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Abstract. Motivated by classical vortex blob methods for the Euler equa-
tions, we develop a numerical blob method for the aggregation equation. This
provides a counterpoint to existing literature on particle methods. By regu-
larizing the velocity field with a mollifier or “blob function”, the blob method
has a faster rate of convergence and allows a wider range of admissible kernels.
In fact, we prove arbitrarily high polynomial rates of convergence to classical
solutions, depending on the choice of mollifier. The blob method conserves
mass and the corresponding particle system is both energy decreasing for a
regularized free energy functional and preserves the Wasserstein gradient flow
structure. We consider numerical examples that validate our predicted rate of
convergence and illustrate qualitative properties of the method.

1. Introduction

The aggregation equation describes the evolution of a nonnegative density ⇢

according a velocity field which is obtained by convolving the density with the
gradient of a kernel K : Rd ! R,

(

⇢

t

+ r · (v⇢) = 0 , v = �rK ⇤ ⇢ ,

⇢(x, 0) = ⇢0(x) .

(1.1)

The dynamics governed by this equation arise in a range of problems, including
biological swarming [56,57,67,68], robotic swarming [27,60], molecular self-assembly
[30,63,70], and the evolution of vortex densities in superconductors [2,31,51,55,61,
71]. For swarming and molecular self-assembly, common choices of kernel include
the repulsive-attractive Morse potential and power law potential,
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K(x) = |x|a/a � |x|b/b , a > b > �d .(1.3)

To model the evolution of vortex densities in superconductors, K is chosen to be
the two dimensional Newtonian potential,

K(x) =
1

2⇡
log |x| .(1.4)

2010 Mathematics Subject Classification. 35Q35 35Q82 65M15 82C22;
Key words and phrases. Aggregation equation, vortex blob method, particle method.
This work was supported by NSF grants DMS-0907931, DMS-1401867, and EFRI-1024765,

as well as NSF grant 0932078 000, which supported Craig’s visit and Bertozzi’s residence at the
Mathematical Sciences Research Institute during Fall 2013.

c�2014 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

1



2 KATY CRAIG AND ANDREA L. BERTOZZI

In addition to utility in a range of applications, the aggregation equation pos-
sesses several features of current mathematical interest. It is non-local—the motion
of the density at any point depends on the value of the density at every point—
and when K is symmetric it is formally a gradient flow in the Wasserstein metric.
When K has low regularity at the origin, solutions may blow up in finite time or
form rich patterns as they approach a steady state. In recent years, there has been
substantial interest in these structures from both analytic and numerical perspec-
tives [4–6,10–14,21,23,25,29,34–37,44–46,50,61,62,66,67]. For example, Kolokol-
nikov, Sun, Uminsky, and Bertozzi studied steady states for repulsive-attractive
power law kernels using linear stability analysis, complemented with numerical ex-
amples computed by a particle method [50]. Particle methods have also been used
in purely analytic work, due to the close relationship between particle approxi-
mations and weak measure solutions from the perspective of Wasserstein gradient
flow [18,20,21].

In spite of the significant activity investigating qualitative properties of solutions,
much of it presented alongside numerical examples, analysis of numerical methods
has begun only recently. Carrillo, Choi, and Hauray proved that a particle method
converges to a weak measure solution when the kernel has power law growth |x|a,
2�d < a  2 [24]. Carrillo, Chertock, and Huang developed a finite volume method
for a wide class of nonlinear, nonlocal equations, including the aggregation equation,
and proved the existence of a related discrete free energy which is dissipated along
the scheme [22]. Most recently, James and Vauchelet developed a finite di↵erence
method for a generalization of the one dimensional aggregation equation and proved
its convergence to weak measure solutions [48].

In this paper, we develop a new numerical method for the multidimensional
aggregation equation for a wide range of kernels, including the Newtonian potential,
repulsive-attractive Morse potentials, and repulsive-attractive power law potentials.
In Section 2.1, we define the numerical method, which is a particle method in which
the kernel is regularized by convolution with a smooth, rapidly decreasing mollifier
or blob function. In Section 2.2, we show that the numerical solutions conserve
mass and the corresponding particle system is energy decreasing for a regularized
free energy functional and preserves the formal Wasserstein gradient flow structure.
In Section 3, we prove that our numerical solutions converge to classical solutions
of the aggregation equation. In Section 4, we provide numerical examples which
validate our theoretically predicted rate of convergence and illustrate qualitative
properties of the method. In Section 5, we describe directions for future work.

Our numerical method is inspired by classical vortex blob methods for the vor-
ticity formulation of the Euler equations, which is structurally similar to the ag-
gregation equation, particularly when the kernel is the Newtonian potential, K =
(��)�1 [3,8,9,26,28,41,42]. This equation describes the evolution of the vorticity
! according to a velocity field obtained by convolving the vorticity with the two or
three dimensional Biot-Savart kernel K

d

,

(

!

t

+ v · r! = (rv)! , v = ~

K

d

⇤ ! ,

!(x, 0) = !0(x) .

(1.5)

The velocity field for (1.5) may be rewritten as v = r?��1
!, and when K =

(��)�1, the velocity field for the aggregation equation is v = r��1
⇢. Due to
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these similarities, there has also been interest in behavior of equations for which
the velocity field is a combination of r?��1

⇢ and r��1
⇢ [31, 65].

While the main features of our method are analogous to vortex blob methods
for the Euler equations, there are a few key di↵erences. First of all, we consider the
equation in dimensions d � 1, and we allow both singular and non-singular kernels.
Also, in spite of the structural similarity between the aggregation equation and the
Euler equations, an important di↵erence from the perspective of particle methods
is that the velocity field in the aggregation equation is not divergence free, but is
instead a gradient flow. Adapting blob methods to the compressible case is rela-
tively new, building on Eldredge’s results for compressible fluids in the engineering
literature [33] and Duan and Liu’s results for the b-equation [32]. For our purposes,
conservation of mass proves to be a su�cient substitute for incompressibility.

The Lagrangian nature of our method o↵ers three main benefits over a finite
di↵erence or finite element method. First, it allows us to avoid the main form
of numerical di↵usion. Second, it only requires computational elements in regions
where the density is nonzero. Third, it ensures that the method is inherently adap-
tive, concentrating computational elements in areas where particles accumulate and
thereby increasing resolution near singularities. Our method has further benefits
over a particle method since, instead of removing a singularity of the kernel at zero
by redefining rK(0) = 0, we regularize the kernel by convolution with a mollifier.
Because of this, we are able to obtain arbitrarily high orders of convergence O(hmq),
depending on m � 4, 1

2 < q < 1, which describe the structure of the mollifier. On
the other hand, particle methods for the Euler equations only attain O(h2�✏) rate
of convergence [40, 43], and our numerical simulations indicate that the same rate
of convergence holds for the aggregation equation as well.

Though we are the first to prove quantitative rates of convergence a numeri-
cal method for the aggregation equation and we are the first to implement a blob
method numerically, we are not the first to consider regularized methods for aggre-
gation and aggregation-like equations. Lin and Zhang [51] used blob methods to
prove the existence of weak solutions to the two dimensional aggregation equation
when the kernel is the Newtonian potential. Bhat and Fetecau [15–17] and Norgard
and Mohseni [58,59] studied a similar regularization for Burger’s equation, which is
related to the aggregation equation when K is the Newtonian potential [12, Section
4]. Bhat and Fetecau compute several exact solutions to the regularized problem
and observe similar phenomena near blowup time to our simulations [17].

2. Blob Method

We begin by recalling some basic properties of the aggregation equation. It is a
continuity equation, describing the evolution of a density ⇢ according to a velocity
field v so that the mass of ⇢ is conserved. Conservation of mass is the key property
which allows us to adapt vortex blob methods from the classical fluids case, playing
the same role that incompressibility plays for the Euler equations.

Let X

t(↵) be the particle trajectory map induced by the velocity v = �rK ⇤ ⇢,
d

dt

X

t(↵) = �rK ⇤ ⇢(Xt(↵), t) , X

0(↵) = ↵ .

