclfiicer, and edge widths proportional to the number of messages sent between
officers. Qficers 9, 18, and 13 stand out for sending the highest number of e-mails in the network.

The network plot reveals pairs officers that communicate frequently with each other, as well as
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those dficers that communicate infrequently with the network as a whole. For instafticer pair
(9,18) stands out as being most prolific, as thefiears sent a total of 1042 e-mails to each other.
In contrast, @ficers 1 and 21 are distant from the network and have very few e-mail interactions.

Figure 5also illustrates the overall sparsity in e-mail communication on this closed network.

3 Self-Exciting Models for IkeNet E-mail Activity

Self-exciting point processes have their origins in seismology where models were developed to
characterize the so-called branching structure of earthquakes, whereby each mainshock potentially
triggers its own aftershocks sequenCréta 1988 1999. The Hawkes processiawkes 1971,

Hawkes and Oake4974) was one of the earliest models of the conditional intengity, for the
expected rate at which earthquakes occur at tingevzen all earthquakes that occurred previously

at timest, < t:

) =p+ Yot~ t). (1)

t<t
In this model mainshocks occur at a constant baseling.rater time, and each earthquake at time
tx elevates the risk of future earthquakes (aftershocks) through the triggering fug(tieny),
which is often assumed power-law or exponential. Besides seismology, self-exciting point pro-
cesses have found application in many other areas such as modeling the spread of invasive plant
species Balderama et al.2011), insurgencies in IragLewis et al, 2011), and domestic crimes

(Mohler et al, 2017).
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In this section we extend the Hawkes process to model e-mail activity on a social network, and
fit these models to the lIkeNet dataset. Like earthquakes, e-mail communications may be viewed
as branching processes. The ‘mainshocks’ are the times wheffigar mitiates e-mail conversa-
tions; the ‘aftershocks’ are the reply e-mails, which are sent in response to e-mails received from
other dficers in the network. Our approach is similar to thatHafipin and De BoecK2013,
though we model e-mail tfhc on a network, not just between two people, and propose ways to

account for circadian and weekly trends.

We primarily consider models of e-mail activity from an egocentric point of view, with the self-
exciting point processes placed on the nodésogrs) of the network to model the rate of sending
e-mails. Other relational views as considere®arry and Wolfg2013 include, for instance, the
modeling of dyadic interactions whereby the point processes are placed on the directed edges of

the network to measure the rate of sending or receiving e-mails between pdiiis@fso

For a thorough introduction to point processes, conditional intensities, and closely related con-

structs, se®aley and Vere-Jong2003. Here we briefly review a few necessary preliminaries.

A point process is a random collection of points, with each point falling in some observed
metric spaceS. Here, as in many applications, the observed space is a portion of the real time
line, [0, T], and our observations of the e-mail network may be considered a sequence of 22 point

patterns, or equivalently a single multivariate point pattern. Point processes are typically modeled
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by specifying their associated conditional intensity processes, as all finite-dimensional distributions
of a point process are uniquely characterized by its conditional intensity process, assuming it exists.
For a temporal point process on a closed time interval [Othe conditional intensity may be
defined as the infinitesimal expected rate at which points occur around tignen the entire

history, H;, of the point process up to tinte

o E[N( T+ A)[H]
a =y SR

(2)

The Hawkes process given bj) (s an important conditional intensity model for a self-exciting
point process. It may readily be extended to model the rate at which each IkgNdetiosends
e-mails at timd (hours) given all messages received lalytimesrli( <t

At =i+ D Gt-ry)
ri<t

= Wi + 6 Z wie T, 3

ri<t
In the context of e-mails, the background ratecan be interpreted as that rate at whidhoer |
sends e-mails that are not replies to e-mails received from offieers. In other wordgy; is the
baseline rate at whichinitiates new e-mail threads. Each message receivedimen at timer|,
elevates the overall rate of sending e-mails at time'!, through the triggering functiog (t — r{(),
which is assumed to be exponential. Titrie expressed continuously as hours since midnight on

the day when the first e-mail was sent in the network.

In model @), the background ratg; is assumed to be constant over the observation window

ACCEPTED MANUSCRIPT
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[0, T]. This is unrealistic in light of the diurnal and weekly non-stationarities suggested in Figures
1 and2. Non-stationary forms for the background rate will be discussed subsequently in Sec-

tion3.1

The exponential triggering function is perhaps not unreasonable. For inskgoes 6shows
that the survival function of the inter-event times for the observed e-mails sent by g&@ehn m
the network falls reasonably close to the 95% confidence envelope formed from 100 simulated
realizations of the IkeNet e-mail network using estimated ma8)el This plot indicates that the
inter-event time distribution for the estimated model closely resembles that of the observed data.

A description of the simulation procedure for mod®) is given in Appendix 1.

As an illustration of model3), the top panel ifFigure 7shows the estimated conditional inten-
sity for officer 13,1,5(t), over a three-day time period. The clustering in the times when e-mails are

sent and received are easily discerned in this plot, and are characteristic of Hawkes point processes.

The parameters of moded)(characterize general e-mail communication habits of edioten
For instanced, can be interpreted as the reply rate fdliceri, since it is the expected number of

reply e-mail$ sent by dficeri per e-mail received from anothefficer in the network, as

T ) .
lim f Gwiedt = lim g1 - e“(T-W) = g,
T-o rik T

INote, in this work, a ‘reply e-mail’ is directed towards the network, and is not necessary sent directly back to the
user that sent the original e-mail which triggered the reply. The distinction between a ‘reply’ and ‘non-reply’ e-mail
is that a reply e-mail is triggered by and sent in response to a previously received e-mail, while a non-reply e-mail is
not provoked by a received e-mail and indicates the initiation of a discussion thread.

ACCEPTED MANUSCRIPT
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The integrated triggering function over a finite time period will be slightly less ¢havut for the
IkeNet data, wher@ = 8640 hours and! << T (seeTable 1), 6, will be extremely close to the
expected number of replies per e-mail received feiceri. The speed at whichfidceri replies to
e-mails is governed by the parametgr with larger values ofv; indicating faster response times
for officeri. Indeedw;* is the expected number of hours it takes féiazri to reply to a typical

e-mail.

3.1 Non-stationary Background Rate

Model (3) makes the assumption that the background rate is a stationary Poisson process, which
means in this context that the rate of creating new e-mail threads is constant at all times. This is
not realistic due to the presence of circadian and weekly trends in e-nfad {seee Figure and
2). Malmgren et al(2008 argued that the clustering and heavy-tails in the inter-event distribution
of times when e-mails are sent is partially a consequence of rhythms in human activity (e.g. sleep,
meals, work, etc.), and the authors explicitly modeled periodicities in e-mail communication as
a non-stationary Poisson process. We take a similar approach by considering a non-stationary
background rate for our Hawkes process mo@gbf e-mail trdfic:

Ai(t) = i) + ) Gt - 1)

re<t

= viu(t) + 6, ) e, (4)

ri<t
wherey; is a user specific parameter auf) is a shared baseline density function that accounts

for daily and weekly rhythms in e-mail activity. We define the integralk(@j to equal 1 over the
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observation window [OT']. Our estimate ofu(t), denotedu(t), is found nonparametrically by a
weighted kernel smoothing estimate over the e-mails sent byffalecs Figure §; the details of
this estimation procedure are given subsequently. Sf(ﬁoey(t)dt = y;, the parameter; can be
interpreted as the expected number of background events, or non-reply e-mails, séitdny o

over the time interval [OT].

If we letm € {0,---,59} be the minuteh € {0,---,23} the hour, andl € {0,--- , 6} the day
(Mon = 0,---,Sun= 6) corresponding to time € [0, T], then our estimate qf(t) is given by

a(t) = Z- f(h+ m/60w(d), where

N
f(h+ m/60) = 1 Z p K(h+ m/60 — hk)
=

1 N

(h+m/60-hy )2

=— > P e 2z (5)
o \on @
N
w(d) = > Pul(dk = d), (6)
k=1
andPy is a probability weight that sums to one ot {1,---, N}, whereN is the total number

of observed messages sent in the network. The nothtianddy denote the hour after midnight
and day of week for th&™ e-mail sent in the network. The constant of proportionaliig chosen
to ensure that(t) integrates to 1 over [@']. An accurate approximation & can be found using

a Riemann sum.

To get an initial estimate qi(f) we select equal probability weighB = 1/N, making 6) the

standard kernel density estimate of the histogram of the number of e-mails sent by hour of day

ACCEPTED MANUSCRIPT
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(Figure 1. For this kernel smoothing we choose a gaussian kdéf(¢lwith bandwidtho set to

the default value suggested Bgott(1992. To account for weekly trend§(-) is multiplied by

a weightw(d), which is simply the proportion of all observed messages sent in the network on
dayd whenPy = 1/N (Figure 2. Our initial estimate of the background rate dengift), with
equal probability weights, is plotted as the dashed curveignire 8 Note thatu{t) is periodic,

with period equal to one week (7 day$68 hours), i.q(t + 168) = x(t), and one period qi(l) is
shown in this figure. In Sectio®.3, we will explain how to improve our estimate pftj by using

the probabilities each e-mail is either a non-reply (background event) or refdpiing event) to

simultaneously estimate the model parameters and nonparametric background rate density.

To illustrate the fitted model, the lower panelfgure 7shows the estimated conditional inten-
sity for officer 15 under model). The troughs in the estimated conditional intensityigure 7

correspond to times when few e-mails are sent and received.

