
Noisy Subgraph Isomorphisms on Multiplex
Networks

Hui Jin∗, Xie He†, Yanghui Wang∗, Hao Li∗, and Andrea L. Bertozzi∗
∗ University of California, Los Angeles, Los Angeles, California

† University of North Carolina, Chapel Hill, Chapel Hill, North Carolina

Abstract—We address the problem of finding noisy subgraph
isomorphisms on large multiplex networks. Our goal is to find as
many subgraph matches as possible within a noise tolerance. We
propose a novel approach based on the well-known A* search
algorithm. Our approach employs new heuristics to estimate the
number of missing edges of subgraph matches. This method is
verified on one of the synthetic multiplex networks from the
Modeling Adversarial Activity program of the Defense Advanced
Research Projects Agency.

I. INTRODUCTION

Multiplex networks are a mathematical framework for rep-
resenting complicated abstract data with a set of nodes and
various types of interactions between them. The interactions
are encoded by different types of edges; each type stands for
a channel in a multiplex network. The subgraph isomorphism
problem looks for copys of a provided template graph inside
a larger world graph. Solving this problem finds applications
in many disciplines; one specific example is to find cells,
proteins, or molecules with certain structures [1], [14], [13].

Real-world datasets are often noisy, meaning the edge
information may be imprecise, either in the world or the
template graph. From the application standpoint of view, one
could consider noises such as node/edge insertions, deletions,
and mismatches. In this paper, we address the problem of noisy
subgraph matching of templates in large multiplex networks.
Namely, given a small template and a large world graph, both
of which are multiplex networks, we want to find the best
possible matches of the template within the world graph. Our
work builds upon previous work in [16], which introduces
a suite of filtering algorithms. The algorithms assume all
world nodes are initially candidates to each template node,
and eliminate them according to certain properties of the
template graph. For example, the statistics filter in [16] uses
the in-degree and out-degree of each node in the template
graph as a criterion; the filter eliminates world nodes with less
in/out-degree than their corresponding template node, from the
candidate list of this template node. We generalize these filters
to the noisy case and develop an approach, based on the A*
search algorithm, for finding all noisy subgraph isomorphisms,
within a tolerance level. We focus on solving problems with
missing edges in the world graph and extra edges in the

This material is based on research sponsored by the Air Force Research
Laboratory and DARPA under agreement number FA8750-18-2-0066. The
U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon.

template graph, in which no exact matches can be found.
We implement our algorithm on the equivalence classes [18],
which we introduce in details in Section V, to speed up the
search. The experiments are performed on an Intel Xeon Gold
6136 processor with 3 GHz, 25 MB of cache, and 128 GB of
memory.

This paper is structured as follows:
● In Section II and Section III, we discuss related work and

our contributions, respectively;
● In Section IV, we talk about the problem setup of the

noisy case;
● In Section V, we propose heuristics to estimate the

number of missing edges for partial matches; we also
explain how to use the A* search algorithm to find all
Noisy Subgraph Isomorphisms (NSIs);

● We demonstrate experimentally in Section VI that our
approach allows us to enumerate many NSIs for a world
graph with 22K nodes and a template with 74 nodes.

II. RELATED WORK

Many methods have been proposed to find exact subgraph
isomorphisms, e.g. VF2 [4], VF3 [3], LAD [20], Graph-
Indexing [10] and Ullmann’s earlier papers such as [22]. While
many prior works are based on constraint propagation on sin-
gle channel networks, [16] presents a suite of filtering methods
for finding subgraph isomorphisms on multiplex networks.
Based on the filters, [16] aims to understand the entire solution
space — that is the set of all subgraph isomoprhisms —
rather than focusing on finding one of them. However, real-
world datasets can have noise, requiring methods for finding
noisy subgraph isomorphisms; these are subgraphs of the given
world graph that are a few edges short of an exact match.
Recent works such as [25] and [24] explore the noisy subgraph
isomorphism problem on single channel networks with small
world graphs.

