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Abstract—We present an approach for inexact subgraph
matching on attributed graphs optimizing the graph edit
distance. By combining lower bounds on the cost of individ-
ual assignments, we obtain a heuristic for a backtracking
tree search to identify optimal solutions. We evaluate our
algorithm on a knowledge graph dataset derived from real-
world data, and analyze the space of optimal solutions.

I. INTRODUCTION

Subgraph matching involves searching for a prescribed
template graph as a subgraph of a world graph. One may
want to find one occurrence, all occurrences, or some
other summary of the solution space, depending on the
application [1]. In applications where the graphs have
attributes on the nodes and edges, it is common to search
for subgraphs of the world which only approximately
match the template. This is called inexact attributed
subgraph matching.

Definition I.1 (Attributed Graph). An attributed graph
G = (V, E ,L,A) consists of a set of nodes V , a set of
edges E ⊆ V × V , a set of attributes A, and a map
L : V ∪E → A from nodes and edges to their attributes.

Given two attributed graphs, a template Gt =
(Vt, Et,Lt,A) and a world Gw = (Vw, Ew,Lw,A), we
are interested in one-to-one maps f : Vt → Vw where
the induced subgraph of the image is similar to the
template. Such a map f is called an inexact match of
Gt. The cost metric used to measure similarity between
the template and the image of f is denoted C(f ;Gt,Gw)
and is described in Section II-A.

The process of finding the map f? which minimizes
C(f ;Gt,Gw) is called inexact attributed subgraph iso-
morphism (ASI), while the process of finding all maps
f with distance at most ε is called inexact attributed
subgraph matching (ASM). Finding the k most similar
maps is called top-k inexact ASM.

In the remainder of this section, we discuss existing
approaches to ASI/ASM and inexact ASI/ASM, as well
as our contributions. In Section II, we describe our
approach to solving inexact ASI, inexact ASM, and top-

k inexact ASM. In Section III, we evaluate our methods
on the AIDA V2.1.2 dataset.

A. Related Work

Algorithms for exact subgraph matching mostly fol-
low one of three approaches [2], [3]: tree search [4], [5],
[6], constraint propagation [7], [8], [9], [10], [11], [12],
and graph indexing [13], [14], [15], [16], [17], [18].

Tree search approaches navigate the space of all pos-
sible maps from the template nodes to the world nodes,
making one assignment at a time, backtracking when it
becomes clear an isomorphism is impossible with the
current assignment. Constraint propagation approaches
follow the same tree search procedure while additionally
tracking which world nodes are candidates for which
template nodes in a compatibility matrix. By repeatedly
applying local constraints, they reduce the candidates
before each assignment.

Graph indexing is typically used for graph database
search based on a subgraph query. To accelerate search-
ing, one constructs indexes based on characteristic sub-
structures of the template. A Cartesian product on the
results of these indexes identifies possible matches. A
verification step follows to check which retrieved graphs
fully match the query; this typically involves running
another subgraph isomorphism algorithm.

Algorithms for inexact subgraph matching are more
diverse than those for exact subgraph matching. Differ-
ent applications and research areas define the inexact
subgraph matching problem in different ways. Some
algorithms take tree search, constraint propagation, or
graph indexing approaches similar to that seen in exact
subgraph matching [19], [20], [21], [22], while other
algorithms relax the discrete optimization problem into
a continuous one in order to apply traditional continuous
optimization techniques such as gradient descent [23].

B. Contributions

We introduce algorithms for inexact attributed sub-
graph isomorphism and matching to find optimal sub-
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graphs as measured by graph edit distance. We show
results for noisy queries on knowledge graphs.

II. ALGORITHM

In Section II-A, we define the cost metric C(f ;Gt,Gw)
that will be minimized in inexact ASI/ASM. In Sec-
tions II-B and II-C, we explain how to compute lower
bounds on C(f ;Gt,Gw) under the constraint f(tc) = wc
for each tc ∈ Vt and wc ∈ Vw. Using these constrained
lower bounds, in Section II-D we describe a tree search
procedure for inexact ASI/ASM.