3.2 Alternative Model

One shortcoming of model8)and @) is that the reply raté, for officeri does not depend on who
sends an e-mail to According to this model, fiiceri sends the same expected number of reply
messages to each e-mail received, regardless of the serid@rder to incorporate some pairwise

interactions betweenflicers we consider the following alternative Hawkes process model for the
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rate at which fficeri sends e-mails at time
A =vip®) + > > gi(t-1))
j rLj <t

= viu(t) + Z Z O; ja)ie_w‘(t‘rikj ), 7)

Il
The triggering functiong; (t — r:(j), gives the contribution of th" messagefficeri receives from
jat timerLj to the conditional intensity at timee The inner summation is over all messagéicer
I receives fromj at timesr:(j < t, and the outer summation is over atfioersj in the network.
Note that one may also model a distingt andv;; for each sender-recipient pair, however with the
current dataset this may not be advisable due to the sparsity in the number of e-mails sent between

certain pairs of individualsHigure § and the large number of additional parameters to estimate.

The parameters of moder) help characterize e-mail communication behaviors betwé@n o
cers. For eachfficeri, there are twenty-one parametéss each of which may be interpreted as
the expected number of repliesends per e-mail received from This additional information
is gained at the expense of adding twenty more parameters per network member thardinodel (
(Instances whenficers send e-mails to themselves have been removed, so the reply icatot
included in model 7).) A more in-depth comparison between moddlsgnd (7) is provided in

Section4.
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3.3 Parameter Estimation

The parameters of model3)( (4), and {7) can be estimated by an expectation-maximization type

of algorithm (Veen and Schoenberg008 Marsan and Lengli@ 2008. Recall that for a self-
exciting point process each event is either a background event dfsgming event (i.e. triggered

by a previous event). This classification of events as backgroundrsprimg is referred to as

the branching structure of the process. In most applications the branching structure is an unob-
served or latent variable. For instance, it is not known whether an earthquake is an aftershock or
mainshock, or in the case of IkeNet e-mailffig whether a message is a reply or non-reply. The

EM algorithm works iteratively by first estimating the branching structure of a self-exciting point
process (E-step), and then estimating model parameters (M-step) by maximizing the expected log-
likelihood function, given the current estimate of the branching structure. Marsan proposed the
EM algorithm as a way to estimate the conditional intensity nonparametrically, using a histogram
estimator for the triggering function. Many authors have since applied the EM algorithm to para-
metric Hawkes process modelse{vis and Mohler201Q Hegemann et g12012), yielding closed

form estimators for model parameters.

For the remainder of this section we will describe how to use an EM-type procedure to estimate
the parameters of modet); Models @) and (7) can be estimated similarly. In particular, model
(3) is just a special case of modéel) (with u(t) = 1/T, whereT is the length of the observation

window in hours.
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For the IkeNet dataset lef be the time when th&" e-mail was sent by féiceri, r, be the
time when thek™ e-mail was received biy andNse"and N'*® be the number of messages sent
and received by. We may define the true branching structure for the e-mail network using the

following random variables:

. 1 if 5‘1 is a non-reply message (background event)
Y = (8)
0 otherwise
1 if §is areply to message, wheres > r}

X :(I = 9)
0 otherwise.

The log-likelihood function ©Qgata 1978 for the conditional intensity defined in moddl) (is

given by

Nsend
1

i
() = logLi@) = " loga(s) -~ [ Awet (10)
k=1

Nisend Nirec
= " log(4(s)) - [Vi +6,) [1- e_“"(T_rik)]),
k=1 k=1

whereQ); = {v;, 6, wi} is the parameter space fofficeri. Recall thatfoT viu(t)dt = v; sincepu(t)

is a density function over [0@]. In order to find the paramete:% that maximize 10) directly,
numerical optimization techniques must be used. However, when incorporating information about
the branching structure we instead work with the complete data log-likelihood function, which

is more tractable for maximization, and decomposes additively into a likelihood function for the
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background process and a likelihood function for the triggering processes:

Nsend

C(Q)-Zw.log(v.u(s» f vu(telt

"
|i

Nrec

)

Z Xalog(gi(s - 1) - f git - rk)dt] (11)
{l: s‘1>r

i
Since the true branching structure is unobserved, we estimate model parameters by maximizing
the expected complete data log-likelihood, which is found by replagirandy}, in (11) with the

estimated probabilities each event is either backgroundispring:

B - u(i)’ (12)
Ai(s)
\, = probability receiving messagg triggers sending message
Ai i _ rl . .
CRA
Ai(S) (13)
0 otherwise

Moreover, these probabilities can also be used to get a more accurate estimate of the non-stationary
background ratg(f) using weighted kernel density estimati@and6). This leads to the EM-type

algorithm for estimating mode#j:

Step 1. Initialize parameters estimateS (8, &) for each dficeri. Initialize the background
rate density:©)(t) using equal probability WelghB(KO) 1/Nforeach everk € {1,--- , N}

in (5) and @). Set the iteration indem = 0.

Step 2. For eachficeri, find B™™" and O™" using the parameter estimates and background
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density from iterationm.

Step 3. Estimate the background rate dengif]:(t), using the weighted KDE defined im)(
and @), settingP™?b = B™Y/ s BM™Y whereB; is the probability that e-mak e
{1,---, N} is non-reply (background) at iteration+ 1. The bandwidthr is found using

the estimate fronscott(1992).

Step 4. Estimate parameters by maximizing the expected complete data log-likelihood using the

probability estimates from Step 2:

Nsend Nrec
1

. o Oi(m+l)
A(m+l) _ i(m+1) A(m+l) Zk:1 Z:{I:$>r'k} Okl
Vi = E B, 6 =

i NEC  _ ~(m) 1 _i
= Nirec _ Zk;1 e @i (T-ry)

Ne e LULEY)
A (MHl) _ 21 Z{I:#>r.‘(} Oy

i - Nirec - 1), . Nirec ~ 1 N A iy
i1 2ig>ry) O S =) + Xy 6T —rpera T

Step 5. Updaten «— m+ 1 and repeat Steps 2-5 until convergence when

‘Zi [@™) - Ii(ﬁi(m))]' < e for some small value (in practice we set = 1073).

The estimators in Step 4 are found by setting the partial derivates of the expected complete data
log-likelihood (11), with respect to each of the parameters, equal to zero. The convergence criteria
in Step 5 is in terms of the log-likelihood function ih@). The convergence of this EM-type algo-

rithm for the self-exciting models is apparentiigure 9

Parameter estimates, standard errors, and maximum log-likelihood val)dser(the Hawkes
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process models3( 4, and7) are given in Tableg, 2, and3. Since estimated moder) contains
twenty-one reply rates, i we instead present the average reply t‘;ate 2 6; i - NiPS/NIES, where
N{jec is the number of messageffioeri received fromj, for each dicer in Table3. Notice that
the parameter estimates for models &dnd (/) presented in these tables are similar. This result is
consistent with model4) being contained within modeFJ (it is the case wittg;; = 6; for each

senderj and recipient pair).

The standard errors in Tablés 2, and3 are found by simulating each model 100 times (Ap-
pendix 1) using the EM parameter estimates from the observed data. For each simulated realization
of the network, the parameters are then re-estimated, resulting in 100 sets of re-estimated param-
eters for each model. Standard errors are computed by taking the root-mean-square deviation
between the parameter re-estimates from the simulation and the parameter estimate from the ob-

served data.

By simulating the network repeatedly, one can also form 95% confidence envelopes for the non-
stationary background rate densitft)"(Figure §. The gray error bound in this figure is formed
by simulating fitted model7) 100 times (Appendix 1) and re-estimating the background rate for
each simulated realization of the e-mail network. Note that the background rate from the observed
network (solid black curve) falls reasonably within the 95% confidence bands, indicating that the

estimated background rate for the model is consistent with the estimate from the observed data.
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Inspection of Tabled and2 reveals that modelj outperforms model3) since it has larger
maximum log-likelihood values for evenyticer. This suggests that inclusion of the non-stationary
background rate provides an overall better fit to the network data. The maximum log-likelihood
values for model?) (see Table8) are greater than model)(for each dficer; however, due to the
large number of parameters, modél oes not outperform moded)typically (as well as overall)
by a statistically significant margin according to the Akaike Information Criterion (Al@kafike

(1974). Diagnostic comparisons between each model are discussed in greater detail in&dction

4 lkeNet Analysis

4.1 Characterizing E-mail Communication Behavior

The parameter estimates Tiable 2provide insight into the communication habits dficers in

the network. For instance, the estimated proportion of e-mails senfilogro that are not replies
(background events) is given by/Ns" In other wordsy; can be thought of as the estimated
number of e-mail threaddficeri initiated over the one-year observation period. For example, ac-
cording to the fitted mode#j, approximately 68% of e-mails sent btficer 15 are not replies and

48% of e-mails sent byfficer 18 are not replies. Over the entire networkiN**"ranges between

42% and 83%, and the estimated overall percentage of e-mails sent in the network that are not

replies isy. %, 7i/N ~ 55%, whereN is the total number of observed messages for the network.

The estimated mean number of repligBazri sends in response to a typical e-mail received
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is given byé; in Table 2 For example, fiicer 18 sends approximately 59 replies per 100 e-mails
received, while ficer 15 sends approximately 46 replies per 100 e-mails received. Note also that
the estimated proportion of sent e-mails that are not repligsi¥® is higher for dficer 15 than

18. This suggests thatticer 15 has a higher tendency to initiate e-mail conversations ftfiaero

18, while dficer 18 has a higher tendency to respond to e-mails tffacen15. Over the entire
network,6, ranges between 16% and 68%, and the estimated overall percentage of e-mails sent in
the network that are replies }8%2 6; - N'*¢/N ~ 45%.