The paper [6] focuses on datasets with 104 edges; the work
[7] uses a graph of 100 nodes; the paper [11] has a world graph
with at most 4 × 103 edges. Some inexact subgraph matching
methods such as [2] have been proposed to handle large single
channel networks, but none of these has been extended to
large multiplex networks. Very few works consider the noisy
subgraph matching on large multiplex datasets with more than
106 edges. A recent paper [21] proposes an optimization-
based method for large multiplex networks, and the authors
demonstrate the effectiveness of their method for a certain

1

2019 IEEE International Conference on Big Data (Big Data)

978-1-7281-0858-2/19/$31.00 ©2019 IEEE 4899

Fig. 1: Given the template and world networks above, the noisy
subgraph isomorphism is the subgraph of the world induced
by nodes (1,2,4). Note that there is one missing edge in the
NSI compared to the template.

noise model. However, their method is only suited for finding
one subgraph isomorphism rather than identifying all subgraph
matches within a certain noise level.

The A* search algorithm is a well-known heuristic shortest-
path algorithm proposed by [9]. It uses an evaluation function
for each node and avoids expanding paths that are already
expensive. References [26], [15], [23], [8], [17] and many
others have been applying A* search algorithms to calculate
graph edit distance and thus solve both exact and inexact
graph isomorphism problems. However, these methods focus
on graph isomorphisms instead of subgraph isomorphisms;
also, they only focus on single channel networks and have only
been tested on small datasets, usually with around 100 nodes
in the world graph. Thus, their heuristics are not designed for
large multiplex networks.

We develop an algorithm for large multiplex networks and
the noisy subgraph isomorphism problem while tracking the
number of missing edges, with the goal of finding all the noisy
subgraph isomorphisms in the world graph. Our approach is
based on the A* search algorithm and we borrow the idea of
the statistics filter and topology filter from [16], modifying
them to best adjust to the noise.

III. CONTRIBUTION

We develop novel heuristics and apply the A* search algo-
rithm to find noisy subgraph isomorphisms on large multiplex
networks. As in [18] our ultimate goal is to understand the
solution space (within some tolerance level) rather than just
finding one or several isomorphisms. We also propose two
different noise models, one with missing edges in the world
graph and another one with added edges in the template graph.
In both cases we can identify at least one noisy subgraph
isomorphism on a large multiplex network.

IV. PROBLEM SET UP

A graph G is an ordered triple (V (G),E(G)) where V (G)
is the set of vertices or nodes of a graph, E(G) ⊆ V (G) ×
V (G) the set of edges. Graphs of this form are referred to
as simple directed graphs. We only consider directed graphs
in this paper, so if (u, v) ∈ E(G) does not necessarily imply
(v, u) ∈ E(G).

In this paper, we focus on multiplex graphs. A multiplex
graph is defined by (V (G),CG) where V (G) is the set of

vertices and Cc
G(u, v) describes the number of edges from

vertex u to vertex v in a specific channel c. The central topic
of interest in this paper is the subgraph isomorphism.

Definition 1 (Subgraph isomorphism). Given graphs T =
(V (T),E(T)) and W = (V (W),E(W)), and a map F ∶
V (T) Ð→ V (W), we say that F is a subgraph isomorphism
if it is injective and edge-preserving, that is, for each (u, v) ∈
E(G), we have that (F (u), F (v)) ∈ E(H). In the case of
multiplex graphs, we need Cc

T (u, v) ≤ Cc
W (F (u), F (v)) in

each channel c.

We refer to the graph T in the above definition as the
template graph and the graph W as the world graph. Any
subgraph of W that is isomorphic to T is denoted as a signal
of T in W .

However, in the noisy case, we may not find an exact match
of a template graph in a world graph; edges in the signals may
be missing. We define missing edges in the following way:

Definition 2 (Missing Edges). Given graphs T and W , and
a map F ∶ V (T) Ð→ V (W), for a pair of nodes (u, v), we
say that (u, v) ∈ E(T) is a missing edge if (F (u), F (v)) /∈
E(W). In the case of multiplex graphs, we say that the number
of missing edges in pair (u, v) is

miss(F, (u, v)) = ∑
c

max{Cc
T (u, v) −Cc

W (F (u), F (v)),0} .