A. Graph Edit Distance Based Cost Metric

The graph edit distance [24], [25] is a measure of the
distance between two graphs, as defined by the total cost
of the cheapest sequence of edits which transform one
graph into another. The six possible edits usually consid-
ered are node addition, node deletion, node substitution,
edge addition, edge deletion, and edge substitution. Here,
we consider an cost metric using only the latter four
edits.

The node substitution costs are measured by a user-
defined function DV : (Vt × Vw) → R+ that typically
compares the labels of the nodes. A common node
substitution function is

DV(vt, vw) = 1 [Lt(vt) 6= Lw(vw)]

so that
∑
t∈Vt DV(t, f(t)) counts the number of node

assignments which do not preserve the node label. If
the node labels belong to a normed vector space, the
corresponding norm can be used

DV(vt, vw) = ‖Lt(vt)− Lw(vw)‖ .

Likewise, the edge substitution, addition and deletion
costs are measured by user-defined functions D : (Et ×
Ew) → R+, D+ : Ew → R+ and D− : Et → R+. The
edge related cost functions are combined into a single
function DE for brevity in Equation (1). For convenience,
we use the shorthand f((t1, t2)) = (f(t1), f(t2)) so that
f(e) is well-defined.

DE(e, f(e)) =


D(e, f(e)) e ∈ Et, f(e) ∈ Ew
D−(e) e ∈ Et, f(e) 6∈ Ew
D+(f(e)) e 6∈ Et, f(e) ∈ Ew
0 e 6∈ Et, f(e) 6∈ Ew.

(1)

Given a template Gt, a world Gw, and a map f : Vt →
Vw, the cost metric C(f ;Gt,Gw) is defined as

C(f ;Gt,Gw) =
∑
t∈Vt

DV(t, f(t)) +
∑

e∈Vt×Vt

DE(e, f(e)).

(2)

B. Cost Bounds

We now discuss lower bounds on the cost met-
ric. C(f ;Gt,Gw) can be decomposed into local costs
L(t, f(t);Gt,Gw, f) related to each template node t and
matching world node f(t)

C(f ;Gt,Gw) =
∑
t∈Vt

L(t, f(t);Gt,Gw, f).

We use decompositions where the local cost L has the
form

L(t, w;Gt,Gw, f) = DV(t, w)

+
1

2

∑
to∈Vt

[
DE
(
(t, to), (w, f(to))

)
+DE

(
(to, t), (f(to), w)

)]
.

(3)

This way, the local cost L(t, w;Gt,Gw, f) captures the
cost incurred by assigning world node w to template
node t and half of the cost of assigning the edges
incident to w to those incident to t. Edge costs are
halved so that the local costs sum to the correct total cost
C(f ;Gt,Gw); otherwise, edge costs would be counted
twice, once for each endpoint. If the edge addition cost
were neglected (i.e. D+ ≡ 0), the summation

∑
to∈Vt

reduces to
∑
to∈Nt

, where Nt is the set of neighbors
of t. One often useful variation is to alter these factors
independently for each edge to place more importance
on certain nodes; we omit this discussion for now, but
refer to Appendix A for the details.

To bound the full cost, we start by bounding the local
cost L(t, w;Gt,Gw, f) from below by B(t, w;Gt,Gw)
defined as follows

B(t, w;Gt,Gw) := DV(t, w)

+
1

2

∑
to∈Vt

min
wo∈Vw

(
DE
(
(t, to), (w,wo)

)
+DE

(
(to, t), (wo, w)

))
.

(4)

Within the context of inexact ASI/ASM, the set Vw
iterated over in the minimization can often be reduced
for practical purposes; we refer to Appendix B for the
details.