The speed at whichfficers send e-mails is governed by* which can be interpreted as the
estimated mean time it takesfigeri to reply to an e-mail. By examininiable 2we see that
officers 18 and 9 are estimated to take about 6 minutes to reply to an e-mail. This is much faster
than many of the otherflicers, such asficer 13, who takes an estimated 21 minutes, on average,
to reply. Figure 5shows that fiicers 9 and 18 communicate frequently with each other, which
may account for their similar and speedy response times. The estimated mean response times for
officers in the network ranges from about 6 to 80 minutes, and the estimated overall mean time it

takes an fiicer to reply isy,?% N &-1/N ~ 0.307 hours or 18.4 minutes.

4.2 Inferring Network Leadership

An important question is what properties of an e-mail network can best identify and rank the per-
ceived leaders of that network. As mentioned in SecBpeach dficer in the IkeNet dataset was
asked in a survey to list up to fivdiwers they considered to be strong team leaders, and up to

five officers they considered to be strong military leaders. The distinction made in the survey was
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that a team leader is someone who is perceived as confident leading a business or research project,
while a military leader is someone who is perceived as confident leading soldiers in combat. Fig-
ureslOandll are scatter plots of the total number of e-mails sent versus the aggregate number of
team and military leadership votes, respectively. The correlations in these scatter plots are weak
to moderate, and an inspection reveals that sending a relatively large number of e-mails does not
necessarily indicate that arfficer is a top leader. For instancdficer 15 stands out for having

the most votes for both team and military leadership, though thiseo ranks below the 80th per-

centile in terms of the total number of e-mails serfti¢ers 18, 13, 9, 22, and 11 all sent more
messages tharftficer 15). Moreover, fiicer 9 sent a large number of e-mails in the network, but
ranks low in terms of team and military leadership votes. Clearly, total number of e-mails sentis a

poor predictor of one’s perceived leadership status within the network.

Fortunately, the parameter estimates from the Hawkes process models quantify other features of
e-mail communication which may be predictive of network leadership. Two particularly important
features which we consider are the rate at which a user initiates e-mail threads (background rate),
and the responsiveness of a user to e-mails received (reply rate). We capture these features in a
potential predictoiY, which is defined for eachfiiceri as the total number of othefficers| for
which dficeri has an estimated mean reply ra@g)(above threshola;, and sent an estimated

number of non-reply e-mail&i(NiSje”d/Nise”% above threshold,. That is

Yi(en &) = ) Ufyj > c1, HNTTYNT> ) (14)
i

where1 denotes the indicator functiols*"is the number of e-mails sent fronffigeri to j,
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and all fitted parameters are from modeé). (Intuitively, officers that initiate many e-mail threads
and are very responsive to e-mails received obtain a high value for pre¥icéod are therefore

considered potential leaders.

For our analysis we consider four sets of thresholds for the predictor definéd)jrdénoted
by YW fork = 1,--- ,4. LetA = {6;]i # j} be the the set of estimated reply rates frofficersi
to j, B = {¥; Nisje”d/Nise”ﬂi # ]} be the set containing the estimates for the number of non-reply e-
mails (background events) sent frofhicersi to j, andg = %Zi i N{jecéij be the estimated mean
percentage of reply e-mails sent in the entire network. For predi¢tyrthresholdc, = 6 = 0.45
and threshola, = 4.79 is the median of séB. For predictorY®, thresholdc, = 6 = 0.45 and
thresholdc, = 9.92 is the mean of sé@&. The thresholdsc, ¢,) = (0.33,4.79) selected fo® are
the respective medians of sé&sandB. The thresholdsa, ¢,) = (0.52, 9.91) selected for™ are
the respective third quartiles of sedsandB. Of course, many other thresholds are possible, and

the selected thresholds are just simple, easily computed candidates.

Tables4 and5 lists several predictors of network leadership and the Pearson, Spearman, and
Kendall correlations between these predictors and the survey votes for team and military leader-
ship. The Pearson correlation is between the predictor of interest and the total number of team or
military leadership votes (Figurd® and11). The Spearman and Kendall correlations compare the
predicted rankings with the rankings from the leadership survey votes. A value of 1 for Kendall's

codficient indicates that the rankings are perfectly concordant, O indicates that the rankings are
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independent, and -1 indicates the rankings are perfectly discordant (in reverse order). The last

column in both tables gives the top four leaders identified by each predictor.

Tables4 and5 show that predictoly, for the four selected sets of thresholds, is much more
highly correlated with team and military leadership votes than the total number of messages sent
(N*"9 or received K"™°) by each dficer. Predictoly also does a better job at identifying the top
leaders thamNs®"andNec, For instanceY®, Y@, andY® all correctly identify the top four team
leaders (13, 15, 22, and 18). Moreovefjaer 15, the highest rankedfaer in terms of team and
military leadership votes, is identified by predictias a top leader, whilbl*¢"@and N do not

recover the importance of thigticer.

The points inFigure 12represent the Pearson,), Spearmanrg), and Kendall t) correlations
between the predictory( N andN'°) and the leadership survey votes. Panel (a) shows that
predictorY has higher correlations with the team leadership votes than the naive predititirs (
andN'©) for the four sets of thresholds consider& performs the best overall at predicting and
ranking team leader¥® also does comparably well at ranking team leaders even though it has a
lower Pearson correlation. Panel (b) also shows that pred¥ct@s higher correlations with the
military leadership votes thads*"®andN'¢; this is true for all sets of thresholds considered, with
Y® the only exception since it has approximately the same Spearman correlatiéiiay® and

Y@ perform the best overall at predicting and ranking military leaders.
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4.3 Sensitivity to Thresholds

The correlations between predictéfc,, ¢;) and the leadership survey votes depend on the choice
of thresholds; andc,. Figure 12shows that for very reasonable threshold selections (i.e. means,
medians, and third quartiles as discussed in SedtignpredictorY performs much better at rank-

ing and estimating leadership scores than the naive predidf§féandN'. Table4 also shows
thatY is generally able to identify the top four teams leaders with slight variations in order. For all
threshold values considered in Tableand5, Y does a better job thaNse"@or N at identifying

the top leaders.

In Figure 13we further assess the sensitivity ¥fc,, c;) to the threshold values. Each panel
shows the correlations (Pearson, Spearman, or Kendall, as indicated) bét(egen) and the
leadership votes as varies continuously between 0 and 0.52, axnthkes fixed values at the first
guartile (1.8), median (4.8), and third quartile (9.9) for the number of background events (non-
reply e-mails) sent betweerftwers in the network. The upper three panels give the correlations
betweenY and the team leadership votes, and the lower three panels give the correlations between
Y and the military leadership votes. The horizontal line in each panel is the respective correlation

between predictoNs"Yand the leadership votes.

The correlations corresponding to predic¥qc,, c,) typically fall above the horizontal line in
each panel as the thresholds vary; this indicates¥(@t c,) is more strongly associated with the

leadership votes thaNse"for a wide variety of threshold combinations. In the top three panels,
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thresholdc, = 4.8 (median) performs the best overall at ranking netwdficers, as indicated by

the relatively high Spearman and Kendall correlations when this threshold value is chosen. In the
bottom three panels, there appears to be a peak when threshsldpproximately 0.45, which

is the estimated mean percentage of reply e-mails sent in the entire net?)zo@ohclusively, in

all panels it is apparent that for a wide variety of choices for thresholds we obtain quantitatively

similar results.

4.4 Model Comparison and Diagnostics

The maximized log-likelihoods for the network and corresponding AIC values are provided in

ble 6. The first row gives these values for a stationary Poisson model of e-mail netwfiig, tra
where the rate at which eacfifficer sends e-mails is constant and givem{ft) = u;. This model

only has twenty-two parameters (the constant rate for efiider). The other three rows of this
table are for the Hawkes process mod&lsi and7) described in SectioB. The Hawkes process
model @) fits the data significantly better than the stationary Poisson model according to the AIC.
Additionally, the maximum log-likelihood value for the model with non-stationary background
rate @) is higher than the model with the stationary background @teTtis indicates that taking
diurnal and weekly trends into account provides an overall better fit to the network data. While the
increase in maximum log-likelihood is noteworthy, it is not entirely justifiable to use the AIC to
compare the models that include the nonparametrically estimated background géngityand

7) with the completely parametric modé)( The Hawkes process modé&))( which incorporates
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pairwise interactions betweettficers, fits the data slightly more closely than modglgs mea-
sured by the maximum log-likelihood, but scores worse in terms of AIC. This is because the AIC
penalizes for the large number of parameters7in @Although, due to the overall sparsity in the
IkeNet e-mail networkKigure 5, about 15% of the estimated parametersrinafe equal to zero.
Comparison of modelglf and (7) suggests that e-mail titec is well modeled by few parameters,
and adding in extra parameters to capture thikednces in reply rates betweefficer pairs does

not provide a significantly better fit to the data. However, the utility of modgtd predict and

rank network leaders was shown in Sectiba

The simulation procedure described in Appendix 1 can be used to evaluate how well the es-
timated Hawkes process models capture aspects of the observed data. For instance, one test of
predictive performance is to split the data into a training and validation set and assess how well
each model simulated many times from the parameters estimated from the training set is able to
reproduce some characteristic of the validation set. For this diagnostic, the selected training set
is the first 11 monthsT{ = 7920 hours) of e-mail data, and the selected validation set is the last
month (720 hours, between 13 April 2011 and 12 May 2011) of e-mail data. Here, we choose
the portion of all e-mails sent attributed to each individudilcer as our metric for the predictive
performance of each model on the validation set. We have chosen to inspecfieaafs portion
of all e-mails sent rather than eacfiicer’s raw sent e-mail count since the overall rate of e-mail
exchanges appears to be much higher during the final month of our dataset (the validation set) than

is typical of the previous months, and our model cannot account for this change. This unusual
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spike in activity, occurring during the beginning of May, can be seen clearly in the time series plot

(Figure 3.