From now on, we only consider multiplex graphs. Since
our goal is to find subgraph matches with fewest number of
missing edges, we define the cost of a subgraph match as
follows:

Definition 3 (Cost of Subgraph Match). Given graphs T and
W , and a subgraph match F ∶ V (T) Ð→ V (W), the cost of
subgraph match F is defined by

g(T,W,F) = ∑
(u,v)∈E(T)

miss(F, (u, v)).

Note that to solve the noisy subgraph isomorphism prob-
lem, different costs have been proposed in the literature. For
example, the paper [21] defines the cost by the Frobenius
norm of the difference between graphs adjacency matrices.
Our definition is suitable for the case where we allow more
edges in the world graph than the template graph.

Recall that we want to find a subgraph match with the lowest
cost, which we refer to as a Noisy Subgraph Isomorphism:

Definition 4 (Noisy Subgraph Isomorphism). Given graphs T
and W , we say that F is a Noisy Subgraph Isomorphism (NSI)
if F minimizes the cost g(T,W,F).

We give an example of a NSI in Figure 1. We use the
A* search algorithm to find all minimizing NSIs and other
subgraph matches within a certain noise threshold. The A*
search algorithm is widely used to find the shortest path in
a graph. To apply this algorithm in our problem, we need to
construct a search tree, where the root node represents the
empty match, inner nodes represent partial matches and leaf

2
4900

nodes represent complete matches. We define partial matches
formally as follows:

Definition 5 (Partial Match). Given graphs T and W , a
partial match P is defined by P = (M(P), F (P)), where
M(P) is a subset of V (T) and F (P) is a map from M(P)
to V (W). We also call M(P) matched nodes of this partial
match. An empty match is a partial match with M(P) = ∅
and a complete match is a partial match with M(P) = V (T).

During the search process, we need to go from a node to its
successors in a search tree. It means that we need to extend
our partial match. The way of extending is described in the
following definition:

Definition 6 (Extending a Partial Match). Given graphs T
and W , and a partial match P = (M(P), F (P)). For an
unmatched node u ∈ V (T) and an unmatched world node
v ∈ V (W), a partial match P extended by u → v is defined
by

P + {u→ v} = (M(P) ∪ {u}, F ′)

where

F ′(u0) =
⎧⎪⎪⎨⎪⎪⎩

v, u0 = u

F (u0), u0 ∈M(P).

V. ALGORITHMS

In the A* search algorithm, we need a heuristic function
defined on each node in the search tree. The heuristic estimates
the cost of the best path from the root node through the current
node to a leaf node. In our problem setting, given a partial
match, we need to estimate the cost of the best complete match
extended from the current partial match. Here, estimating the
cost is equivalent to estimating the number of missing edges.
To do this, we borrow the ideas of the Statistics Filter and the
Topology Filter from [16] and propose our two estimations,
the Statistics Estimation and the Topology Estimation. Again,
we use T to represent the template graph and W to represent
the world graph.

A. Statistics Estimation

The Statistics Estimation uses in-degree and out-degree to
estimate the number of missing edges. Given u ∈ V (T), the in-
degree of u is given by dcin(u) = ∑(u′,u)∈E(T)Cc

T (u′, u), and
out-degree of u is given by dcout(u) = ∑(u,u′)∈E(T)Cc

T (u,u′).
If we match u ∈ V (T) to v ∈ V (W), we will have at least

StatEst(u, v) = ∑
c

max{dcin(u) − dcin(v),0}

+max{dcout(u) − dcout(v),0}

missing edges.

B. Topology Estimation

Topology estimation estimates the number of missing edges
for each pair of nodes in the template graph T . During the
estimation, we use an auxiliary variable NodeMiss(u) to
record the number of missing edges already counted around
node u.