We can extend this bound on the local cost to a naive
bound on the full cost

C(f ;Gt,Gw) ≥
∑
t∈Vt

B(t, f(t);Gt,Gw)

≥
∑
t∈Vt

min
w∈Vw

B(t, w;Gt,Gw) (5)
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which is sufficient for some applications. Alternatively,
we can compute a tighter lower bound by leveraging the
fact that f must be one-to-one (1-1).

G(f ;Gt,Gw) := min
g:Vt→Vw
s.t. g is 1-1

∑
t∈Vt

B(t, f(t);Gt,Gw) (6)

C(f ;Gt,Gw) ≥ G(f ;Gt,Gw) (7)

We refer to G as the global cost bound. Computing
this bound is equivalent to solving a rectangular linear
assignment problem (LAP) of size |Vt| × |Vw|. Many
algorithms exist to solve the LAP and its rectangular
variant. The most notable ones include the Hungarian
algorithm [26], the Munkres algorithm [27], the Jonker-
Volgenant (JV) algorithm [28], and the auction algorithm
[29]. In our implementation, we apply a modified JV
algorithm [30], which is designed to efficiently solve
rectangular linear sum assignment problems via a short-
est augmenting path approach. The time complexity of
a JV solver is typically O(|Vt| |Vw|2).

C. Constrained Cost Bounds

To use the lower bounds from Equations (5) and (6)
in our algorithm, we must compute the bounds under
the constraint f(tc) = wc for each tc ∈ Vt and for each
wc ∈ Vw. The corresponding constrained lower bounds
are

B(tc, wc;Gt,Gw) +
∑
t∈Vt
t6=tc

min
w∈Vw
w 6=wc

B(t, w;Gt,Gw) (8)

for the naive bound and

G(tc, wc;Gt,Gw) := min
g:Vt→Vw
s.t. g is 1-1

s.t. g(tc)=wc

∑
t∈Vt
t 6=tc

B(t, f(t);Gt,Gw)

(9)

for the global cost bound.
To compute these constrained bounds, we first com-

pute B(t, w;Gt,Gw) for each t ∈ Vt and w ∈ Vw. This
takes O (|Vt| |Vw| avgtime(B)) time. The remaining cal-
culations to compute Equation (8) for each tc ∈ Vt and
wc ∈ Vw can be done in O(|Vt| |Vw|) time. Computing
Equation (9) is more complicated.

To compute Equation (9) we must solve a LAP of size
(|Vt| − 1) × (|Vw| − 1) for each tc ∈ Vt and wc ∈ Vw.
Naively solving each of these LAPs separately requires
O(|Vt|2 |Vw|3) time. However, we expect that there are
more efficient ways to solve the LAPs. For example
by solving each LAP in parallel or by first solving the
unconstrained LAP and then updating the solution to
enforce each constraint.

D. Search for Optimal Solutions

From Section II-C, we have a procedure for comput-
ing lower bounds on C(f ;Gt,Gw) under the constraint
f(tc) = wc for each tc ∈ Vt and wc ∈ Vw. Now, we
treat these lower bounds as a heuristic for performing
a greedy depth first search. For each template node t,
we assign f(t) = w for the candidate w with the lowest
bound, then recompute the bounds under that additional
assignment. We assign candidates to template nodes with
the fewest minimum bound candidates first, as this gives
an indication of which template nodes have only a few
“good” choices. After assigning all template nodes in
this way, we obtain a map f .

Although f may not be the optimal map f? that we
seek, it can be used to drastically cut down on the list of
possible assignments we have to consider going forward.
We compute the cost of f to serve as an upper bound
on the cost of the optimal map f?. We keep track of
the cost threshold U and set it equal to the smallest cost
Cmin we have seen so far, with fmin the corresponding
map. Using Cmin, the search space is refined by skipping
assignments f(t) = w which lead to lower bounds that
are greater than or equal to Cmin, since in inexact ASI
we are only interested in the map f? which minimizes
the cost.

After identifying a new map or eliminating all remain-
ing possibilities due to the cost bounds, we backtrack
and try assigning different world nodes to some template
nodes. This is done until there are no options left to
explore, at which point we have found the optimal map
f? = fmin.