Using the first 11 monthsT( = 7920 hours) of e-mail data in the training set we estimate
models B8), (4), and ) with the EM-type algorithm described in Secti8r8. To estimate the non-
stationary background rate densjiyt); in Step 2 of the EM-type algorithm we use the weighted
kernel density estimate i and €) evaluated over the e-mail events occurring in the training set.

For each self-exciting model, we use the parameters estimated from the training data to simulate
the IkeNet e-mail network 100 times over a period’of 720 hours (1 month). For the simulation
procedure for the non-stationary background process (Appendix 1, Algorithm A), the egi{ihate ~

from the training set, is evaluated over a 720 hour period that starts and ends on the same days as

the validation set (only the start and end days matter gii3es periodic).

In Figure 14 the 0.025 and 0.975 quartiles for the simulated proportions of e-mails sent by each
officer in the network under each model are plotted as gray vertical lines. The observed proportion
of e-mails sent by eachflicer in the validation set is also plotted in this figure as black horizontal
lines. Most of these observed proportions are either contained within or fall near the simulated
intervals for each ficer. Only dficers 10, 13, and 22 deviate significantly from the simulated
outcomes. There also does not appear to be any mdjerehices between the predictive per-
formances of the considered models. However, this is not surprising since the the non-stationary

background rates in modekl)(@nd (7) only accounts for daily and weekly trends, and since we are
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simulating over a period of one month there should not be any mdj@reinces in the simulated
number of messages for these models when compared to n®aeti{ the stationary background
term. Moreover, the similarity between the performances of modgland (7) in this diagnostic

is consistent with the log-likelihood analysis for these models.

Another goodness-of-fit diagnostic considereddgata(1988 is the transformed time{ar‘k},

which may be defined for eacltiweri as

M
7= AS) = fo Aty (15)

If the model used in their construction is correct, then the transformed times should form a Poisson
process with rate IMeyer, 1971), and similarly the inter-event time$ — 7, _, between the trans-
formed times should follow an exponential distribution; hebi¢e= 1 — exp{—(z}, — 7|_,)} should

be uniformly distributed over [A). Thus, as suggested e.g.OQgata(1988, if the main features

of the data are well captured by the estimated model, a plok of versusU| should look like a
uniform scatter of points. These plots are presentédgare 15for the stationary Poisson process
model and all Hawkes process modéls4, and7) of e-mail network tréfic considered in this pa-

per. A comparison of these plots reveals much less clustering around the perimeter for the Hawkes
process models, indicating that while the Poisson model clearly fails to account for the clustering
in the data, this feature is noticeably less pronounced for the self-exciting models. Furthermore,
there appears to be slightly less clustering in the plot for mafeh@n the plot for modeld), and
likewise when comparing model3)(and @). This claim is supported by the decreasing values

of the Kolmogorov-Smirnov test statistics Tiable § which compare the transformatigd,} for
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each network model with the uniform distribution.

5 Comparative Analysis Using the Enron E-mail Dataset

E-mail datasets areftiicult to find due to the many privacy concerns involved when making such
data publicly available. The Enron e-mail corpus is one of the few large e-mail communication
datasets readily available for public research. The corpus was originally released in 2002 by the
Federal Energy Regulatory Commission (FERC) during the scandal. William Cohen (CMU) dis-
tributed a version of the original corpus containing about 517,430 e-mails from 151 users on 3500
folders Cohen 2009. Shetty and Adibi (USC) cleaned Cohen'’s versions of the dataset and or-
ganized the corpus in a MySQL database containing 252,759 messages collected from 151 users

(Shetty and Adihi2004.

We consider the sender, recipient, and timestamp of each message in a closed version of the
Enron e-mail network oEhetty and Adib{2004) containing messages sent between the 151 users.
Once duplicates and messages individuals sent to themselves are removed, the corpus is reduced
to 14,959 sent messages and 24,705 received messages. Approximately 27.7% of e-mails sent in
the closed network have multiple recipients. Each sent message is coded as a single sent message,
regardless of the number of recipients, and in this way the number of receiving and sending mes-
sages are allowed to vary for each user. When defiNff§*and 3; N**"for the Enron dataset,

a multicast e-mail sent biyto 10 recipients, for example, would contribute IN§*"®and 10 to

send
ZJ' Nij :
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Figure 16is a time series plot of the number of e-mails sent each month in the closed Enron e-
mail network over the three year period between May 1999 and June 2002. There is a pronounced
peak in activity between the dates whefffidy Skilling abruptly resigned as CEO (August 2001)
and Enron filed for bankruptcy (December 2001). E-mail usage steadily declined to a zero level
during the months after January 2002. The scatter pleigare 17(right panel) shows that there is
a strong associatiom & 0.72) between the natural logarithms of the number of messages sent and
received by each user in the closed Enron network. This result is similar to the IkeNet dataset (left
panel), which shows a very high correlatianx 0.95) between the raw number of incoming and
outgoing messages. We apply the logarithmic transform to the Enron data since it is more skewed

than IkeNet.

We fit the Hawkes process mode8 4, and7) to the Enron data using the EM-type algorithm
described in Sectio.3. The maximum log-likelihood and AIC values for the network are pro-
vided in Table 7 The results presented in this table are quite similar to IkeNet, indicating that
perhaps our models generalize well to other larger e-mail networks. The self-exciting r8pdel (
fits the Enron network data significantly better than the stationary Poisson model according to the
AIC. Additionally, there is a substantial increase in the maximum log-likelihood values for the net-
work with the inclusion of the non-stationary background rate in mo$)eHence, it appears that
the modeling of diurnal and weekly periodicities in e-mail network activity provides a better fit to
the Enron data than the stationary background rat8)in¥ue to the large number of parameters,

the AIC for model 7) is much larger than modedl). However, like IkeNet, the Enron e-mail net-
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work is sparse in the number of messages sent between pairs of individuals. In fact, approximately
94% of the estimated parameters for modgldf the Enron dataset are equal to zero. Enron e-mail
traffic is well captured by a few parameters for each node in the network, and incorporating param-
eters to model pairwise connections between users does not significantly improve the overall fit to
the data. The values of the Kolmogorov-Smirnov test statistic (Sedt@rindicate the Hawkes
process models for the Enron network account for the clustering in the times when e-mails are sent

significantly better than the stationary Poisson model.

Table 8displays the mean percentage of reply and non-reply messages estimated from the self-
exciting models 3, 4, and7) of the Enron and IkeNet e-mail networks. These percentages are quite
similar for both networks: modeB] estimates that approximately half of the e-mails sent in each
network are non-replies, and this percentage increases with the inclusion of the non-stationary
background rate in modelgl)(and (/). Table 8also reveals that the estimated reply times are
much higher for the Enron dataset than the lkeNet dataset. For instance, according to estimated
model @), the middle 50% of estimated reply timas; are between 13.2 and 28.8 minutes for
the IkeNet e-mail network, and between 1.63 and 60.52 hours for the Enron e-mail network. One
explanation is that IkeNetfficers are using mobile devices to send e-mails, and are thus able to
reply to messages quickly, within an hour, while individuals in Enron are using personal desktops,

and therefore take much longer to reply.
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5.1 Describing and Inferring Enron Leadership Roles

The prediction of the leadership and hierarchy underlying the Enron corporation from the e-mail
corpus data is an important problem, and there are various techniques in the literature proposed
for this task.Shetty and Adib{2009 use a graph entropy model to find prominent and influential
individuals in the Enron e-mail dataset. Nodes (e-mail users) that cause the greatest change in
graph entropy for the network once removed are ranked highest and regarded as most important.
Creamer et al(2009 use a SNA (Social Network Analysis) approach to extracting social hierar-
chy information from the Enron dataset. These authors rank and group e-mail users according to
a social score, which is defined as a weighted sum of user specific statistics such as number of
messages, number of cliques, degree and betweenness ceriteliigilum et al(2007) proposed

the Author-Recipient-Topic model which learns topic distributions conditioned on the senders and
receivers of e-mail messages; the topic distributions estimated from the Enron e-mail corpus are

used to predict the roles of individuals in the network.

For the actual positions of the users in the Enron e-mail network we draw from the classifica-
tion of Shetty and Adib{2004) of workers into nine categories: CEO, President, Vice President,
Managing Director, Director, Manager, Lawyer, Trader, and Employee. The position Employee
refers to individuals that serve non-managerial roles such as associates, analysts, and administra-
tive assistants. In order to fill in the position data missing in Shetty and Adibi’s classification we
cross-reference@reamer et al(2009 and the actual legal documents released during the Enron

scandal Congress2003. Using all three sources we determined the positions of 150 of the 151
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users in the Enron e-mail network.

Table 9presents mean counts and standard deviations for the number of messages sent and
received by individuals within each of the nine occupational categories for Enron’s corporate hi-
erarchy. Inspection of this table reveals that the Enron CEOs have the lowest average number of
messages sent and received when compared to all other job categories. Lawyers and Vice Pres-
idents stand out for sending and receiving the highest mean number of e-mails. However, the
standard deviations indicate that there is much variability between individuals within each group.
Hence, the discrimination of user roles within the Enron corporate hierarchy based purely on the
counts for the number of messages sent and received wouldhwogiltli this motivates looking at
additional features of e-mail users’ communication behaviors supplied by the parameter estimates

from the Hawkes process models.