First, we set NodeMiss(u) = 0 for every node u of the graph
T initially. Given a partial match P = (M,F), we iterate over
all edges (u,u′) ∈ E(T). For each edge, we have the following
three cases:

1) If both u and v are matched, the number of missing edges
for this pair is

PairMiss(u,u′)
=miss(F, (u,u′)) +miss(F, (u′, u)).

2) If one of u and u′ is matched, without loss of gener-
ality, we assume u ∈ M(P), u′ /∈ M(P). Since u′ is
unmatched, we need to try all unmatched world nodes v′

and then take the minimum over all unmatched world
nodes to get the minimum number of missing edges.
If we match u′ to v′ ∈ V (W), then from statistics
estimation, there will be StatEst(u′, v′) missing edges
around node u′. However, node u′ may connect to
other matched node, so some missing edges around node
u′ are already counted when we iterate over previous
pairs. Recall that NodeMiss(u′) represents the number
of missing edges already counted around node u′. So
there are StatEst(u′, v′) −NodeMiss(u′) more missing
edges. Also we can estimate the number of missing edges
on the pair (u,u′) as in case 1. Then

PairMiss(u,u′) =
min

v′∈V (W)
{max{PairMiss0(u,u′, v′),

StatEst(u′, v′) −NodeMiss(u′)}},

where

PairMiss0(u,u′, v′)
=max{Cc

T (u,u′) −Cc
W (F (u), v′),0}

+max{Cc
T (u′, u) −Cc

W (v′, F (u)),0}.

After we get PairMiss(u,u′), we need to update
NodeMiss(u′) by

NodeMiss(u′) ← NodeMiss(u′) +PairMiss(u,u′).

3) If both u and v are unmatched, we simply set

PairMiss(u,u′) = 0.

Now we can estimate the number of missing edges for a partial
match P in the following way:

TopoEst(P) = ∑
(u,u′)∈E(T)

PairMiss(u,u′).

So TopoEst(P) can be used as the heuristic or f value in the
A* search algorithm.

After we have the Statistics Estimation and the Topology
Estimation, we use the A* search algorithm to find noisy
subgraph isomorphisms. A partial match P is regarded as
a state in the A* search algorithm. The f value of the
state is evaluated by TopoEst(P). The detailed procedure
is described in Algorithm 1. We start with the empty match

3
4901

(∅,∅) where no nodes are matched. In each iteration of the
while loop, we pick out a partial match P0 with the lowest
f value from openList. If all template nodes are matched in
P0, we find one subgraph match with low cost. Otherwise we
pick an unmatched node which minimizes the increment of
TopoEst(P) and try to match it to any one of the unmatched
world nodes. We generate lots of new partial matches in this
procedure. Then we calculate the f values of these partial
matches and add them to openList.

One problem here is that TopoEst(P) may overestimate
the cost. It means that for a subgraph match F extended from
partial match P , TopoEst(P) may be larger than the cost of
F . So the heuristic function is not consistent and we can not
guarantee that the first subgraph match we find is the optimal
one. In experiments below, in which we generate noisy data
from existing datasets that contain exact matches, we verify
that our algorithm always finds the noisy subgraph isomor-
phism, suggesting that TopoEst(P) does not overestimate the
cost too much.

Algorithm 1 A* Search Algorithm

1: Put the empty match on the openList
2: while openList is not empty do
3: currentState = state with the lowest f value in openList
4: Remove currentState from openList
5: if all template nodes in currentState are matched then
6: add currentState to solutionList
7: Pick an unmatched template nodes u in currentState
8: for each candidate v of u do
9: newState.partialMatch = currentState.partialMatch

+ {u→ v}
10: newState.f = TopoEst(newState.partialMatch)
11: add newState to openList

return solutionList

One drawback of the A* search algorithm is that it takes
too much memory when the search space is too large. To
solve this problem, we use the iterative deepening A* search
algorithm [12], which takes much less memory and guarantees
an optimal solution if the heuristic function is consistent.