To perform inexact ASM instead of inexact ASI, one
can fix U ≡ ε and record all of the maps f that are
observed during the search. In this context, we only skip
assignments when their cost bound is strictly greater than
ε, so that we do not accidentally skip matches whose cost
is exactly ε.

To perform top-k inexact ASM, keep track of
f1, . . . , fk and C1, . . . , Ck which track the k best maps
seen so far and their costs. Use Ck instead of Cmin to
prune the search space, and only prune when the cost
bound is greater than or equal to Ck. When the search
is completed, f1, . . . , fk are the k maps with the lowest
cost.

One way to drastically speed up the search in inexact
ASI and top-k inexact ASM is to set an initial value
for U . However, this approach can lead to no solutions
being found if the chosen value is lower than the cost
of the optimal solution C(f?;Gt,Gw).
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III. EXPERIMENTS

We test our algorithms on the AIDA Version 2.1.2
dataset created by Pacific Northwest National Laboratory
(PNNL) for the DARPA-MAA program. This dataset
consists of a knowledge graph collected from news arti-
cles about political events in the Ukraine. Provided also
is a measure of distance between attributes, which can be
used to construct the corresponding graph edit distance.
The world graph has 98,817 nodes and 138,127 edges.
Three templates are provided, each with six different
variations labeled A-F. These templates are much smaller
than the world graph, consisting of 11-33 nodes and
11-40 edges. These templates were created by taking
a known “ground truth” existing subgraph and adding
increasing levels of noise. The A template has no noise
and is guaranteed to have at least one exact match.
Provided also is the ground truth mapping for the A
version of each template. All experiments were run on
an HP Z8 G4 Workstation with two 12-core 6136 3.0
2666MHz CPUs.

We perform top-k inexact ASM on these templates,
with k = 5. We use two approaches: the first approach
(labeled “Normal”) in the table, simply runs the algo-
rithm with no initial cost threshold, while the second
uses the ground truth cost bound (labeled “GTCB”)
from the A template to derive an appropriate initial cost
threshold for the other templates in each series (1,2,3).
To identify this threshold, we first impose the matching
from the ground truth, then set our algorithm to find
optimal assignments for any remaining nodes that were
not included in the ground truth. Using only this initial
cost threshold, we discard all other matching information
from the ground truth and proceed to optimize over the
space of matches with lower cost than the cost of the
ground truth. The cost of the ground truth for each tem-
plate is listed in the Ground Truth column under Cost.
In real world contexts, the ground truth is unknown.
However, it is not unreasonable that another, possibly
suboptimal, approximate match exists that we can use
for the purpose of setting the initial cost threshold to
restricting the solution space.

The results of the two approaches on the AIDA
Version 2.1.2 dataset are shown in Table I. Although we
perform top-k matching, we list only one cost for each
template; this is because for all templates considered, all
5 matches found were of the same cost. We observe that
for all of the A templates, both the normal and GTCB
approaches converge to the expected result of an exact
match with 0 graph edit distance. For all templates other
than 1C-F, both approaches were able to complete within

the runtime limit of 46.5 hours, and arrive at the optimal
solutions. For 1C-F, the normal version was aborted
due to the runtime limit, resulting in the best solutions
found during that time limit. For the GTCB version,
only template 1E was aborted early, after 35.9 hours.
This was done because, when examining the branching
structure of the search algorithm, the approach was
deemed unlikely to complete. The other three templates
completed and reached optimal solutions.

After identifying optimal solutions (for all templates
except 1E), we then apply the approach for inexact ASM
discussed in Section II-D to find all optimal solutions
by setting the cost threshold to the cost of an optimal
solution. The number of optimal solutions found is listed
in Table II. In the case of 1E, we set this cost threshold
to be the cost of the best solution found; we observe that
all found solutions were of the same cost.