Table 10presents features of e-mail communication estimated from self-exciting mefels (
and (7), averaged over the users belonging to each of the nine occupational categories of Enron’s
corporate hierarchy. The features considered in this table are the estimated mean proportion of
sent e-mails that are not replieg/if>", the estimated mean reply ra@,(and the predictol
(equationl4). Three sets of thresholds are consideredvi@s, c,), denoted byy™, Y@ andY®),

which are defined similarly as the threshold selections for the IkeNet dataset (Seg}ién

2Due to the overall sparsity of the Enron e-mail network the median and third quartiles for the set of estimated
reply rates and set containing the number of background events sent befiieens are zero. Thug® = Y® since
both have trivial thresholds; = ¢, = 0, and we only consider® in the subsequent analysis of Enron.
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The features considered Table 10characterize general communication behaviors for each oc-
cupational position. For example, an estimated 84% of e-mails sent by the four Enron CEOs are
not replies to e-mails they received from individuals in the network. Moreover, the CEOs have
an estimated mean reply rate of 0.1 and thus only send an average of 10 reply messages per 100
messages received. When compared to all other occupational categories, CEOs send the the high-
est estimated percentage of e-mails that are not replies and have the lowest estimated reply rate.
Hence, an interesting feature of CEOs revealed by the self-exciting models is that, on average, they
are not responsive to e-mails received and tend to initiate e-mail conversations or threads. This is
in contrast to the 14 Enron Managers, who have the highest estimated mean reply rate (0.34) and
sent the lowest estimated mean proportion of e-mails that are not replies (0.26). Individuals with
the job title Employee fall in-between CEOs and Managers in terms of these features. In general,
it appears that as we travel down the Enron hierarchy, the average reply rate increases and the
average proportion of sent e-mails that are not replies decreases. The major exception to this are

the Traders which are more similar to CEOs than Employees in terms of these features.

PredictorY(cy, ¢c;), which performed well for identifying IkeNet leaders, has large average val-
ues for Presidents and Vice Presidents in the Enron network. The standard deviations for values of
Y are also large, although this is not surprising since there can be wide disparities in use of e-mails
within groups (as seen ifable 9as well). Lawyers also seem to be a class of their own, having

large values folY relative to other occupational categories.
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One way to infer the leadership status of users in the Enron network is to consider simple binary
classification rules. For instance, CEOs send far fewer e-mails, on average, than other Enron users
(Table 9. Hence, to infer CEO status we can consider affwadue forNs®"and classify all users
that sent a total number of e-mails below the ¢usés CEOs, and non-CEOs otherwise. For any
particular cutd value we can compute the true positive rate (the percentage of CEOs correctly
classified as CEOs) and the false positive rate (the percentage of non-CEOs that are incorrectly
classified as CEOs). Similar binary classification rules can be constructed using the other predic-
tors (N"¢¢, Y, Y@, Y®)) as well. Figure 18panel (a) shows the Receiver Operating Characteristic
(ROC) curves constructed by plotting the true positive versus false positive rates for all possible
cutdf values for each predictor variable for classifying users as CEOs or non-CEOs. The other
panels inFigure 18show the ROC curves generated from similar binary classification rules for
predicting whether or not each user is a Vice Presigemnesident (panel b) and DirectoManag-

ing Director (panel c).

The ROC curves corresponding to the binary classification of CEO status (panel a) indicate that
the naive predictorsN®"?andNc) perform generally as well a6. Thus the additional features
of e-mail communication estimated from the Hawkes process models do not contribute much to
inferring CEO status, beyond what is already provided for by simple messages count totals. The
large amount of variability between the true positive rates corresponding to each predictor is due

to the small sample size of 4 CEOs in the Enron network.
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The ROC curves corresponding to the binary classification of Presidéce President status
(panel b) indicate that predictows? andY® perform better than the naive predictors. For exam-
ple, for a fixed false positive rate of 0.05, the true positive rates for each predictor are ONI7for
0.1 forN'e, 0.19 forY®, 0.09 forY®, and 0.21 foy®. Hence, there is noticeable improvement
in predictive performance when usiivgc,, ¢,) to distinguish Presidentsvice Presidents from the
rest of the Enron users. However, this improvement only holds for the thresholds select&d for

andY®, while Y@ performs only as well as the naive predictors.

The ROC curves corresponding to the binary classification of Dir¢d&flanaging Director sta-
tus (panel c) are all very close to the lige= x (true positive rate equal to false positive rate) for
false positive rates less than 0.3. Therefore, the binary classifiers constructed from each predictor
variable are not doing any better than random chance at these values. For larger false positive rates
(greater than 0.3Y® andY®@ appear to perform better than the other predictor variaNE¥'¢

N'ee, Y®)) at discriminating Directof Managing Director status.

While binary classification rules are a simple way to infer Enron leadership, it is somewhat un-
clear from the ROC plots which predictors perform the best, and whether there are any substantial
differences in the performance of the various predictors. To better evaluate the proposed predictors
of leadership, particularly for the Enron network, we consider a modeling approach in the next

section.
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5.2 Regression Models for Predicting Leadership

In this section we consider regression models for predicting IkeNet and Enron leadership status
using predictors derived solely from the e-mail log data (sender, recipient, and timestamp) for each
network. The response variables of interest are the IkeNet team and military survey leadership
rankings, and the Enron leadership roles coded as binary variables indicating CEO, President
Vice President, and DirectgrManaging Director status. For example, the binary response vari-
able for CEO is coded as 1 if the employee is a CEO, and 0 otherwise. Logistic regression is used
to predict the Enron leadership roles, and standard least squares regression is used to predict the

IkeNet leadership survey rankings.

A set of five user-specific predictor variables are used to build the leadership mideRefsN'ee,
Y, and two additional predictors namBdnd| which incorporate features from the fitted Hawkes
process models but are simpler théand do not involve interactions. We define predicte@nd

| for each user as
R(e) = ) 1d; > cih
j
(€)= D UHNSTYNS™ > ¢
j

for some choice of thresholas andc,. For predictorsR(c;), 1(c;), andY(cy, ¢;) we consider the
same types of thresholds discussed in Secti@hNamely, the mean, median, and third quartile of
the estimated reply rates and estimated number of non-reply e-mails (background events) between

pairs of users in each network. A motivation for considering these additional predictors is that
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perhaps in social networks with hierarchies as complex as Enron certain leadership roles are better
guantified by either the responsiveness of the user to e-mails (as measiear biye thread initi-
ation rate (as measured by and not a combined measure as quantifie bjlso, these simpler

predictors may be useful when considering multivariate models for leadership.

Figure 19shows the AIC scores for simple and multiple regression models of IkeNet team and
military leadership rankings, fit to all combinations of the five predictor variaiR§8? N'*¢, R,
I, andY. For example, the AIC scores for the simple regression models of team leadership fit to
NsendandN'ee are plotted in the first two rows dfigure 19 The three AIC scores for predict®
(third row) correspond to threeftirent simple regression models for team leadership f(¢)
using the three threshold considerations. Similarly, the simple regression models flt amd
Y also have several AIC scores which correspond fi@dint threshold selections. The sixth row
of Figure 19shows the AIC score for the bivariate regression model filte'® and N'®¢. The
other bivariate models involve predictd®s |, andY with different thresholds combinations. For
example, there are six bivariate models fit to predicR{cs) andl (c,) (row 13) using three thresh-
old valuesc; for R and two threshold values for |I. The last three rows dfigure 19show the
distribution of AIC scores for multiple regression models fit to all combinations of three, four, and

five predictors.

The regression models for IkeNet leadershig(re 19 which incorporate features from the

fitted Hawkes process models (plotted as circles) generally perform better, in terms of AIC, than
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the models with only the basic descriptive statistit§"dand N (plotted as triangles). The uni-
variate models with predictoR, I, andY perform relatively well and have the lowest AIC scores
amongst all models for certain thresholds; this indicates that the descriptive statii¢and

N'e¢ offer little additional information beyond these predictors. Moreover, many of the multivari-
ate models also show substantial improvement over the basic descriptive statistic models in terms
of AIC. For instance, the bivariate models for military leadership with predi®ptsandY (rows

7-15) consistently perform better than the best fitting descriptive statistic 58 The same
relationship also holds true for team leadership, with the only exception being the bivariate models
with Y, Ne"d (row 11) andY, N'¢ (row 12), which perform nearly as well &¢"for two thresh-

olds selections, and substantially better for the other two thresholds. The regression models with
more than three predictors often do not perform as well as the univariate or bivariate models. The
model with the highest AIC score has all five predictors for team leadership and four predw;tors (

Y, Nsend N9y for military leadership. This is perhaps due to collinearity since the AIC penalizes

for adding in redundant predictors.

The AIC scores for the logistic regression models of Enron leadership roles are ploftigd in
ure 20 All predictors are log-transformed due to the overall sparsity of the Enron e-mail dataset.
For CEO status, the bivariate logistic models with predictor**"?(row 9); I, N (row 10); and
[,Y (row 15) perform better than the best fitting descriptive statistic mN&f&for some threshold
selections. Some multivariate models for CEO status with three or more predictors have the lowest

AIC scores, however, the performance of these models appears sensitive to threshold selection. For
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instance, the model with the highest AIC has all five predictors. Since there are only 4 CEOs in
the Enron social network (out of 151 employees) it idult to train any classifier for CEO status

due to the small and unbalanced sample.

The logistic regression models for Presidékice President status with predictdgs |, andY
generally perform substantially better than the basic descriptive statistic modeNS®ifandN"ec
in terms of AIC. Moreover, the univariate and bivariate models with prediR{oows 3,7,8,13,14)
consistently outperform the descriptive statistic models. Since thféi@eats forR in these mod-
els are always positive and significant, this indicates that responsiveness is a strong predictor of
Enron President Vice President status. The model with the highest AIC has univariate predictor
[ (cy) with c; set to the mean thread initiation rate over dlieer pairs. This indicates that thread

initiation is not an important feature for the prediction of Presigdéfate President status.