Rewriting the aggregation equation in terms of the material derivative gives

D⇢

Dt

= �(r · v)⇢ .
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Thus, ⇢ evolves along particle trajectories according to
(

d

dt

⇢(Xt(↵), t) = (�K ⇤ ⇢(Xt(↵), t)) ⇢(Xt(↵), t) ,

⇢(X0(↵), 0) = ⇢0(↵) .

If J(↵, t) = det(r
↵

X

t(↵)) is the Jacobian determinant of the particle trajectories,
conservation of mass implies

⇢(Xt(↵), t)|J t(↵)| = ⇢(↵, 0) .

This allows us to formally rewrite the velocity field and the divergence of the velocity
field in terms of integration in the Lagrangian coordinates,

v(x, t) = �rK ⇤ ⇢(x, t) = �
Z

Rd

rK(x � X

t(↵))⇢0(↵)d↵ ,(2.1)

r · v(x, t) = ��K ⇤ ⇢(x, t) = �
Z

Rd

�K(x � X

t(↵))⇢0(↵)d↵ .

2.1. Definition of blob method. Let hZd be a d-dimensional integer grid with
spacing h. Suppose that for t 2 [0, T ], the density ⇢(x, t) is compactly supported.
Our blob method provides a way to compute approximate particle trajectories
starting at the grid points ih 2 hZd and then compute the approximate density
and velocity along these particle trajectories. We write X

i

(t) for X(ih, t), and in
general we use a subscript i to denote a quantity transported along the particle
trajectory beginning at ih, e.g. v

i

(t) for v(X
i

(t), t) and r · v
i

(t) for r · v(X
i

(t), t).
The approximate particle trajectories, densities, and velocities are prescribed by

a finite system of ordinary di↵erential equations. Solutions of this system may be
computed numerically by a variety of methods to a high degree of accuracy, so that
the dominant error of the blob method comes from the reduction of the original
aggregation equation to the system of ODEs. This reduction has two steps. First,
to avoid a possible singularity of rK, we regularize rK by convolution with a
smooth, radial, rapidly decreasing mollifier or “blob function”  . For � > 0, we
write  

�

(x) = �

�d

 (x/�) and K

�

= K⇤ 
�

. Second, we use a particle approximation
for the initial density. Specifically, we place a Dirac mass of weight ⇢0

j

h

d at each

point of the grid hZd,

⇢

particle
0 (↵) =

X

j

�(↵� jh)⇢0
j

h

d

.

Combining this regularization and discretization with the integral form for the
velocity (2.1) leads to the following approximate velocity.

Definition 2.1 (approximate velocity along exact particle trajectories).

v

h(x, t) = �
Z

Rd

rK

�

(x � X

t(↵))⇢particle0 (↵)d↵ = �
X

j

rK

�

(x � X

j

(t))⇢0
j

h

d

.

We now turn to the definition of the blob method. Following the fluids literature,
we use tildes to distinguish approximate quantities from their exact counterparts.

Definition 2.2 (blob method).

Approximate particle trajectories:

(

d

dt

X̃

i

(t) = �P

j

rK

�

(X̃
i

(t) � X̃

j

(t))⇢0
j

h

d

X̃

i

(0) = ih

Approximate velocity field: ṽ

i

(t) = �P

j

rK

�

(X̃
i

(t) � X̃

j

(t))⇢0
j

h

d
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Approximate divergence of velocity field: r·ṽ
i

(t) = �P

j

�K

�

(X̃
i

(t)�X̃

j

(t))⇢0
j

h

d

Approximate density:

(

d

dt

⇢̃

i

(t) = �r · ṽ

i

(t)⇢̃
i

(t)

⇢̃

i

(0) = ⇢0
i

Due to the regularization of the kernel, rK

�

and �K

�

are locally Lipschitz.
Thus, for any � > 0, there exists a unique solution to this system of ODEs on some
time interval [0, T0]. It is part of our result that this time interval [0, T0] must be
at least as large as the interval of existence for the corresponding classical solution
to the aggregation equation.

When K is the Newtonian potential (�)�1, there is a simple heuristic interpre-
tation of the blob method: it approximates the density by a sum of blobs that
follow particle trajectories. This follows by taking the divergence of the velocity, so
⇢ = �K ⇤ ⇢ = �r · v. Using this relationship we define an alternative approximate
density

⇢̃(x, t) =
X

j

�K

�

(x � X̃

j

(t))⇢0
j

h

d =
X

j

 

�

(x � X̃

j

(t))⇢0
j

h

d

.

This is the analogue of vortex blob methods for the Euler equations. However, as
the purpose of this paper is to devise a numerical method for a variety of kernels,
we will focus on the more general method of computing the approximate density
from Definition 2.2.

2.2. Conserved Quantities. For computational purposes, we only calculate the
blob method along particle trajectories originating at grid points hZd. Still, a simple
extension of the method allows one to compute approximate particle trajectories,
velocity, and density starting from anywhere in Euclidean space.

Definition 2.3 (blob method: o↵ the grid).

Approximate particle trajectories:

(

d

dt

X̃(↵, t) = �P

j

rK

�

(X̃(↵, t) � X̃

j

(t))⇢0
j

h

d

X̃(↵, 0) = ↵

Approximate velocity field: ṽ(x, t) = �P

j

rK

�

(x � X̃

j

(t))⇢0
j

h

d

Approximate density:

(

d

dt

⇢̃(X̃(↵, t), t) = �r · ṽ(X̃(↵, t), t)⇢̃(X̃(↵, t), t)

⇢̃(X̃(↵, 0), 0) = ⇢0(↵)

From this perspective, the blob method preserves the continuity equation struc-
ture of the aggregation equation and consequently conservation of mass,

D

Dt

⇢̃ = �(r · ṽ)⇢̃ =) d

dt

Z

X̃(⌦,t)
⇢dx = 0 .(2.2)

The particle system corresponding to the blob method

⇢̂(x, t) =
X

j

�(x � X̃

j

(t))⇢0
j

h

d(2.3)

preserves the aggregation equation’s Wasserstein gradient flow structure and is en-
ergy decreasing for a regularized free energy functional. Recall that when the kernel
is even, the aggregation equation is formally the gradient flow of the interaction
energy,

E(⇢) =
1

2

Z

Rd⇥Rd

⇢(x)K(x � y)⇢(y)dxdy .
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To see this, recall that the Wasserstein gradient is defined by r
W

E(⇢) = �r · (⇢r@E

@⇢

),

where @E

@⇢

is the functional derivative of E at ⇢. Applying this to E, we recover the
aggregation equation as the gradient flow,

⇢

t

= �r
W

E(⇢) = r · (⇢(rK ⇤ ⇢)) .

This gradient flow structure may be made rigorous given su�cient convexity, reg-
ularity, and decay of the kernel [1, 20, 21].

In analogy with the aggregation equation, the particle system corresponding to
the blob method is formally the Wasserstein gradient flow of the regularized energy

E

�

(⇢) =
1

2

Z

Rd⇥Rd

⇢(x)K
�

(x � y)⇢(y)dxdy .(2.4)

In particular, the particle system (2.3) is a weak measure solution of d

dt

⇢̂+ r · (ṽ⇢̂) = 0,
where the velocity may be rewritten as

ṽ(x, t) = �
X

j

rK

�

(x � X̃

j

(t))⇢0
j

h

d = �rK

�

⇤ ⇢̂(x, t) = r@E

�

@⇢̂

.

Though the gradient flow structure may be purely formal, if K

�

is even, the
regularized energy (2.4) always decreases along particle solutions corresponding to
the blob method. Rewriting the regularized energy in Lagrangian coordinates,

E

�

(⇢̂(t)) =
1

2

Z

Rd⇥Rd

⇢̂(↵, 0)K
�

(X̃(↵, t) � X̃(�, t)⇢̂(�, 0)d↵d� ,

=
1

2

X

i,j

K

�

(X̃
i

(t) � X̃

j

(t))⇢0
i

⇢0
j

h

d

h

d

.