For templates 1D, 1E, and 1F, the optimal solution
search was cut off after 209 hours due to time and
memory limitations. We believe that there exist more
solutions than those that were found, possibly orders of
magnitude more. We have marked these templates with
a > in Table II to indicate this.

A. Analysis of Solution Space

For real world applications it is important to un-
derstand the entire solution space rather than finding
just one match. Especially for security applications, the
match may point to specific people or places, some of
which could be imposters. We show an example here
of a map from the template to the full solution space -
something that could be visualized for analysts trying to
understand the connectivity of the template nodes in the
full solution space. After using the methods discussed
in prior sections to discover subgraph matchings of
minimal cost, we can appeal to symmetries apparent in
the template graph and world graph to attain a more
compact representation of the solution space. Symmetry
in graph structures has been studied in depth in the
context of subgraph matching [15], [31], [16], [32]. It
is a confounding factor for subgraph discovery that can
lead to redundant work while exploring symmetric areas
of the graph. The kind of symmetry most often utilized is
structural equivalence of nodes, i.e., nodes are equivalent
if they have the same label and the same neighborhood
structure (i.e., the same neighbors and same labels on
edges connected to those neighbors, see Figure 1).

In the matching problems on the AIDA knowledge
graph, symmetric structures in the graph account for the
combinatorial explosion in solutions for certain template
graphs, especially in instances where more noise is
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TABLE I
RESULTS FOR THE AIDA VERSION 2.1.2 DATASET, SHOWING TIME TAKEN AND THE COST OF THE BEST MATCH THAT WAS FOUND. THE

ALGORITHM WAS CUT OFF IF IT FAILED TO COMPLETE WITHIN 46.5 HOURS, TAKING THE BEST MATCH THAT IT HAD FOUND SO FAR.

Time Cost

Template Normal GTCB Normal Ground Truth GTCB

1A 27.8 min 1.5 sec 0.0 0.0 0.0
1B 24.5 min 0.2 sec 0.347 0.351 0.347
1C 46.5 hrs 5.48 hrs 8.783 3.610 2.254
1D 46.5 hrs 64.1 min 15.470 1.639 1.636
1E 46.5 hrs 35.9 hrs 16.194 2.642 2.638
1F 46.5 hrs 76.7 min 13.596 2.328 1.772

2A 2.25 min 0.06 sec 0.0 0.0 0.0
2B 3.07 min 0.15 sec 0.307 0.335 0.307
2C 6.35 min 10.6 sec 4.070 4.891 4.070
2D 12.4 min 32.9 sec 3.839 5.942 3.839
2E 4.58 min 22.4 sec 3.848 4.533 3.848
2F 18.5 min 42.3 sec 4.012 4.704 4.012

3A 2.33 min 0.08 sec 0.0 0.0 0.0
3B 2.27 sec 0.15 sec 0.145 0.191 0.145
3C 4.10 min 3.56 sec 2.452 2.452 2.452
3D 10.3 min 2.48 min 2.312 2.585 2.312
3E 20.8 min 10.9 min 2.472 3.471 2.472
3F 4.80 min 0.94 sec 1.314 1.348 1.314

present. Figure 2 demonstrates various forms of symme-
try in the world graph and how they affect the structure
of the solution space for Template 1B. We present the
template graph and its matches to a subgraph of the
world graph containing only those nodes appearing in
an optimal solution. We color each node in the template
graph the same as its candidates in the world graph. The
blue and orange nodes in the world graph are two groups
of structurally equivalent nodes and so can be swapped
out arbitrarily in any solution and maintain a matching
of the same cost. The red and lavender groups of world
nodes present a slightly more complex form of symmetry
(automorphic). Exploiting it for purposes of generating
more solutions would require a more intelligent scheme
that assigns the red and lavender template nodes as a
unit. We leave automorphic symmetry for future work
and only consider structural symmetry in this paper.
In this example, the problem has 6120 optimal cost
solutions; applying structural symmetry, we can reduce
it to 2520 solutions from which we can generate the rest.