To further speed up our code, we borrow the idea of Struc-
tural Equivalence from [18]. Structural Equivalence refers
to the ability to exchange two vertices in a graph without
changing the structure of the graph, which occurs when two
vertices have the same exact connections to the same set
of neighbors. By integrating Structural Equivalence into the
A* search algorithm, we reduce the redundant computations
for highly symmetric templates. Instead of considering all
permutations of equivalent template nodes, we only consider
one of them.

Each subgraph isomorphism found using equivalence class
can be expanded, by permutation, without changing the cost.
In other words, we can compress the template graph and thus
reduce the search space, thus accelerating the solution search
in highly symmetric graphs. Consequently, when we perform

TABLE I: Overview of PNNL V6 B0

Dataset Instance Template World
Nodes Edges Nodes Edges

PNNL Version 6 B0-S0 74 1620 22996 12381816

Fig. 2: Template noise toy model where the added edge is
edge (B,C), shown in red.

the A* search algorithm, we keep only the representative of
an equivalence class instead of all equivalent partial matches.

VI. NOISY MODELS AND EXPERIMENTS

We have applied our algorithm to the dataset developed by
Pacific Northwest National Laboratory (PNNL) [5] as part of
the DARPA-MAA program [19]. This dataset consists of a
22K-node world graph with one 74-node template, which sim-
ulates a large number of transactions that take place between
different agents. Table I summarizes the size of instance B0-S0
on which we perform our experiments. In this instance, we are
provided with one world graph with an embedded signal that
is isomorphic to the template. Previously, we sought to locate
the hidden signal within the world graph. We now modify the
given graphs with different noise models such that we are no
longer guaranteed to find an exact match in the world graph.
Now we seek for the NSIs. We define two noise models in the
following subsections.

A. Template Noise Model

Definition 7 (Template Noise Model). Given a template graph
T and a world graph W , where there exists exact match(es)
between T and W , we say Tn is a template noise model of T
if there exists no exact match between Tn and W , and for each
pair of node (u, v), Cc

T (u, v) ≤ Cc
Tn
(u, v) for each channel

c. Here n is the number of missing edges between Tn and T ,
that is n = ∑c∑(u,v)∈E(T)Cc

Tn
(u, v) −Cc

T (u, v).
As an example, consider applying a template noise model

on the problem in Figure 2 where we add an edge from node
B to node C. In this case, there exists no exact match between
the template noise model and the world graph any more. And
the number of missing edges n is 1.

In our experiment, we create a template noise model Tn by
adding edges to the existing template T . In this case, n is the
number of edge(s) being added to T . Note that the edge(s)
added ensure(s) that there are no exact matches between the
template noise model Tn and the world graph W . We then
perform our algorithm on Tn and W to optimize the Noisy
Subgraph Isomorphism (NSI), which is the subgraph match
with the lowest cost.

4
4902

Fig. 3: Two NSIs we find on PNNL V6 B0 with the template noise model. Left panel: We add 2 edges to the original template
graph and present a NSI with two missing edges. Right panel: We add 3 edges to the original template graph and present a
NSI with three missing edges. The missing edges are marked as red dashed lines with the numbers of missing edges.

TABLE II: Time of finding a NSI on PNNL V6 B0 dataset
with the template noise model

n Cost of NSI Run time (s)

1 1 528
2 2 756
3 3 1434
4 4 3083
5 5 2158
6 6 9717
7 7 7367
8 8 11986
9 9 15561

Table II summarizes the information of the NSI returned by
our algorithm in the cases where we add different numbers
of edges n to the template T . We show the cost of the NSI
and the time we take to find this NSI in the second and third
column, respectively. We also show the result of adding two
and three edges to template graph in Figure 3. In those figures
we use 1 to represent a missing edge.