Di↵erentiating with respect to time,

d

dt

E

�

(⇢̂(t)) =
1

2

X

i,j

rK

�

(X̃
i

(t) � X̃

j

(t)) ·
✓

d

dt

X̃

i

(t) � d

dt

X̃

j

(t)

◆

⇢0
i

⇢0
j

h

d

h

d

.

The terms of the sum are the dot product of two d dimensional vectors. For
l = 1, . . . , d, define

M

l = {M

l

ij

} =
nh

rK

�

(X̃
i

(t) � X̃

j

(t))
i

l

o

, w = {w

i

} = {⇢0
i

h

d} ,

where [·]
l

denotes the lth component of the vector, l = 1, . . . , d. By definition
of the particle trajectories, [ d

dt

X̃

i

(t)]
l

= [�M

l

w]
i

, and by the symmetry of K,
M

l

ij

= �M

l

ji

. Letting ⇧ denote the element-wise product of vectors, we have

d

dt

E

�

(⇢̂(t)) =
d

X

l=1

w

t

M

l(�M

l

w ⇧ w) = �
d

X

l=1

(M l

w) · (M l

w ⇧ w) = �
d

X

l=1

X

i

[M l

w]2
i

⇢0
i

h

d

.

Since ⇢0
i

� 0, the regularized energy E

�

decreases along the particle system asso-
ciated to the blob method.

Remark 2.4 (⇢̂ versus ⇢̃). Blob methods for the Euler equations often only compute
approximate particle trajectories, setting aside computations of the approximate
density [3, 8, 9]. For our purpose of numerically approximating classical solutions,
we follow Beale [7] and define the approximate density along particle trajectories
as a function ⇢̃ : hZd ! R (Definition 2.2). However, from the perspective of
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Wasserstein gradient flow, given the approximate particle trajectories X̃, the natu-
ral choice of approximate density would be the particle system ⇢̂ (2.3). This is also
likely the best choice for approximating weak measure solutions to the aggregation
equation, though we leave the topic to future work. (See Lin and Zhang [51].)

3. L

p

Convergence of blob method to smooth solutions

We now prove the convergence of the blob method to classical solutions of the
aggregation equation. Our approach is strongly influenced by results on the con-
vergence of vortex blob methods for the Euler equations [3, 7–9], though our proof
has di↵erent features due to the gradient flow structure of our problem and the fact
that we allow a wider range of kernels.

Given a grid function u : hZd ! R, let D

+
j

denote the forward di↵erence operator

in the j

th coordinate direction, i.e. for any i 2 hZd,

D

+
j

u

i

=
u

i+hj � u

i

h

, where h

j

2 hZd

, (h
j

)
i

=

(

0 if i 6= j

h if i = j

.

For 1  p < +1, we consider the following discrete L

p and Sobolev norms of grid
functions u : hZd ! R:

kuk
L

p
h

=

0

@

X

i2Zd

|u
i

|phd

1

A

1/p

, kuk
W

1,p
h

=

0

@kukp
L

p
h

+
d

X

j=1

kD

+
j

ukp
L

p
h

1

A

1/p

.

Likewise, we define an L

1
h

norm and inner product by

kuk
L

1
h

= sup
i2Zd

|u
i

| , (u, g)
h

=
X

i2Zd

u

i

g

i

h

d

.

Given any function u(x) defined on all of Rd, we may consider it as a function
on hZd by defining u

i

= u(ih). Thus, we may also consider the size of any function
u(x) in the above discrete norms. We may also define the discrete L

p norm on a
subset ⌦ ✓ Rd by kuk

L

p
h(⌦) = k1⌦uk

L

p
h
, where (1⌦)

i

= 1 if ih 2 ⌦ and 0 otherwise.

We say that u 2 L

p

h

is supported in ⌦ if u = 1⌦u.
We define the dual Sobolev norm with duality pairing h·, ·i by

kuk
W

�1,p
h

= sup
g2W

1,p0
h

|hu
i

, g

i

i|
kg

i

k
W

1,p0
h

,

where 1/p + 1/p

0 = 1. We may consider any u 2 L

p

h

as a linear functional on W

1,p0

h

by the duality pairing hu, gi = (u, g)
h

.
The discrete L

p, Sobolev, and dual Sobolev norms are related by the following
inequalities, the proofs of which are natural analogues of classical results. For more
details, see the preprint version of this paper, available on the arXiv, and work by
Beale and Majda [7, 8].

Proposition 3.1. Suppose 1  q  p  +1, 0 < h  1, and u 2 L

p

h

. Define

B

R

= {x 2 Rd : |x| < R}.
(a) kuk

W

�1,p
h

 kuk
L

p
h
.

(b) kuk
L

p
h

 (1 + 2d/h)kuk
W

�1,p
h

.

(c) For any ⌦ ✓ B

R

, kuk
L

q
h(⌦)  C

p,q,R

kuk
L

p
h(⌦).

(d) If u is supported in B

R

, kuk
W

�1,q
h

 C

p,q,R

kuk
W

�1,p
h

.
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(e) Given l 2 Zd

, let T

l

denote translation on the grid hZd

in the direction l. Any

finite di↵erence operator of the form

rh

i

=
1

h

X

|l|l0

~a

l

(h)T l

with |~a
l

(h)|  C0 satisfies krh

i

uk
W

�1,p
h

 Ckuk
L

p
h
.

Measuring the convergence of the particle trajectories and velocity in discrete L

p

norms allows us to apply the classical theory of integral operators, both singular
and otherwise. We measure the convergence of the density in the discrete W

�1,p

norm to reflect the fact that, in the most singular case, when K = (�)�1, the
velocity v = �rK ⇤ ⇢ has one more derivative than the density: �r · v = ⇢. In
general, the velocity may have more regularity with respect to the density, but we
prefer to use the same norms for all kernels and reflect the improved regularity in
better convergence estimates.

We now turn to the assumptions we place on the kernel, mollifier, and exact
solution. These depend on a regularity parameter L � max{d + 2, 4} and an
accuracy parameter m � 4.

Assumption 3.2 (kernel). Suppose that K =
P

N

n=1 K

n

, where for each K

n

, there
exists S

n

� 1 � d so that

|@�rK

n

(x)|  C|x|Sn�|�|
, 8x 2 Rd \ {0}, 0  |�|  max{L, s + d � 1} ,

for s = min
n

S

n

and S = max
n

S

n

. If S

n

= 1�d, we require K

n

(x) to be a constant
multiple of the Newtonian potential.

The Newtonian potential (1.4), repulsive-attractive Morse potential (1.2), and
repulsive-attractive power law potential (1.3) all satisfy this assumption.

Assumption 3.3 (mollifier).  is radial,
R

 = 1, and the following hold:

(1) Accuracy:
R

x

�

 (x)dx = 0 for 1  |�|  m � 1 and
R |x|m| (x)|dx < +1.

(2) Decay: 9 ✏ > 0 such that |x|d+✏| (x)|  C.
(3) Regularity:  2 C

L and |x|d+|�||@� (x)|  C for all |�|  L.
If S > 0, 9 ✏ > 0 such that |x|d+S+✏|@� (x)|  C for all |�|  L.

If the above holds for L arbitrarily large, we say it holds for L = +1. If s = 1 � d,
we require L = +1.

Remark 3.4 (accuracy of mollifier). The accuracy assumption on the mollifier en-
sures that for any multiindex � with |�| < m,

Z

(x � y)� (y)dy =
X

⌫�

✓

�

⌫

◆

x

��⌫

Z

y

⌫

 (y)dy = x

�

Z

 (y)dy = x

�

.

Thus, convolution with the mollifier preserves polynomials of order less than m. In
particular, if K(x) is a polynomial of order at most m, rK

�

= rK and �K

�

= �K.