An a posteriori analysis of the solutions generated by
our search enables us to compress the solution space as
well as to illustrate potential ways to significantly speed
up the subgraph search. We take the subgraph of world
nodes that appear in a minimal cost solution and compute
groups of nodes that are structurally equivalent. Then to
compress the solution space, we eliminate any solution
that can be generated by swapping out equivalent world

Fig. 1. Structural Equivalence: Nodes C and D are structurally
equivalent and F is equivalent to neither. C, D, and F have the same
node label and same set of neighbors. However, the edge connecting
F to E has a different label than the edges connecting C and D to E,
so it F is not equivalent to C or D.

nodes in another mapping. We do this by examining the
classes of solutions generated by interchanging equiva-
lent nodes and identifying a representative from each.

Table II demonstrates the extent to which structural
symmetry reduces the description of the solution space to
a smaller set. We also list the number of world nodes that
appear in a minimal cost solution as well as the number
of structural equivalence classes to show the level of
equivalence in the solution space. If the number of equiv-
alence classes is significantly smaller than the number
of world nodes, there is a great deal of equivalence. We
observe that in certain cases, e.g., templates 1E and 1F,
the size of the representative solution set is nearly ten
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Fig. 2. Template graph and world subgraph for Problem 1B. Colored groups of nodes in the world graph are candidates for nodes of the same
color in the template graph. The long arrows and shapes denote corresponding groupings.

TABLE II
THE NUMBER OF SOLUTIONS, REPRESENTATIVE SOLUTIONS,

CANDIDATE WORLD NODES, AND EQUIVALENCE CLASSES FOR
EACH SUBGRAPH MATCHING PROBLEM FROM THE AIDA VERSION

2.1.2 DATASET. FOR TEMPLATES 1D-F, THE CODE WAS
TERMINATED DUE TO RUNTIME CONSTRAINTS BEFORE ALL

SOLUTIONS COULD BE FOUND.

Template

1A 1B 1C 1D 1E 1F

# Solutions 6 6120 324 >392k >382k >400k
# Rep. Sols. 3 2520 162 >315k >34k >58k
# World Nodes 38 99 47 109 3169 3141
# Eq. Classes 37 95 46 105 1686 1692

2A 2B 2C 2D 2E 2F

# Solutions 78 1400 39 13780 1248 17368
# Rep. Sols. 6 60 3 1160 128 4160
# World Nodes 29 41 27 45 37 48
# Eq. Classes 17 23 15 30 26 36

3A 3B 3C 3D 3E

# Solutions 6 6 36 198 198
# Rep. Sols. 4 4 16 92 92
# World Nodes 16 16 21 26 23
# Eq. Classes 15 15 18 23 23

times smaller. If an algorithm were to efficiently compute
these symmetries and incorporate them in a subgraph
search, then we might expect speedups of an order of
magnitude for these problems.

An analysis through a symmetry lens also exposes

how introducing noise into a subgraph matching problem
impacts the solution space. Broadly, if more information
is known about the labels and neighbors of vertices in
both the template and world, there will be less symmetry
apparent in the matching problem. This can be seen
in Table II with increased noise as we go from A
to F which significantly expands the solution space.
Intuitively, having more label information allows nodes
to distinguish themselves from each other and break
symmetry. If we introduce noise into a problem, say by
removing a template node’s label, then effectively the
labels of the world graph become irrelevant as the label
cost will be the same.

The graphs provided in the AIDA datasets have three
different labels: “rdf:type”, which indicates the semantic
type of a node (e.g. Person, Location, Vehicle, etc.),
“hasName”, which gives the names of entities, and
“textValue”, which contains miscellaneous text informa-
tion associated with the node. Table III lists the number
of equivalence classes for the first set of templates when
considering only the “rdf:type” label as compared to
considering all labels. As can be seen, when considering
only the type label, we have significantly fewer equiv-
alence classes. This is especially apparent in template
1E and 1F for which the minimal cost solution requires
two edge mismatches leaving an isolated template node
that may match any world graph node as long as the
label matches. Of course, when constructing a match-
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TABLE III
EQUIVALENCE CLASSES WHEN CONSIDERING ONLY PART OF THE

LABEL AND THE FULL LABEL

Template 1A 1B 1C 1D 1E 1F

# Type Eq. Classes 37 67 45 73 36 67
# Full Eq. Classes 37 95 46 105 1686 1692

ing, we must consider all label information; however,
understanding the relationship between different levels
of noise and symmetry appears critical to fully under-
standing the solution space of a given problem.