Next we try to find more subgraph matches with higher
cost. We let our program run for up to one hour trying to
find all subgraph matches within the threshold. Note that our
algorithm uses Structural Equivalence of the template graph
for efficiency, so our program counts the number of subgraph
match equivalence classes. Each subgraph match equivalence
class can be extended to a set of equivalent subgraph matches.
Table III summarizes the number of subgraph matches and
subgraph match equivalence classes we found. Although we
find many subgraph matches with some specific costs, there
exist overlaps between the subgraph matches being recovered.

B. World Graph Noise Model

Definition 8 (World Graph Noise Model). Given a tem-
plate graph T and a world graph W , where there exists

TABLE III: Number of SMs (Subgraph Matched) and SM
equivalence classed on PNNL V6 B0 dataset with the template
noise model

n Cost Run Time (s) SM equivalence class count SM Count

1
1 528 1 1152
2 1529 22922 26406144
5 3600 68582 79006464

2
2 756 1 1152
3 2061 22922 26406144
5 3600 22926 26410752

3
3 1478 4 1152
4 3600 91688 26406144
6 3600 22926 6602688

4
4 3600 1 288
7 3600 2 576
8 3600 38519 11093472

exact match(es) between T and W , we say Wn is a world
graph noise model of W if for each pair of node (u, v),
Cc

Wn
(u, v) ≤ Cc

W (u, v) for each channel c. Here n is the
number of missing edges between W and Wn, that is n =
∑ c∑(u,v)∈E(T)Cc

W (u, v) −Cc
Wn
(u, v). Further, we denote p

to be the noise percentage of the world graph noise model
where p% = n/∣E(W)∣ × 100%, here ∣E(W)∣ is total number
of edges in world graph W .

As an example, consider applying a world graph noise
model on the problem in Figure 5 where we remove an edge
from the world graph from node 4 to node 1. In this case,
there exists no exact match between the template and the world
graph noise model any more. And the edge removed is edge
(4,1), thus n = 1. Notice that the noise percentage of this
world graph noise model is 1/5 = 20% because we remove one
edge from the world graph which originally had five edges.

In our experiments, we create a world graph noise model

5
4903

Fig. 4: Two NSIs we find on PNNL V6 B0 with the world graph noise model. Left panel: We remove 0.1% edges from the
original world graph and present a NSI with two missing edges. Right panel: We remove 0.2% edges from the original world
graph and present a NSI with three missing edges. The missing edges are marked as red dashed lines with the numbers of
missing edges.

Fig. 5: World Graph noise toy model with 20% noise; the
removed edge is (4,1)

Wn by removing edges from the existing world graph W .
In this case, n = p% × ∣E(W)∣ is the number of edges
being removed from W . To get Wn, we randomly remove
p% of existing edges within each channel c of the world
graph W . Then nc is the number of edges to be removed for
the corresponding channel c. We then perform the algorithm
on T and Wn to find the NSI. We run our experiments for
p = 0.1,0.2, and 0.4. The number of removed edges can be
calculated with the formula in Definition 8, where n = 12,319
for p = 0.1 and n = 49,275 for p = 0.4. Table IV summarizes
the information of the NSI when we remove p% of edges from
the world graph W . We also show the result of removing 0.1%
and 0.2% edges from world graph in Figure 4. We use 1 to
represent a missing edge. The red dashed line represents a
missing edge, and we find one signal with two missing edges
for the 0.1% world graph noise model and one signal with
three missing edges for the 0.2% world graph noise model.
Again, we let our program run for up to one hour, trying
to find all subgraph matches with a certain cost. Table V
summarizes the number of subgraph matches and subgraph
match equivalence classes we find. Here we only change the
world graph, so the Structural Equivalence of the template

TABLE IV: Time of finding a NSI on PNNL V6 B0 dataset
with the world graph noise model

p Cost of NSI Run-time

0.1 2 275
0.2 3 2199
0.4 5 12241

TABLE V: Number of SMs (Subgraph Matches) and SM
equivalence classes on PNNL V6 B0 dataset with the world
graph noise model

p Cost Run Time (s) SM equivalence class count SM Count

0.1
2 847 1 1152
3 1296 22922 26406144
5 3600 22922 26406144

0.2
3 1059 1 1152
4 2957 22922 26406144
6 3600 22923 26407296

graph does not change and each equivalence class can be
extended to 1152 subgraph matches. When p = 0.1, we find
22922 subgraph matches equivalence classes with cost of 3
and 22922 subgraph match equivalence classes with cost of 5.
If we let the code run for more than one hour, we could find
more subgraph match equivalence classes with cost of 5.