The following mollifier satisfies Assumption 3.3 with d = 1, m = 4, L = +1:

 (x) =
4

3
p
⇡

e

�|x|2 � 1

6
p
⇡

e

�|x|2/4
.(3.1)

See Majda and Bertozzi for an algorithm which allows one to construct mollifiers
satisfying Assumption 3.3 for arbitrarily large m [53, Section 6.5].
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Assumption 3.5 (exact solution). Suppose 9 T > 0, r � max{m� (s+d�1)), L}
so that ⇢ 2 C

1([0, T ], Cr(Rd)) is a solution to the aggregation equation. Suppose
also that 9 R0 > 1 so that the support of ⇢(x, t) remains bounded in B

R0�1 and, for
all ↵ 2 B

R0+2, the magnitudes of the particle trajectories |Xt(↵)| remain bounded.
If s = 1 � d, we require that |Xt(↵)| remain bounded for all ↵ 2 Rd.

If K is a repulsive-attractive power law kernel,

K(x) =
|x|a
a

� |x|b
b

2 � d < b < a ,

and the initial data is smooth, compactly supported, and radially symmetric, there
exists an exact solution satisfying this assumption 8 T > 0 [5, Theorems 7 and 8].

The above assumptions guarantee the following regularity of the velocity field
and particle trajectories. We give the proofs of these lemmas in Section 6.1.

Lemma 3.6 (regularity of velocity field). The velocity field v = �rK ⇤ ⇢ and its

divergence r · v = ��K ⇤ ⇢ belong to C

m(Rd) \ C

L(Rd) and for any |�|  m,

|@�v(x, t)|  C(1 + |x|(S�|�|)+) , |@�r · v(x, t)|  C(1 + |x|(S�1�|�|)+) .

The constant depends on the kernel, exact solution, dimension, �, T , and R0.

Lemma 3.7 (regularity of particle trajectories). For ↵ 2 B

R0+2, the particle

trajectories X

t(↵) and their temporal inverses X

�t(↵) uniquely exist, are contin-

uously di↵erentiable in time, and are C

L

in space. The Jacobian determinants

J

t(↵) = det r
↵

X

t(↵) and their inverses J

�t(↵) are C

L�1
in space and satisfy

|J t(↵)|⇢(Xt(↵), t) = ⇢0(↵) , 8↵ 2 B

R0+2 .(3.2)

When s = 1 � d, the above holds with B

R0+2 replaced by Rd

.

We now state our main theorem, quantifying the convergence of the blob method.

Theorem 3.8. Suppose that the kernel, mollifier, and exact solution satisfy As-

sumptions 3.2, 3.3, and 3.5 for m � 4 and L � max{d + 2, 4}. Define

G

L

(�) =

8

>

<

>

:

1 if L < s + d ,

| log(�)| if L = s + d ,

�

�(L�s�d)
if L > s + d .

(3.3)

Suppose 1  p < +1 and for some

1
2 < q < 1, 0 < h

q  �  1
2 . Then the quantities

(X̃, ṽ, r · ṽ, ⇢̃) which comprise the blob method exist for all t 2 [0, T ] and satisfy

kX(t) � X̃(t)k
L

p
h(BR0 )

 C(�m + G

L

(�)hL) ,

kv(t) � ṽ(t)k
L

p
h(BR0 )

 C(�m + G

L+1(�)h
L) ,

k⇢(t) � ⇢̃(t)k
W

�1,p
h

 C(�m + G

L+1(�)h
L) ,

provided that for some ✏ > 0,

C(1 + 2d)(�m + G

L+1(�)h
L) < �

2
h

1+✏

/2 .(3.4)

The constant depends on the exact solution, the kernel, the mollifier, the dimension,

T , R0, q, and p 2 [1, +1).
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Remark 3.9 (polynomial kernels). By Remark 3.4, if K(x) is a polynomial of order
no more than m, rK

�

= rK and �K

�

= �K. Thus, the error due to regular-
izing the kernel is zero, and the error of the blob method consists entirely of the
discretization error. In this case, all error bounds in the theorem become Ch

L.

If L = +1, the following corollary shows that the blob method provides arbi-
trarily high order rates of convergence, depending on the accuracy of the mollifier.

Corollary 3.10. Suppose that Assumptions 3.3, 3.2, and that 3.5 hold for m � 4,
L = +1, and

1
2 < q < 1. Then for 1  p < +1 and � = h

q

, there exists h0 such

that for all 0 < h  h0,

kX(t) � X̃(t)k
L

p
h(BR0 )

 Ch

mq

, k⇢(t) � ⇢̃(t)k
W

�1,p
h

 Ch

mq

.

Proof. We first verify that condition (3.4) from Theorem 3.8 holds. Since 1
2 < q < 1

and m � 4, there exists ✏ > 0 so that

1

2
+
✏

2
< q =) 2q + 1 + ✏ < 4q =) 2q + 1 + ✏ < mq .(3.5)

Likewise, since the mollifier satisfies Assumption 3.3 for all L and the kernel satisfies
Assumption 3.2 for s � 1� d, we may choose L large enough so that L > s+ d and

L � q(L + 1 � s � d) = L(1 � q) + q(s + d � 1) > 2q + 1 + ✏ .(3.6)

Combining (3.5) with (3.6) shows that 9 h0 so that, for all 0 < h  h0, (3.4) holds.
Finally, choosing L large enough so that

L � q(L + 1 � s � d) = L(1 � q) + q(s + d � 1) > mq ,

we conclude that for all 0 < h < h0,

kX(t) � X̃(t)k
L

p
h(BR0 )

 C(�m + G

L

(�)hL)  Ch

mq

k⇢(t) � ⇢̃(t)k
W

�1,p
h

 C(�m + G

L+1(�)h
L)  Ch

mq

.

⇤

The proof of Theorem 3.8 relies on the following propositions concerning the
consistency and stability of the blob method. All constants depend on the exact
solution, the kernel, the mollifier, the dimension, T , R0, q, and p 2 (1, +1).

Proposition 3.11 (consistency). For 0  t  T and G

L

(�) defined by (3.3),

kv(t) � v

h(t)k
L

1
h (BR0 )

 C(�m + G

L

(�)hL) ,

kr · v(t)⇢(t) � r · vh(t)⇢(t)k
L

1
h

 C(�m + G

L+1(�)h
L) .

Proposition 3.12 (stability of velocity). For 0  t  T , 1 < p < +1,

if kX(t)�X̃(t)k
L

1
h (BR0 )

 �, then kv

h(t)� ṽ(t)k
L

p
h(BR0 )

 CkX(t)�X̃(t)k
L

p
h(BR0 )

.

Proposition 3.13 (stability of divergence of velocity). For 0  t  T , 1 < p < +1,

if kX(t) � X̃(t)k
L

1
h (BR0 )

 �

2
and k⇢(t) � ⇢̃(t)k

L

1
h

 �

2
, then

kr ·vh(t)⇢(t)�r · ṽ(t)⇢̃(t)k
W

�1,p
h

 CkX(t)� X̃(t)k
L

p
h(BR0 )

+Ck⇢(t)� ⇢̃(t)k
W

�1,p
h

.

We now show how Theorem 3.8 follows from these propositions.
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Proof of Theorem 3.8. By Proposition 3.1, (c) and (d), it su�ces to prove the result
for p su�ciently large. Let T0 > 0 be small enough so that the quantities (X̃, ṽ, r ·
ṽ, ⇢̃) exist for t 2 [0, T0]. Define the particle error e

i

(t) = X

i

(t) � X̃

i

(t), the density
error f

i

(t) = ⇢

i

(t) � ⇢̃

i

(t), and

T

⇤ = min{T, T0, inf{t : ke(t)k
L

1
h (BR0 )

� �

2}, inf{t : kf(t)k
L

1
h (BR0 )

� �

2}} .(3.7)

To bound e(t) and f(t), we first bound their time derivatives and then apply
Gronwall’s inequality. Since the L

p

h

(B
R0) norm of e(t) is a finite sum, we may pass

the time derivative under the norm to obtain

d

dt

ke(t)k
L

p
h(BR0 )


�

�

�

�

d

dt

e(t)

�

�

�

�

L

p
h(BR0 )

= kv(t) � ṽ(t)k
L

p
h(BR0 )

.(3.8)

By Proposition 3.1 (a) and the fact that bounded support of the density causes the
L

p

h

norm below to be a finite sum,

lim
⌧!0

�

�

�

�

f(t + ⌧) � f(t)

⌧

� d

dt

f(t)

�

�

�

�

W

�1,p
h

 lim
⌧!0

�

�

�

�

f(t + ⌧) � f(t)

⌧

� d

dt

f(t)

�

�

�

�

L

p
h

= 0 .