The univariate logistic regression models for Diregtbtanaging Director status generally per-
form the best in terms of AIC. The univariate model with prediétdras a lower AIC score than
the best fit descriptive statistics modet®™ for most threshold selections, and appears to be the
best classifier overall. The model with the the highest AIC score has all five predictors, and this is
perhaps due to collinearity. Since Direcfdvlanaging Director status is further down the Enron
hierarchy than PresidenVice President status it is not surprising that there is less substantial im-
provement in modeling when considering predictrs, andY, as Directorg Managing Directors

probably interact with employees more directly.
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6 Discussion

Self-exciting point process models for e-mail networks clearly outperform traditional stationary
Poisson models for both the IkeNet and Enron datasets considered here. These Hawkes process
models, which appear to properly account for the clustering in the times when e-mails are sent and
the overall branching structure of e-mail communication, are improved by accounting for diurnal
and weekly rhythms in e-mail tfixc in the background rate component. The estimated parameters

of these models, such @sandy, are easily interpretable and characterize important properties of
e-mail communication, such as an individual’s tendency to reply to e-mails and initiate new e-mail

threads.

A network leader may possess more qualities than simply sending and receiving many messages.
One attribute of a leader may be his or her responsiveness to messages received from others in the
network. Furthermore, a leader may initiate many e-mail conversations, and not rely on others
to start projects and make decisions. The parameters of the Hawkes process#hqdeh(ified
these additional features, which we attempted to combine into a medégyre;) (equationl4)
for inferring network leadership. The results of our analysis of the IkeNet social network reveal
that predictorY is much more strongly correlated with the leadership survey votes and rankings
than the naive predictorsse" (total number of e-mails sent) ard® (total number of e-mails
received) for several reasonable threshold considerations. Moreover, an analysis of the sensitivity
of Y(cy, ¢p) to threshold€; andc, demonstrates that we get quantitatively similar results for a wide

variety of threshold selections as wdfigure 13.
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For the Enron dataset we observed that CEOs, the highest ranked individuals within the net-
work, send and receive far fewer e-mails, on average, than users in other occupational categories
within the Enron hierarchy. Moreover, the estimated Hawkes process parameters also reveal that
CEOs have a much higher tendency to initiate e-mail conversations (high background rate) than
send replies (low reply rate). One possible explanation is that CEOs may be older than most other
users in Enron and rely more on forms of communication besides e-mail (e.g. telephone, verbal,
mail), or that many of the messages they received were low priority due to their high status within
the organization. Enron Presidents and Vice Presidents are much more active within the e-mail
network than CEOs since they send and receive a high volume of messages. Moreover, these
users generally have relatively high values for predidpmdicating that the features of e-mail
communication quantified by the fitted Hawkes process models help distinguish PresMents
Presidents from other users in the Enron social network. Note that Enron is merely one company,
and a troubled one at that, so we hesitate to generalize our results to communication within other

corporations, and further study is needed to verify if our findings apply to other companies as well.

Simple and multivariate regression models for IkeNet and Enron leadership were considered to
evaluate and compare the performance of the fitted Hawkes process predictigrar{dY) and
the basic descriptive statistiddT"?andN"°). In terms of AIC scores, the regression models with
the fitted Hawkes process predictors generally perform better than the regression models with only
descriptive statistic predictors for IkeNet team and military leadership survey rankings and Enron

President Vice President status. For Enron CEO status, there is a slight improvement in AIC for
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some multivariate models which incorporate the fitted Hawkes process predictors; although, it is
difficult to say whether this improvement is meaningful since only 4 of the 151 Enron users are
CEOs. The univariate logistic model with predictoiis the best overall classifier for Enron Di-
rector/ Managing Director status, in terms of AIC. Although, the fitted Hawkes process predictors
more substantially improve the logistic models for Enron Presi¢i&fite President status than
Director/ Managing Director status. One possible explanation is that DirethMasaging Direc-

tors are further down the Enron hierarchy, and probably interact with the employees they supervise

more directly.

A main difference between the lkeNet and Enron networks is that the IkeNet social network is
relatively flat (all dficers in the network have the same military rank and are enrolled in the same
academic program at West Point), while Enron has a complex leadership hierarchy that spans
across multiple departments and positions. There is also much variability in e-mail usage and be-
havior between individuals with roughly the same role and position in the Enron social network.
Hence, it is a more straightforward process to identify and rank leaders within the lkeNet social
network than to infer Enron leadership roles using various features of e-mail communication esti-
mated from sender, recipient, and timestamp fields of e-mail logs.

Another important distinction between the IkeNet and Enron datasets is that leadership ground-
truth for IkeNet is in the form of counts and rankings from the aggregated survey votes, while Enron
leadership roles are binary. Therefore, the prediction problems and corresponding evaluations are

slightly different. More examples on networks with these types of leadership and communication
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data would be useful in the future to further elucidate how and when the proposed mefieosis o
advantages for inferring leadership.

One future direction for this research is to considéfedent types of point process models to
better account for the observed clustering in e-matfitra For instance, a completely nonpara-
metric self-exciting model, as describedMarsan and Lengli@ (2008, would allow for more
flexibility in estimating the background and triggering intensities. However, such models require
more computationalféort and are less easily interpretable than the exponential forms considered in
this paper. Also of interest are other types of parametric point process models, besides the Hawkes
process, such as the Cox multiplicative intensity model consider&irny and Wolfe(2013,
which can be used to model dyadic and triadi@ets, and homophily in e-mail network activity.
Another possibility for future work is using the subject lines of e-mails to verify how well the
latent branching structure of discussion chains are detected with the EM-type algorithm. Lastly,
beyond looking at the temporal statistics and a point process analysis of e-mail communication net-
works, one may also consider using techniques from social network analysis and machine learning
to help build predictors of network leadership using the content of e-mails or texts. Ultimately,
through continuing with such research, we hope to improve methods for inferring the leadership

and hierarchy of criminal or terrorist organizations from communication patterns.
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Appendix 1. Simulation

In this appendix we describe a procedure for simulating IkeNet e-mail network activity using the
estimated Hawkes process models. We start by simulating the background events, or non-reply
e-mails, sent by eachticeri over [Q T]. For models 4) and (7) this can be done using the method

of Poisson thinningl{ewis and Shedlerl979 described in the following algorithm:

Algorithm A
Step 1. Le* be the maximum of(t) over [Q T].

Step 2. DrawN; from PoigViu*T) (this is an upper bound on the number of background or non-

reply e-mails for network membéy.
Step 3. Draw an i.i.d. sampl&, : | = 1,--- , N} from Unif(0,1) and sets1j =T-2.

Step 4. For each eveht 1,---,N; at times, retain that event within our simulated background

set with probabilityp, = (s)/u*, otherwise remove it from our background set.

Step 5. LetN**"{0) denote the number of events selected in step 4Giie{0) = {s, : k =
1,---,N**"40)} be the set of event times selected in step 4, which we will refer to as

generation 0.

Step 6. Choose receivers for the event&fi"{0) by drawing a sample of siZg**"{0) with re-

placement fromthe s¢f : j € {1,---,22}, ] # i} with corresponding Weighlﬂ\lisje“d: j€
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{1,---,22, J#1}, WhereNiSje”dis the observed number messages sent frtwj.

In order to generate all the non-reply e-mails sent in the entire network Algorithm A is repeated
for each dficeri = 1,---,22. To simulate the background process (non-reply e-mail send times)
for model @) we simply simulate a stationary Poisson process withualer each dficer, and the

receivers of e-mails are selected the same way as in Algorithm A.

After laying down the background events (non-reply e-mails) we simulate the reply e-mails. Let
Glee(v) = {rl : k = 1,--- ,N™(v)} be the set of times wheinreceived e-mails during generation
v andN/*%(v) be the number of simulated messagesceived during generation Each message
rL € G*(v) received by fficeri at generatiow triggers reply messages on'a,(l' ] according to the
non-stationary Poisson procegét - rl) = 6idie @, To generate these reply times for each

officeri, using models3) and @), we apply the following algorithmlLewis and Shedlerl979:

Algorithm B
Step 1. Sek=1andp = 0.

Step 2. Dravm(k"”) from Poig#,), this is the number of reply messagesends in response to

receiving messagQ' € G*Y(v) in the previous generation

Step 3. Ifn(kv+1) = 0 there are no replies and go to step (5), otherwise draw an i.i.d s@fple=

n+1,--,n+n"Y} from Unif(0,1).
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Step 4. The reply time{sq' l=n+21---,n+ nﬁ"”)} for message{( € G{*¢(v) are given by:

f G(t—rdt = § = ME=2) i

=5
Step 5. Updatg « 1+l andk « k + 1.

Step 6. Repeat steps (2) — (5) ukti= N*(v) + 1.

N (V) n("”) denote the number of simulated e-mails sent fiigeri in

Step 7. LetNs*"{v+1) =
generationv + 1 andG**"{(v+ 1) = {s : | = 1,--- , N**"{v + 1)} be the corresponding set

of times when @iceri replies to messages sent during the previous genenation

Step 8. Choose receivers for the eventSfi™{v + 1) by drawing a sample of siZés*"{v + 1)
with replacement from the s¢f : j € {1,---,22}, ] # i} with corresponding weights
{ij'e”d: jefl,---,22), ] #i}, whereNse”dls the observed number messages sent from

to j.