IV. CONCLUSION

We provide an approach for inexact subgraph match-
ing on attributed graphs via optimization of the graph
edit distance. Using an approach analogous to constraint
propagation, we develop lower bounds on the cost of
individual assignments, then combine them using linear
sum assignment. Using these cost bounds as a heuristic,
we perform a guided depth first search for optimal
solutions. We apply our approach to the AIDA V2.1.2
knowledge graph dataset.

In the future, we hope to extend our method to more
general types of graph templates, such as templates with
pairwise relative attribute constraints. For example, one
could impose a constraint that requires two nodes have
attribute values whose difference lies within a minimum
and maximum range. This is important in the context
of temporal data, where two events may be required
to occur within a certain time window of each other.
Similarly, for spatial data, it may be useful to require
two nodes to be within a certain distance of each other.
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APPENDIX A
VARYING EDGEWISE WEIGHTS

In some situations, the costs of certain nodes become
more important than other nodes. For example, when
a node has a known assignment, it is less important
to know the cost associated with that node, and more
important to know the costs of its surrounding nodes, so
that they may too be assigned candidates using the best
possible heuristic.

We repeat the cost bound formulation from Equa-
tion (3), but replace 1

2 by a variable parameter α(t, to)
which has the property that α(t, to) + α(to, t) = 1
under the constraint 0 ≤ α(t, to) ≤ 1∀t, to. If we
wish to assign t more importance than to, we use
α(t, to) = 1, α(to, t) = 0.

Lα(t, w;Gt,Gw, f) = DV(t, w)

+
∑
to∈Vt

α(t, to)
(
DE
(
(t, to), (w, f(to))

)
+DE

(
(to, t), (f(to), w)

))
.

Similarly, we extend B(t, w;Gt,Gw) to
Bα(t, w;Gt,Gw) defined as follows

Bα(t, w;Gt,Gw) := DV(t, w)

+
∑
to∈Vt

α(t, to)min
wo∈Vw

(
DE
(
(t, to), (w,wo)

)
+DE

(
(to, t), (wo, w)

))
.

In practice, this is used during the search algorithm
to put less weight on assigned nodes. When a node is
given an assignment, it is also given a relative weight
of α = 0, while its neighbors are given a weight of
α = 1 with respect to that node. For an edge between
two assigned nodes, we default to α = 1

2 .

APPENDIX B
RESTRICTING CANDIDATES DURING MINIMIZATION

Within the context of the search approach detailed
in Section II-D, at certain points in the algorithm, we
have an upper bound U on the cost. At this point in
the algorithm, the exact value of the cost bound is not
needed if it is greater than or equal to U (or strictly
greater in the context of inexact ASM).

Thus, we can instead define the local cost bound as

B(t, w;Gt,Gw) := min
(
U,

DV(t, w) +
∑
to∈Vt

α(t, to)min
wo∈C(to)

[
DE
(
(t, to), (w,wo)

)
+DE

(
(to, t), (wo, w)

)])
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where C(to) is defined to be the set of world nodes
wo for which the known constrained cost bound
G(to, w;Gt,Gw) is strictly less than U (less than or
equal to for inexact ASM). Doing so drastically improves
computational performance and provides a tighter bound
on costs which lie below U . This also refines cost bounds
analogously to constraint propagation; as tighter global
cost bounds G are found, this leads to tighter local cost
bounds, which are then used to compute even tighter
global cost bounds until we reach a final set of bounds.
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