Thus, by the reverse triangle inequality

d

dt

kf(t)k
W

�1,p
h

= lim
⌧!0

kf(t + ⌧)k
W

�1,p
h

� kf(t)k
W

�1,p
h

⌧

 lim
⌧!0

�

�

�

�

f(t + ⌧) � f(t)

⌧

�

�

�

�

W

�1,p
h

=

�

�

�

�

d

dt

f(t)

�

�

�

�

W

�1,p
h

= kr · v(t)⇢(t) � r · ṽ(t)⇢̃(t)k
W

�1,p
h

.(3.9)

For 0  t  T

⇤, we combine the consistency estimates of Proposition 3.11 with
stability estimates of Propositions 3.12 and 3.13 to obtain for 0  t  T

⇤,

kv(t) � ṽ(t)k
L

p
h(BR0 )

 C1(kek
L

p
h(BR0 )

+ �

m + G

L

(�)hL) ,(3.10)

kr · v(t)⇢(t) � r · ṽ(t)⇢̃(t)k
W

�1,p
h

 C1(kek
L

p
h(BR0 )

+ kfk
W

�1,p
h

+ �

m + G

L+1(�)h
L).

(3.11)

Applying Gronwall’s inequality to (3.8) and (3.10), we conclude for 0  t  T

⇤  T ,

kek
L

p
h(BR0 )

 C1Te

C1T (�m + G

L

(�)hL) .

Substituting this into (3.10) gives kv(t) � ṽ(t)k
L

p
h(BR0 )

 C(�m + G

L

(�)hL).
Applying Gronwall’s inequality a second time to (3.9) and (3.11),

kfk
W

�1,p
h

 C1Te

C1T (kek
L

p
h(BR0 )

+ �

m + G

L+1(�)h
L)  C(�m + G

L+1(�)h
L) .

We now show that, in fact, T0 = T

⇤ and T

⇤ = T , so the above inequalities hold
on the interval [0, T ]. First, by the bounded support of f and Proposition 3.1 (b),

kek
L

1
h (BR0 )

 h

�d/pkek
L

p
h(BR0 )

and kfk
L

1
h

 (1 + 2d)h�1�d/pkfk
W

�1,p
h

.(3.12)

If T0 < T

⇤, then at least one of the quantities (X̃, ṽ, r · ṽ, ⇢̃) becomes unbounded
at t = T0. Both ṽ and r · ṽ remain bounded as long as the approximate particle
trajectories remain bounded, and both X̃ and ⇢̃ must remain bounded on [0, T

⇤]
by the above inequalities. Thus, T0 = T

⇤.
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Now, we show T

⇤ = T . Fix ✏ > 0 so that (3.4) holds. Let p � 1 be large enough
so that d/p < ✏. Then,

kek
L

1
h (BR0 )

< h

�✏kek
L

p
h(BR0 )

< �

2
h/2 < �

2
/2 ,

kfk
L

1
h

< (1 + 2d)h�1�✏kfk
W

�1,p
h

< �

2
/2 .

Thus, for all t 2 [0, T

⇤], ke(t)k
L

1
h (BR0 )

, kf(t)k
L

1
h

< �

2
/2, so by (3.7), T

⇤ = T . ⇤
To complete our proof of Theorem 3.8, it remains to show Propositions 3.11,

3.12, and 3.13. We prove these in Sections 3.1 and 3.2. We conclude the current
section with three lemmas that play an important role in the remaining estimates.
The first lemma is a standard result estimating quadrature error.

Lemma 3.14 (quadrature error). Given g 2 C

l

c

(Rd), l > d,

�

�

�

�

�

�

Z

Rd

g(x)dx �
X

j2Zd

g(jh)hd

�

�

�

�

�

�

 C

l,d

kgk
W

l,1(Rd)h
l

.

Proof. See Anderson and Greengard [3, Lemma 2.2]. ⇤
Next, we quantify the regularity of rK

�

.

Lemma 3.15 (regularity of rK

�

and �K

�

). rK

�

and �K

�

belong to C

L(Rd),
and @

�rK

�

(x) = rK ⇤ @� 
�

(x) for all |�|  L.

The third lemma provides pointwise and L

1 estimates on rK

�

. For the L

1

estimates, we allow an error term g(x) of order �.

Lemma 3.16 (regularized kernel estimates). Define G

L

(�) as in equation (3.3),

and fix C

0
> 0. For |�|  L, |g(x)|  C

0
�, and R > 0, there exists C > 0 depending

on the kernel, mollifier, dimension, �, R, and C

0
so that

k@�rK

�

(x + g(x))k
L

1(BR)  CG|�|(�) .

See appendix Section 6.2 for the proof of Lemmas 3.15 and 3.16.

3.1. Consistency. To prove the consistency estimate of Proposition 3.11, we de-
compose the consistency error into a regularization error, due to the convolution
with a mollifier, and a discretization error, due to the quadrature of the integral:

|v(x, t) � v

h(x, t)|
(3.13)

 |rK ⇤ ⇢(x, t) � rK

�

⇤ ⇢(x, t)| +
�

�

�

rK

�

⇤ ⇢(x, t) �
X

rK

�

(x � X

j

(t))⇢0
j

h

d

�

�

�

,

|r · v(x, t) � r · v

h(x, t)|
 |�K ⇤ ⇢(x, t) � �K

�

⇤ ⇢(x, t)| +
�

�

�

�K

�

⇤ ⇢(x, t) �
X

�K

�

(x � X

j

(t))⇢0
j

h

d

�

�

�

.

First, we bound the moment error.

Proposition 3.17 (regularization error). Fix R > 1. Under the hypotheses of

Theorem 3.8, for |x| < R and 0  t  T ,

|rK ⇤ ⇢(x, t) � rK

�

⇤ ⇢(x, t)|  C�

m

, |�K ⇤ ⇢(x, t) � �K

�

⇤ ⇢(x, t)|  C�

m

The constant depends on the exact solution, the kernel, the mollifier, the dimension,

T , R0, and R.
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Proof. It is a standard result (see for example Ying and Zhang [73, Lemma 3.2.6])
that if a mollifier  is accurate of order m and f 2 C

m(Rd) has bounded derivatives,
|f(x) � f ⇤  

�

(x)|  C�

m for all x 2 Rd. Under our assumptions on  , the result
continues to hold for |x| < R if we merely require f 2 C

m(Rd) and

|@�f(x)|  C(1 + |x|(S�m)+) , |�| = m .(3.14)

This follows from Taylor’s formula with integral remainder,

f(x�y)  f(x)+
m�1
X

|�|=1

(�1)|�|y�

�!
@

�

f(x)+m

X

|�|=m

(�1)my

�

�!

Z 1

0
(1�t)m�1

@

�

f(x�ty)dt .

Inequality (3.14) implies for |x| < R, 0 < t < 1,

|@�f(x�ty)|  C(1+|x�ty|(S�m)+)  C(1+(|x|+t|y|)(S�m)+)  C

R

(1+|y|(S�m)+) .

Thus,
�

�

�

�

Z 1

0
(1 � t)m�1

@

�

f(x � ty)dt

�

�

�

�

 C

R

(1 + |y|(S�m)+) .