VII. CONCLUSION

In this paper, we find noisy subgraph matches with missing
edges on large multiplex networks. We propose an algorithm
that integrates the statistics filter, topology filter from [16], and
the A* search algorithm [9] to find noisy subgraph matches
with minimum costs. We further integrate Structural Equiva-
lence [18] to speed up the search by compressing the highly

6
4904

symmetry graphs before performing noisy subgraph matching
so that each NSI can be further expanded by permutation.

We build two noisy models — a template noise model and a
world graph noise model. We apply our method on PNNL V6
B0. With the template noise model, we find subgraph matches
for n ≤ 9, and the first NSI (with a minimum cost) can be
found within an hour for n ≤ 5. With the world graph noise
model, we find subgraph matches if we randomly remove
fewer than 0.4% of the world edges; the first NSI can be
found in 0.6 hours for p% ≤ 0.2%.

In the future, we could take other factors into consideration
when we design the cost of subgraph matches. For example,
additional edges and missing edges can both be considered as
cost. We could modify our algorithm and try to find the match
with the smallest number of edge differences.

Further, we could use parallel computing to further speed up
our code. We have already used Structural Equivalence, but it
still takes over an hour to find a NSI when we add 0.4% noise
to the world graph or add six edges to the template graph.
We can parallelize the Statistics Estimation and the Topology
Estimation on each node and edge. Since we identify that these
computations as bottlenecks, we expect significant speedup
after parallelization.

ACKNOWLEDGMENT

This material is based on research sponsored by the Air
Force Research Laboratory and DARPA under agreement
number FA8750-18-2-0066. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of the Air Force Research Laboratory and DARPA
or the U.S. Government.Data provided by the MAA groups at
Pacific Northwest National Laboratory.

We thank Thien Nguyen, Dominic Yang, Yurun Ge, Jacob
Moorman, Thomas Tu, Qinyi Chen, Mason Porter for useful
conversations.

REFERENCES

[1] Tero Aittokallio and Benno Schwikowski. Graph-based methods
for analysing networks in cell biology. Briefings in Bioinformatics,
7(3):243–255, 09 2006.

[2] Vincenzo Bonnici and Rosalba Giugno. On the variable ordering in
subgraph isomorphism algorithms. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics (TCBB), 14(1):193–203, 2017.

[3] Vincenzo Carletti, Pasquale Foggia, Alessia Saggese, and Mario Vento.
Introducing VF3: A new algorithm for subgraph isomorphism. In
International Workshop on Graph-Based Representations in Pattern
Recognition, pages 128–139. Springer, 2017.

[4] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento.
A (sub) graph isomorphism algorithm for matching large graphs. IEEE
transactions on pattern analysis and machine intelligence, 26(10):1367–
1372, 2004.

[5] J. A. Cottam, S. Purohit, P. Mackey, and G. Chin. Multi-channel
large network simulation including adversarial activity. In 2018 IEEE
International Conference on Big Data (Big Data), pages 3947–3950,
Dec 2018.

[6] Nicholas Dahm, Horst Bunke, Terry Caelli, and Yongsheng Gao. Ef-
ficient subgraph matching using topological node feature constraints.
Pattern Recognition, 48(2):317–330, 2015.

[7] Fred DePiero and David Krout. An algorithm using length-r paths to
approximate subgraph isomorphism. Pattern recognition letters, 24(1-
3):33–46, 2003.