Algorithm B is repeated for eacHticeri = 1,--- , 22 to generate all reply e-mails at generation
v. Algorithm B is applied to each generatian> 1 until we reach a generatiori such that
Nise”d(v*) = 0O for all officersi. The procedure for simulating reply e-mails for modalié similar
Algorithm B, essentially we are substitutin{j and; in for ri andé;. In other words, under
estimated model7) the number of replies generated for each e-mail receiveddepends on the

sender].
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Figure 1. Histogram density of the number of e-mails sent each hour of the day over the one-year
observation window. The smoother curve was formed using kernel density estimation with a fixed
bandwidth Scott 1992.
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Figure 2. Proportion of e-mails sent each day of the week over the one-year observation window.
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Figure 3. Time series plot of number of e-mails sent by date.
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Figure 4. Histogram of the number of daily e-mails.
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Figure 5. Plot of the IkeNet e-mail network with node sizes proportional to the number of e-mails
sent by eachfticer, and edge widths proportional to the number of e-mails sent betwiéesrs.
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Figure 6. Survivor plot of the inter-event times for e-mails sent by edfibeo in the network
(black line). A 95% confidence envelope was formed by simulating the network 100 times from
the fitted model3) and computing the survivor function for each realization. The pointwise 0.025
and 0.975 quantiles of the simulated survivor functions are plotted in gray.
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Figure 7. Top panel shows the estimated conditional intensity ficcer 13 over a three-day

period using the Hawkes model with the stationary background 3xt& fie bottom panel shows

the estimated conditional intensity fofficer 15 over the same three-day period using the Hawkes
model with the non-stationary background radg (The downward triangles represent the times

when messages are received, while the upward triangles represent the times when messages are

sent.
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Figure 8. Estimated background rate dengity for the IkeNet e-mail network (solid black curve)
using model 7) after convergence of the EM-type algorithm. The dashed curve is the initial esti-
mate of the background rate density using equal probability weights. This figure only shows one
period (i.e. one week, Mon.—Sun.) pft]. A 95% simulation confidence envelope was formed

by re-estimating the background rate for 100 simulated realizations of fitted mQdeind the
pointwise 0.025 and 0.975 quantiles are plotted in gray.
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Figure 9. Scatter plots showing the convergence of the EM-type algorithm, in terms of log-
likelihood, for estimating the self-exciting mode& 4, and7, respectively).
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Figure 10. Plot of the total number of e-mails sent versus the aggregate number of votes each
officer received for perceived team leadershig 0.52). Votes are based on a survey which asked
each dficer to list up to five otherflicers in the network that he or she considered to be a strong
team leader.
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Figure 11. Plot of the total number of e-mails sent versus the aggregate number of votes each
officer received for perceived military leadership< 0.13). Votes are based on a survey which
asked eachfticer to list up to five otherflicers in the network that he or she considered to be a
strong military leader.
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Figure 12. Pearsomr ), Spearmanr¢), and Kendall t) correlations between the predictor vari-
ables and the team (panel a) and military (panel b) leadership wdtegor k = 1,--- , 4 denotes
predictorY(cy, cy) for the four sets of thresholds andc, discussed in Sectioh.2 Both panels
show that predictoY is more strongly correlated with the leadership votes tR&ti%andN'ee,
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Figure 13. Sensitivity plots for the Spearman, Pearson, and Kendall correlations between predictor
Y(cy, ¢;) and the team leadership votes (upper three panels) and military leadership votes (lower
three panels) for dierent values of thresholds andc,. The lines in each plot give the correlations
betweenY(cy, c;) and the leadership votes egvaries continuously between 0 and 0.52, and

takes fixed values at the first quartile (1.8), median (4.8), and third quartile (9.9) for the number of
background events (non-reply e-mails) sent betwegoens in the network. The horizontal line in

each panel is the respective correlation betwé&f(total number of e-mails sent by eacficer)

and the leadership survey votes. This plot shows that for a wide variety threshold values predictor
Y(cy, C,) is more strongly correlated with the leadership votes than the naive preNié8r
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Figure 14. Comparison of the simulated and observed proportion of e-mails sent byfiégeeh o
over a period of one month (720 hours). The gray vertical lines are the pointwise 0.025 and 0.975
quartiles for the proportions generated from 100 simulations of the IkeNet e-mail network using
the models estimated from the training set (first 11 months of e-mail data). The black horizontal
lines are the observed proportions from the validation set.
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Figure 15. (a-d) Plot olJy,, versusUy for the stationary Poisson process model and Hawkes
process models3( 4, and7) of e-mail activity on the network, respectively.
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Figure 16. Time series plot of number of e-mails sent each month between May 1999 and June
2002 in the Enron dataset.
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Figure 17. Left Panel: Scatter plot of the total number of e-mails recexedefsus the total
number of e-mails seny) by each dficer in the IkeNet dataset. The scatter plot and regression
line show a strong association between the raw number of e-mails sent and receiv@®6).

Right Panel: Scatter plot of the natural logarithm of total number of e-mails received versus the
natural logarithm of the total number of e-mails sent by each user in the Enron dataset. The scatter
plot and regression line show a strong association between the natural logarithm of number of
e-mails sent and received £ 0.72).
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Figure 18. ROC curves corresponding to the binary classificationftd#rent Enron leadership
roles. For each predictor of leadershif{" N'¢, Y) a cut-df value is chosen to classify each user

as either a leader or non-leader. The ROC curves are constructed by considering all posstble cut-o
values for each predictor variable and plotting the corresponding true positive and false positive
rates. The ROC curves in panels (a), (b), and (c) are for the classification rules for predicting
whether or not each user is a CEO, Presidarite President, and DirectgManaging Director,
respectively.
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Figure 19. AIC scores for regression models for predicting IkeNet team and military survey leader-
ship rankings. Considered are all combinations of predidt§?&® N©¢, R, I, andY. The diferent
thresholds discussed in Sectiér are used to build the models with predictétsl, andY. For
example, the four points in the row for predictérare the AIC scores for four simple regression
models using four dierent sets of thresholds. The last three rows show the distribution of AIC
scores for multiple regression models built with all combinations of three, four, and five predictors.
The triangles correspond to regression models constructed with only basic descriptive statistic pre-
dictors (N**"andN'°), and the vertical line indicates the best model fit to the descriptive statistic
predictors. The circles correspond to regression models with at least one fitted Hawkes process
predictor R I, andY). Note, only circles are used in the last three rows since all models with three
or more predictors are built with at least one fitted Hawkes process predictor.
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Figure 20. AIC scores for logistic regression models for predicting Enron leadership roles. Con-
sidered are all combinations of log-transformed predichi®¥? N™¢, R, 1, andY. The diferent
thresholds discussed in Sectibi2 are used to build the models with predict®d, andY. The tri-

angles correspond to regression models constructed with only basic descriptive statistic predictors
(Nse"andN'), while the circles correspond to regression models with at least one fitted Hawkes
process predictoR, I, andY).
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Table 1. Parameter estimates, standard errors, and maximum log-likelihood values for3hodel (
Standard errors are computed by the root-mean-square deviation from 100 simulations of the esti-
mated model.
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i NG G o (@)

1 94  0.009(0.0010) 0.17 (0.04) 8.64 (2.54) -464.2

2 260 0.014(0.0013) 0.58(0.05) 3.64(0.39) -732.8

3 301 0.021(0.0017) 0.49(0.05) 1.38(0.19) -1089.4
4 316 0.024(0.0017) 0.43(0.05) 2.93(0.40) -1126.4
5 179 0.012(0.0013) 0.35(0.04) 1.64(0.25) -702.9

6 207 0.014(0.0013) 0.34(0.04) 3.10(0.40) -752.5

7 276 0.016(0.0015) 0.51(0.04) 0.80(0.10) -989.0

8 355 0.025(0.0014) 0.40(0.04) 4.71(0.49) -1125.6
9 868 0.044(0.0024) 0.54(0.02) 6.68 (0.41) -1620.0
10 155 0.012(0.0012) 0.33(0.05) 3.29 (0.54) -635.4

11 687 0.034(0.0020) 0.55(0.03) 2.19 (0.15) -1647.9
12 277 0.018(0.0016) 0.43(0.05) 1.35(0.19) -1018.5
13 876 0.038(0.0024) 0.45(0.02) 2.21(0.14) -2029.1
14 296 0.016 (0.0016) 0.57 (0.04) 2.87 (0.32) -871.4

15 558 0.040(0.0023) 0.53(0.04) 1.75(0.17) -1717.8
16 181 0.014(0.0012) 0.41(0.06) 6.44 (1.09) -683.6

17 295 0.019(0.0015) 0.26(0.02) 2.87 (0.38) -1023.1
18 1181 0.059 (0.0028) 0.64(0.03) 6.91(0.32) -1853.8
19 247 0.019(0.0016) 0.53 (0.07) 0.83 (0.14) -992.8

20 73  0.006 (0.0008) 0.26(0.06) 3.17(0.83) -360.2

21 26 0.002 (0.0005) 0.21(0.08) 0.73(0.67) -158.7

22 689 0.030(0.0018) 0.73 (0.04) 3.52(0.231223.4
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Table 2. Parameter estimates, standard errors, and maximum log-likelihood values for4hodel (
Standard errors are computed by the root-mean-square deviation from 100 simulations of the esti-
mated model.
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1 94 0.83(0.05 0.16(0.05) 9.82(6.47) -430.1

2 260 0.47(0.04) 0.56(0.05) 4.06(0.42) -682.1

3 301 0.65(0.04) 0.45(0.05) 1.62(0.23) -1017.8
4 316 0.71(0.03) 0.37(0.04) 4.41(0.64) -1021.1
5 179 0.57(0.05) 0.34(0.04) 1.65(0.28) -690.7

6 207 0.59(0.04) 0.32(0.04) 3.50(0.48) -717.9

7 276 0.53(0.05) 0.47 (0.05) 0.90 (0.11) -932.6

8 355 0.63(0.03) 0.38(0.03) 5.52(0.65) -1060.1
9 868 0.50(0.02) 0.49(0.03) 10.18(0.58) -1464.4
10 155 0.70(0.04) 0.31(0.05) 4.63(0.90) -598.9