By Assumption 3.3 on the mth order accuracy of  ,

Z

y

�

 

�

(y)dy = �

�d

Z

y

�

 (y/�)dy = �

|�|
Z

y

�

 (y)dy =

(

�

|�| if |�| = 0 ,

0 if |�| 2 [1, m � 1] .

and
R |y|m| 

�

(y)|dy < C�

m. We also have that
R |y|S | 

�

(y)|dy < C�

S when S > 0.
If S > m, �S < �

m. Thus, integrating Taylor’s formula against  
�

(y) gives

|f ⇤  
�

(x) � f(x)|  C�

m

.

It remains to show that (3.14) holds for f = rK ⇤ ⇢ and f = �K ⇤ ⇢. This
follows from Lemma 3.6. ⇤

Proposition 3.18 (discretization error). Fix R > 1. Under the hypotheses of

Theorem 3.8, with G

L

(�) defined by (3.3), for |x| < R and 0  t  T ,

�

�

�

�

Z

rK

�

(x � y)⇢(y, t)dy �
X

rK

�

(x � X

j

(t))⇢0
j

h

d

�

�

�

�

 CG

L

(�)hL

�

�

�

�

Z

�K

�

(x � y)⇢(y, t)dy �
X

�K

�

(x � X

j

(t))⇢0
j

h

d

�

�

�

�

 CG

L+1(�)h
L

The constant depends on the exact solution, the kernel, the mollifier, the dimension,

T , R0, and R.

Proof. We prove the two estimates simultaneously by bounding

e

d

(x, t) =

Z

K
�

(x � y)⇢(y, t)dy �
X

K
�

(x � X

j

(t))⇢0
j

h

d

,

where K
�

= rK

�

or K
�

= �K

�

. By Lemma 3.7, for all ↵ 2 B

R0+2, the particle
trajectories, X

t(↵) belong to C

L and satisfy
Z

K
�

(x � y)⇢(y, t)dy =

Z

K
�

(x � X

t(↵))⇢0(↵)d↵ .
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By Assumption 3.5, ⇢ 2 C

L(Rd), and by Lemma 3.15, rK

�

and �K

�

also belong
to C

L(Rd). Since L � d + 2, we may bound the error using Lemma 3.14,

|e
d

(x, t)| =

�

�

�

�

Z

K
�

(x � X

t(↵))⇢0(↵)d↵�
X

K
�

(x � X

j

(t))⇢0
j

h

d

�

�

�

�

,

 C

L,d

kK
�

(x � X(·, t))⇢0(·)k
W

L,1(Rd)h
L

.

By Assumption 3.5, |Xt(↵)| < C for all ↵ 2 supp ⇢0, t 2 [0, T ], so for |x| < R,
|x � X

t(↵))|  R + C. Thus, applying the chain and product rules give

|e
d

(x, t)|  CkK
�

k
W

L,1(BR+C)h
L

.

The result then follows from the regularized kernel estimates, Lemma 3.16. ⇤
Finally, we combine the previous two propositions to prove Proposition 3.11.

Proof of Proposition 3.11. By (3.13), Proposition 3.17, and Proposition 3.18, tak-
ing x = X̃

i

(t) for |ih| < R0,

|v
i

(t) � v

h

i

(t)|  C(�m + G

L

(�)hL) ,

|r · v

i

(t) � r · v

h

i

(t)|  C(�m + G

L+1(�)h
L) .

By Assumption 3.5, ⇢ is bounded and supported in B

R0 . Hence,

kv(t) � v

h(t)k
L

1
h (BR0 )

 C(�m + G

L

(�)hL) ,

kr · v(t)⇢(t) � r · v

h(t)⇢(t)k
L

1
h

 C(�m + G

L+1(�)h
L) .

⇤
3.2. Stability. We now turn to the proof of stability, which relies on the following
lemma relating the L

p

h

norm of a discrete convolution to the L

p norm of a con-
volution. This lemma allows us to apply classical results for integral operators to
conclude stability of the method. Our approach is strongly influenced by previous
work on the stability of classical vortex blob methods for the Euler equations by
Beale [7] and Beale and Majda [8, 9].

Let Q

i

be the d-dimensional cube with side length h centered at ih 2 hZd and
define Q

t

i

= X

t(Q
i

). Since h <

1
2 , [|ih|<R0+1Qi

✓ B

R0+2. Lemma 3.7 ensures that

|Qt

i

| =

Z

Q

t
i

dy =

Z

Qi

|J t(↵)|d↵ .(3.15)

and C1h
d  |Qt

i

|  C2h
d, so {Q

t

i

} partitions X

t([
i

Q

i

) for all t 2 [0, T ].

Lemma 3.19. Let G

L

(�) be defined as in equation (3.3) and let J

j

(t) = J

t(jh).
Consider y

ij

(t) 2 C([0, T ], L1
h

(Rd ⇥ Rd)) and g

j

(t) 2 C([0, T ], L1
h

(Rd)), where

ky(t)k
L

1
h

 2� and the support of g

j

(t) is contained in B

R0 for all t 2 [0, T ].
Then for any multiindex |�|  L � 1 and 1 < p  +1, there exists C, R > 0

depending on the exact solution, the kernel, the mollifier, the dimension, �, T , R0,

p, and g so that for all t 2 [0, T ],
�

�

�

�

�

�

X

|jh|<R0

@

�rK

�

(X
i

(t) � X

j

(t) + y

ij

(t))g
j

(t)hd

�

�

�

�

�

�

L

p
h(BR0+1)

 C

�k@�rK

�

⇤ g(t)k
L

p(BR) + �G|�|+1(�)kg(t)k
L

p

�

.

If s = 1�d, the above holds with L

p(B
R0+1) replaced by L

p(B
R0+C

0) for all C

0 � 0.
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Proof. Define w

i

(t) =
P

|jh|<R0
@

�rK

�

(X
i

� X

j

+ y

ij

(t))g
j

(t)J
j

(t)hd, and for x 2
Q

t

i

, y 2 Q

t

j

, define G(x, y, t) = @

�rK

�

(X
i

� X

j

+ y

ij

(t)) and g(y, t) = g

j

(t). Since
J

j

(t) is bounded below, it is enough to bound kw

i

(t)k
L

p
h(BR0+1). For x 2 Q

t

i

,

w

i

(t) =

Z

@

�rK

�

(x � y)g(y, t)dy +

Z

[G(x, y, t) � @

�rK

�

(x � y)]g(y, t)dy

+
X

j

G(x, X

j

(t), t)g
j

(t)(|J
j

(t)|hd � |Qt

j

|) = a(x, t) + b(x, t) + c(x, t) .

By definition, |w
i

(t)|  ka(t) + b(t) + c(t)k
L

1(Qt
i)

, and for 1 < p < +1,

|w
i

(t)|phd  h

d

|Qt

i

|
Z

Q

t
i

|a(x, t) + b(x, t) + c(x, t)|pdx  Cka(t) + b(t) + c(t)kp
L

p(Qt
i)

.

By Assumption 3.5, there exists R > 0 so that for ↵ 2 [|ih|<R0+1Qi

, |Xt(↵)| < R.
Thus, for 1 < p  +1,

kw(t)k
L

p
h(BR0+1)  Cka(t) + b(t) + c(t)k

L

p(BR) .

Since ka(t)k
L

p(BR) = k@�rK

�

⇤ g(t)k
L

p(BR), this gives the first term in our bound.
It remains to control b(t) and c(t). By Lemma 3.7 on the regularity of the

particle trajectories, there exists C

0
> 0 so that for x 2 Q

i

, y 2 Q

j

, t 2 [0, T ],
|ih|, |jh| < R0 + 1,

|X
i

(t) � x| + |Y
i

(t) � y|  C

0
h < C

0
� .

Since ky(t)k
L

1
h

 2�, by the mean value theorem, there exists z(x, y, t) with
|z(x, y, t)|  (C 0 + 2)� so that

|b(x, t)| 
X

|�|=|�|+1

Z

|@�rK

�

(x � y + z(x, y, t))| (C 0 + 2)�|g(y, t)|dy .