[8] Andreas Fischer, Ching Y Suen, Volkmar Frinken, Kaspar Riesen, and
Horst Bunke. Approximation of graph edit distance based on Hausdorff
matching. Pattern Recognition, 48(2):331–343, 2015.

[9] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE transactions
on Systems Science and Cybernetics, 4(2):100–107, 1968.

[10] Huahai He and Ambuj K Singh. Graphs-at-a-time: query language and
access methods for graph databases. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pages 405–
418. ACM, 2008.

[11] Yi Jia, Jintao Zhang, and Jun Huan. An efficient graph-mining method
for complicated and noisy data with real-world applications. Knowledge
and Information Systems, 28(2):423–447, 2011.

[12] Richard E Korf. Depth-first iterative-deepening: An optimal admissible
tree search. Artificial intelligence, 27(1):97–109, 1985.

[13] Alper Küçükural, Andras Szilagyi, O Ugur Sezerman, and Yang Zhang.
Protein homology analysis for function prediction with parallel sub-
graph isomorphism. In Bioinformatics: concepts, methodologies, tools,
and applications, pages 386–399. IGI Global, 2013.

[14] Vincent Lacroix, Cristina G Fernandes, and Marie-France Sagot. Mo-
tif search in graphs: application to metabolic networks. IEEE/ACM
Transactions on Computational Biology and Bioinformatics (TCBB),
3(4):360–368, 2006.

[15] Lorenzo Livi and Antonello Rizzi. The graph matching problem. Pattern
Analysis and Applications, 16(3):253–283, 2013.

[16] Jacob D Moorman, Qinyi Chen, Thomas K Tu, Zachary M Boyd,
and Andrea L Bertozzi. Filtering methods for subgraph matching on
multiplex networks. In 2018 IEEE International Conference on Big
Data (Big Data), pages 3980–3985. IEEE, 2018.

[17] Michel Neuhaus, Kaspar Riesen, and Horst Bunke. Fast suboptimal
algorithms for the computation of graph edit distance. In Joint IAPR In-
ternational Workshops on Statistical Techniques in Pattern Recognition
(SPR) and Structural and Syntactic Pattern Recognition (SSPR), pages
163–172. Springer, 2006.

[18] Thien Nguyen, Dominic Yang, Yurun Ge, Hao Li, and Andrea L.
Bertozzi. Applications of structural equivalence to subgraphisomorphism
on multichannel multigraphs. 2019.

[19] Boyan Onyshkevych. Modeling adversarial activity (maa).
[20] Christine Solnon. Alldifferent-based filtering for subgraph isomorphism.

Artificial Intelligence, 174(12-13):850–864, 2010.
[21] Daniel Sussman, Youngser Park, Carey E Priebe, and Vince Lyzinski.

Matched filters for noisy induced subgraph detection. IEEE transactions
on pattern analysis and machine intelligence, 2019.

[22] Julian R Ullmann. An algorithm for subgraph isomorphism. Journal of
the ACM (JACM), 23(1):31–42, 1976.

[23] Xiaoli Wang, Xiaofeng Ding, Anthony KH Tung, Shanshan Ying, and
Hai Jin. An efficient graph indexing method. In 2012 IEEE 28th
International Conference on Data Engineering, pages 210–221. IEEE,
2012.

[24] David W Williams, Jun Huan, and Wei Wang. Graph database indexing
using structured graph decomposition. In 2007 IEEE 23rd International
Conference on Data Engineering, pages 976–985. IEEE, 2007.

[25] Xifeng Yan, Philip S Yu, and Jiawei Han. Substructure similarity
search in graph databases. In Proceedings of the 2005 ACM SIGMOD
international conference on Management of data, pages 766–777. ACM,
2005.

[26] Zhiping Zeng, Anthony KH Tung, Jianyong Wang, Jianhua Feng, and
Lizhu Zhou. Comparing stars: On approximating graph edit distance.
Proceedings of the VLDB Endowment, 2(1):25–36, 2009.

7
4905