11 687 0.48(0.03) 0.50(0.03) 2.73(0.24) -15415
12 277 0.63(0.04) 0.38(0.04) 1.99(0.29) -973.4

13 876 0.44(0.02) 0.40(0.02) 2.76(0.22) -1908.7
14 296 0.50(0.04) 0.54(0.05) 3.31(0.34) -802.0

15 558 0.68(0.03) 0.46(0.04) 2.52(0.25) -1614.9
16 181 0.69(0.04) 0.39(0.05) 7.52(1.27) -640.2

17 295 0.61(0.04) 0.23(0.03) 4.17(0.49) -954.5

18 1181 0.48(0.02) 0.59(0.02) 9.80(0.57) -1629.8
19 247 0.71(0.04) 0.46 (0.06) 1.25(0.24) -938.8

20 73  0.73(0.05) 0.25(0.06) 3.41(1.14) -341.6

21 26  0.72(0.09) 0.20(0.07) 0.75(0.80) -149.9

22 689 0.42(0.02) 0.68(0.04) 4.39(0.29)-1128.5
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Table 3. Parameter estimates, standard errors, and maximum log-likelihood values forfodel (
The column labeled; gives the estimated average reply rate for edtiber 6, = 3; 6, i N{jec/N{ec.
Standard errors are computed by the root-mean-square deviation from 100 simulations of the esti-
mated model.
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i Nisend {/*i/Nisend 6, o |i(éi)

1 94 0.82(0.04) 0.16(0.04) 962 (2.94) -421.4

2 260 0.47(0.04) 0.56(0.05) 4.09(0.41) -668.1

3 301 0.65(0.04) 0.44(0.05) 1.74(0.23) -1003.9
4 316 0.71(0.03) 0.37(0.04) 4.53(0.62) -1013.9
5 179 0.56(0.05) 0.35(0.05) 1.50(0.26) -678.1

6 207 0.59(0.04) 0.32(0.04) 3.64(0.55) -703.3

7 276 0.53(0.04) 0.47(0.05) 0.91(0.13) -924.5

8 355 0.63(0.03) 0.38(0.04) 5.59(0.54) -1043.3
9 868 0.49(0.02) 0.49(0.03) 9.81(0.61) -1453.9
10 155 0.69(0.05) 0.32(0.05) 4.17 (0.73) -586.8

11 687 0.48(0.03) 0.50(0.03) 2.76(0.20) -1522.4
12 277 0.64(0.03) 0.37(0.04) 2.21(0.30) -954.1

13 876 0.45(0.03) 0.40(0.02) 2.83(0.22) -1885.4
14 296 0.50(0.03) 0.54(0.04) 3.23(0.35) -793.1

15 558 0.69(0.03) 0.43(0.04) 2.90(0.34) -1594.5
16 181 0.68(0.04) 0.39(0.06) 7.40(1.13) -633.1

17 295 0.61(0.03) 0.23(0.02) 4.09(0.53) -935.2

18 1181 0.48(0.02) 0.59(0.02) 9.67 (0.47) -1600.9
19 247 0.71(0.04) 0.46(0.07) 1.26(0.22) -931.6

20 73 0.72 (0.07) 0.26 (0.07) 3.17(1.10) -333.8

21 26  0.71(0.11) 0.21(0.09) 0.69(0.53) -143.0

22 689 0.42(0.02) 0.68(0.04) 4.60 (0.301095.8

ACCEPTED MANUSCRIPT
76



Downloaded by [University of California, Los Angeles (UCLA)] at 10:24 05 March 2016

ACCEPTED MANUSCRIPT

Table 4. Predictors of team leadership.

Predictor r, s T Estimated top 4eaders
Nsend 052 040 029 18130922

Nree 049° 039 029 13180911

Y@ 0.68* 0.66" 0.52* 15181322

Y® 0.64* 050° 040° 13151822

Y® 053 060" 047 13180915

Y@ 0.66* 045 0.36° 13182215

The significance values testing whether each correlatiorflisrdnt from zero are denoted by &t the 0.1

level, (*) at the 0.05 level, and (**) at the 0.01 level. In the event of tie¥ ihe tiebreaker is the number

of e-mails sent in determining the top 4 leaders. The actual top 4 team leaders from the survey votes are
officers 13, 15, 22, and 18.
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Table 5. Predictors of military leadership.

Predictor r, s T Estimated top 4eaders
Nsend 0.13 0.29 0.21 183922

Nrec 0.02 0.20 0.15 1380911

Y 048 044 0.34° 15181322

Y® 045 045 0.37° 13151822

Y® 036 041 0.32° 13180915

Y® 032 027 024 13182215

The significance values testing whether each correlatiorflisrdnt from zero are denoted by &t the 0.1

level, (*) at the 0.05 level, and (**) at the 0.01 level. In the event of tie¥ ihe tiebreaker is the number

of e-mails sent in determining the top 4 leaders. The actual top 4 military leaders from the survey votes are
officers 15, 19, 5, and 22.
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Table 6. Number of parametes)( AIC and maximum log-likelihood values for the Poisson and
Hawkes process models of the IkeNet e-mail network. The value KS is the Kolmogorov-Smirnov
test statistics comparing the transformed time to the uniform distribution.

0 () AlIC KS
Stationary Poisson 22  -32347.4 64738.9 0.39
Hawkes modely) 66 -22818.5 45769.0 0.17
Hawkes model4) 66 -21239.5 42611.0 0.15
Hawkes model{) 506 -20920.2 42852.50.14
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Table 7. Number of parametes)( AIC and maximum log-likelihood values for the Poisson and
Hawkes process models of the Enron e-mail network. The value KS is the Kolmogorov-Smirnov
test statistics comparing the transformed time to the uniform distribution.

0 () AIC KS
Stationary Poisson 151 -85605.0 171512.0 0.42
Hawkes model3) 453 -75031.4 150968.8 0.28
Hawkes model4) 453 -70721.7 142349.4 0.27
Hawkes model{) 22952 -68925.9 183755.90.25
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Table 8. Mean percent non-reply messadges’(/N), mean percent reply messaggs §; - N/®¢/N),
average reply timeX; Nise”dcbi‘l/N), and first and third quartiles for reply times estimated from the
Hawkes process models of the Enron and IkeNet e-mail networks.

Dataset, Model % Non-reply % Reply Mean reply tilfes)
Hawkes modeld) 50.2% 49.8% 0.4 (0.28).6)

IkeNet | Hawkes model4) 54.4% 45.6% 0.31(0.22.48)
Hawkes model{) 54.6% 45.4% 0.31(0.22.43)
Hawkes modely) 50% 50% 68.47 (1.69,11.28)

Enron | Hawkes model4{) 59.5% 40.5% 48.5 (1.68%0.52)
Hawkes model{) 54.6% 45.4% 61.19 (1.539.16)
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Table 9. Mean number of messages sent and received by useffeedrdi positions in Enron’s
corporate hierarchy.

Position n  Nsend Nrec Total
CEO 4  275(39.1) 45.2(36.4) 72.8(26.3)
President 4 112 (124.7) 254.5(195.5) 366.5(303.8)

Vice President 25 162.1(206.9) 267 (298.6) 429.1 (456.8)
Managing Director 5 59.6 (40.9) 105.6 (30.7) 165.2 (58.6)

Director 19 112.1(312.4) 145.2(130.9) 257.2 (421.3)
Manager 14 62 (58.2) 136.2 (184.7) 198.2 (208.6)
Lawyer 9 315.8(325) 413.2(302.4) 729 (520.3)
Trader 36 58.6(97) 103.7 (94.3) 162.3(170.8)
Employee 34 61.6 (66.2) 123 (137.3) 184181.7)

Note: The values fon are the number of individuals belonging to each occupational category. The values in the other
columns are the means of the specified variables evaluated over the users belonging to each position, with corresponding
standard deviations given in parenthesis.
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Table 10. Features from the estimated Hawkes process models for describing e-mail communica-
tion behaviors at dierent positions in Enron’s corporate hierarchy.

Position n yyNsend 0 Y Y@ Y©)
CEO 4 0.84(0.36) 0.1(0.05 08(1) 02(05) 3(4.8)
President 4 06(0.16) 0.18(0.13) 5.8(7.5) 5.2(6.6) 13.5(15.2)

Vice President 25 0.56(0.3) 0.27(0.27) 4.4(3.3) 2.8(2.3) 9.7(6)
Managing Director 5 0.65(0.28) 0.2(0.14) 2.6(2.7) 1.6(2.5 6.4(4)

Director 19 0.55(0.2) 0.34(04) 23(3.8) 1.8(3.9 4549
Manager 14 0.26(0.34) 0.34(0.53) 2(1.8) 1(0.9) 5.1(4.2)
Lawyer 9 0.68(0.12) 0.24(0.18) 5.2(3.4) 5(3.4) 10.1(4
Trader 36 0.78(0.15) 0.13(0.12) 1.6(1.9) 1.3(1.8) 3.2(3.5)
Employee 34 0.52(0.28) 0.24(0.22) 2.2(2.5) 1.7(2.2) (4.8)

Note: The values in the columns are the estimated means of the specified variables evaluated over the individuals belonging to each
position, and the standard deviations of the estimates for each variable are given in parenthesis. The table vANE8%ando

are calculated as a weighted average and weighted standard deviation, with weights proportional to the number of e-mails sent and
received by each individual, respectively. Mean values and standard deviatio®8 f¢2). andY® are not weighted. The thresholds

for Y, Y@, andY® are defined similarly for the Enron and IkeNet datasets (Sedt@n
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