By the regularized kernel estimates, Lemma 3.16, for all y 2 B

R0 , |�| = |�| + 1,

k@�rK

�

(x � y + z(x, y, t))k
L

1(BR0+1)  CG|�|+1(�) .

Therefore, by a classical inequality for integral operators [38, Theorem 6.18],

kb(x, t)k
L

p(BR0+1)  C�G|�|+1(�)kg(t)k
L

p
.

Finally, we bound c(t). By Lemma 3.7, J

t(↵) 2 C

L�1(Rd). Hence,

kQ

t

j

| � |J
j

(t)|hd| 
�

�

�

�

�

Z

Qj

|J t(↵)| � |J
j

(t)|d↵
�

�

�

�

�

 Ch

d+1
.

Therefore,

|c(x, t)| =

�

�

�

�

�

�

X

j

G(x, X

j

(t), t)g
j

(t)(|J
j

(t)|hd � |Qt

j

|)
�

�

�

�

�

�

 Ch

d+1�d

�

�

�

�

�

�

X

j

G(x, X

j

(t), t)g
j

(t)hd

�

�

�

�

�

�

 C

�

�

�

�

Z

G(x, y, t)g(y, t)dy

�

�

�

�

 C(|a(x, t)| + |b(x, t)|) .

Combining this with the bounds on a(x, t) and b(x, t) gives the result.
If s = 1�d, the above holds with R0 + 1 replaced by R0 + C

0 for all C

0 � 0. ⇤

We now consider stability of the velocity, Proposition 3.12.
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Proof of Proposition 3.12. Define e

i

(t) = X

i

(t) � X̃

i

(t). As our estimates are uni-
form in t 2 [0, T ], we suppress the dependence on time.

First, we decompose the di↵erence between v

h and ṽ, isolating the e↵ects of
approximate and exact particle trajectories. By the mean value theorem, there

exists |y(1)
ij

|  |e
j

|  � and |y(2)
ij

|  2� so that

v

h

i

� ṽ

i

= ⌃
j

rK

�

(X
i

� X̃

j

)⇢0
j

h

d � ⌃
j

rK

�

(X
i

� X

j

)⇢0
j

h

d(3.16)

+ ⌃
j

rK

�

(X̃
i

� X̃

j

)⇢0
j

h

d � ⌃
j

rK

�

(X
i

� X̃

j

)⇢0
j

h

d

= ⌃
j

D

2
K

�

⇣

X

i

� X

j

+ y

(1)
ij

⌘

e

j

⇢0
j

h

d

+ e

i

⌃
j

D

2
K

�

⇣

X

i

� X

j

+ y

(2)
ij

⌘

⇢0
j

h

d

.

= v

(1)
i

+ e

i

v

(2)
i

.

Because it will be useful in the next proposition, we bound the L

p

h

and L

1
h

norms
of v

(1) and v

(2) over B

R0+1, instead of B

R0 . By two applications of Lemma 3.19

with |�| = 1, g

(1)
j

= e

j

⇢0
j

, and g

(2)
j

= ⇢0
j

, there exists C, R > 0 so that

kv

(1)k
L

p
h(BR0+1)  C

⇣

kD

2
K

�

⇤ g

(1)k
L

p(BR) + �G2(�)kg

(1)k
L

p

⌘

,

kv

(2)k
L

1
h (BR0+1)  C

⇣

kD

2
K

�

⇤ g

(2)k
L

1(BR) + �G2(�)kg

(2)k
L

1

⌘

.

To complete the proof, it remains to show the first term is bounded by Ckek
L

p
h(BR0 )

and the second term is bounded by C. We bound v

(1) by showing that there exists
C > 0 so that kD

2
K

�

⇤ g

(1)k
L

p(BR)  Ckg

(1)k
L

p . By the linearity of convolution

and di↵erentiation, if we show the result for K =
P

N

n=1 K

n

for N = 1, this implies
the result for N > 1. Thus, we may assume K = K1 for s = S � 1 � d.

When s = 1�d, we can apply the Calderón Zygmund inequality. When s > 1�d,
|D2

K(x)|  C|x|s�1 2 L

1
loc(Rd), and we can apply Young’s inequality. Thus,

kD

2
K

�

⇤ g

(1)k
L

p(BR)  kD

2
K ⇤ g

(1)k
L

p(BR)k �

k
L

1  Ckg

(1)k
L

p
.

Since �G2(�)  C, we use the definition g

(1)
j

= e

j

⇢

j

, to conclude

kv

(1)k
L

p
h(BR0+1)  Ckg

(1)k
L

p  Ckek
L

p
h(BR0 )

.(3.17)

We now turn to v

(2). Since sup
y

|g(2)(y)� ⇢0(y)| = sup
j,y2Bj

|⇢0
j

� ⇢0(y)|  Ch,
�

�

�

�

Z

D

2
K

�

(x � y)g(2)(y)dy

�

�

�

�

 C max
|�|=1

�

�

�

�

Z

rK

�

(x � y)@�⇢0(y)dy

�

�

�

�

+

�

�

�

�

Z

D

2
K

�

(x � y)(g(2)(y) � ⇢0(y))dy

�

�

�

�

.

By the regularized kernel estimates, Lemma 3.16, and the fact that h < �, the
above quantity is bounded by a constant for |x| < R. Thus,

kv

(2)k
L

1
h (BR0+1)  kD

2
K

�

⇤ g

(2)k
L

1(BR) + �G2(�)kg

(2)k
L

1  C .(3.18)

Hence, kev

(2)k
L

p
h(BR0 )

 Ckek
L

p
h(BR0 )

. ⇤

We now prove stability of the divergence of the velocity.
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Proof of Proposition 3.13. As in the previous proof, define e

i

(t) = X

i

(t) � X̃

i

(t)
and f

i

(t) = ⇢

i

(t) � ⇢̃

i

(t). Since our estimates are uniform in time, we suppress
dependence on t.

We decompose the di↵erence between r · v

h

i

⇢

i

and r · ṽ

i

⇢̃

i

as

r · v

h

i

⇢

i

� r · ṽ
i

⇢̃

i

 �r · v

h

i

� r · ṽ

i

�

⇢

i

+ r · v

h

i

(⇢
i

� ⇢̃

i

) +
�r · ṽ

i

� r · v

h

i

�

(⇢
i

� ⇢̃

i

)

 a

i

+ b

i

+ c

i

(3.19)

First we bound the W

�1,p
h

norm of a in terms of the L

p

h

norm of e. As in the
proof of the stability of the velocity, we further decompose r · v

h

i

� r · ṽ

i

,

r · v

h

i

� r · ṽ

i

=
X

j

�K

�

(X
i

� X̃

j

)⇢0
j

h

d �
X

j

�K

�

(X
i

� X

j

)⇢0
j

h

d(3.20)

+
X

j

�K

�

(X̃
i

� X̃

j

)⇢0
j

h

d �
X

j

�K

�

(X
i

� X̃

j

)⇢0
j

h

d

.

By Taylor’s theorem, there exists |y(1)
ij

|  |e
j

|  �

2 and |y(2)
ij

|  2�2 so that the
above can be further decomposed as

X

j

r�K

�

(X
i

� X

j

) e

j

⇢0
j

h

d +
X

|�|=2

X

j

1

�!
@

��K

�

(X
i

� X

j

+ y

(1)
ij

)e�
j

⇢0
j

h

d

(3.21)

+
X

j

r�K

�

(X
i

� X

j

) e

i

⇢0
j

h

d + C

X

|�|=2

X

j

1

�!
@

��K

�

(X
i

� X

j

+ y

(2)
ij

)e�
i

⇢0
j

h

d

= a

(1)
i

+ A

(1)
i

+ a

(2)
i

+ A

(2)
i

With this decomposition, a

i

= ⇢

i

(a(1)
i

+ A

(1)
i

+ a

(2)
i

+ A

(2)
i

).

First, consider A

(1) and A

(2). By Lemma 3.19 with |�| = 3, g

(1)
j

= e

�

j

⇢0
j

, and

g

(2)
j

= ⇢0
j

, there exists C, R > 0 so that

kA

(1)k
L

p
h(BR0 )

 CkD

4
K

�

⇤ g

(1)k
L

p(BR) + �G4(�)kg

(1)k
L

p
,

kA

(2)k
L

p
h(BR0 )

 Cke

�k
L

p
h(BR0 )

⇣

kD

4
K

�

⇤ g

(2)k
L

1(BR) + �G4(�)kg

(2)k
L

1

⌘

.

Since |e�
i

|  C|e
i

|2  C�

2|e
i

|, by the regularized kernel estimates Lemma 3.16, we
have for both A

(1) and A

(2),

kA

(·)k
L

p
h(BR0 )

 C(�2G3(�) + �

3
G4(�))kek

L

p
h(BR0 )

 Ckek
L

p
h(BR0 )

.(3.22)

By Proposition 3.1 (a) and the fact that ⇢
i

is bounded and supported in B

R0 , this
implies k⇢A(1)k

W

�1,p
h

and k⇢A(2)k
W

�1,p
h

 Ckek
L

p
h(BR0 )

.

Now, consider ⇢a(1). For ↵ 2 Q

i

, define

F (↵) =
X

j

�K

�

(Xt(↵) � X

j

(t))e
j

⇢0jh
d

.

Let rh

i

be a finite di↵erence operator of the form in Proposition 3.1 (e) and suppose
it is lth order accurate, i.e. krh

i

F �r
↵

Fk
L

p
h(BR0 )

 Ch

lkD

l+1
Fk

L

p
h(BR0+lh). Define

Z(↵, t) = r
↵

X

t(↵) and Z

i

(t) = r
↵

X

t(ih). Rewriting a

(1) with a Lagrangian
derivative and approximating it by this finite di↵erence operator,

a

(1)
i

= (Z�1
i

)r
↵

F (ih) = (Z�1
i

)rh

i

F (ih) + (Z�1
i

)
�r

↵

F (ih) � rh

i

F (ih)
�

.(3.23)
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To bound the first term in ⇢a

(1), let  : Rd ! [0, 1] be a smooth function
satisfying  (x) ⌘ 1 for |x|  R0 + 1/2 and  (x) ⌘ 0 for |x| � R0 + 1 and let  

i

=
 (ih). Since h < 1/2 and ⇢

i

is supported in B

R0 , ⇢irh

i

F (ih) = ⇢

i

rh

i

( 
i

F (ih)).
Therefore, by Proposition 3.1 (e), Assumption 3.5, and Lemma 3.7,

k(⇢
i

Z

�1
i

)rh

i

F (ih)k
W

�1,p
h

 k⇢Z�1k
W

1,1
h

krh

i

( 
i

F (ih))k
W

�1,p
h

 CkF (ih)k
L

p
h(BR0+1) .

By the definition of v

(1) (3.16) and inequality (3.17) from the previous proof,
k⇢a(1)k

W

�1,p
h

is bounded by Ckek
L

p
h(BR0 )

.

Next, we bound the second term in ⇢a

(1). Combining Proposition 3.1 (a), As-
sumption 3.5, Lemma 3.7, and the lth order accuracy of rh

i

,

k(⇢
i

Z

�1
i

)
�r

↵

F (ih) � rh

i

F (ih)
� k

W

�1,p
h

 k⇢Z�1k
W

1,1
h

kr
↵

F (ih) � rh

i

F (ih)k
W

�1,p
h

,

 Ckr
↵

F (ih) � rh

i

F (ih)k
L

p
h(BR0 )

 Ch

lkD

l+1
Fk

L

q
h(BR0+lh) .

When s = 1 � d, we choose l � q/(1 � q). Otherwise, we choose l = 1. We can
now apply Lemma 3.19 with |�| = l + 2, g

j

= e

j

⇢0
j

to control the right hand side.
Combining this with Young’s inequality and Lemma 3.16 gives

Ch

lkD

l+1
Fk

L

q
h(BR0+lh)  Ch

l

�kD

l+3
K

�

⇤ gk
L

p(BR) + �G

l+3(�)kgk
L

p

�

 Ch

l

G

l+2(�)kgk
L

p  Ch

l

G

l+2(�)kek
L

p
h(BR0 )

.

Since 1
2 < q < 1 and � � h

q,

h

l

G

l+2(�) 

8

>

<

>

:

h

l if l + 2 < s + d

qh

l| log(h)| if l + 2 = s + d

h

l

h

q(s+d�l�2) if l + 2 > s + d .

When s = 1 � d, l � q/(1 � q), and when s > 1 � d, l = 1. Thus, l � max{1, q(l +
2 � s � d)} and the above quantity is bounded by a constant.

It remains to bound k⇢a(2)k
W

�1,p
h

 Cka

(2)k
L

p
h(BR0 )

. Since

ka

(2)k
L

p
h(BR0 )

 Ckek
L

p
h(BR0 )

�

�⌃
j

r�K

�

(X
i

� X

j

) ⇢0
j

h

d

�

�

L

1
h (BR0 )

,(3.24)

it su�ces to show
�

�⌃
j

D

2rK

�

(X
i

� X

j

) ⇢0
j

h

d

�

�

L

1
h (BR0+1)

 C .(3.25)

For any N > d, the quadrature Lemma 3.14 and the regularized kernel estimates
Lemma 3.16 imply

�

�

�

�

�

�

Z

Rd

D

2rK

�

(x � X

t(↵))⇢0(↵)d↵�
X

j2Zd

D

2rK

�

(x � X

j

(t))⇢0
j

h

d

�

�

�

�

�

�

 CkD

2rK

�

(x � X

t(·))⇢0(·)k
W

N,1(Rd)h
N  Ch

N

G

N+2(�) .

As argued above, since 1
2 < q < 1 and � � h

q, choosing N su�ciently large so that
N + 2 > s + d and N > q/(1 � q), we have N > q(N + 2 � d � d) and the above
quantity is bounded by a constant. Finally, as argued in the previous proof,

�

�

�

�

Z

Rd

D

2rK

�

(x � X

t(↵))⇢0(↵)d↵

�

�

�

�

=

�

�

�

�

Z

Rd

D

2rK

�

(x � y)⇢(y, t)dy

�

�

�

�

,

 C

�

�

�

�

Z

Rd

rK

�

(x � y)D2
⇢(y, t)dy

�

�

�

�

 C .
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Combining our estimates, we conclude

kak
W

�1,p
h

 k⇢(a(1) + A

(1) + a

(2) + A

(2))k
W

�1,p
h

 Ckek
L

p
h(BR0 )

.

Now that we have controlled a, the second and third terms in (3.19) follow
quickly. We seek to bound kb

i

k
W

�1,p
h

in terms of kf

i

k
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�1,p
h

. By assumption, ⇢
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vanishes outside of B
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i

k
L

1
h

 �
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< 1. Hence, it su�ces to show
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is bounded by a constant. The fact that kr·vhk
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1(BR0+1)  C

follows from the bound on v

(2) from the previous proof (3.16, 3.18). The fact that
kD

+
j

r · v

hk
L

1(BR0+1)  C follows from inequality (3.25) above.
Finally, we turn to the last term in (3.19). To bound kck
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h

in terms of kek
L

p
h
,

we may use the decomposition of r · vh � r · ṽ = a
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(2) given by
(3.20, 3.21). By (3.22, 3.24, 3.25), and the fact that k⇢
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By Lemma 3.19 with |�| = 3 and g
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, there exists C, R > 0 so that
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The above is bounded by Ckek
L

p
h(BR0 )

. This completes the proof. ⇤

4. Numerics

We now present several numerical examples in one and two dimensions for a
range of kernels and initial data. These examples confirm the rate of convergence
obtained in Corollary 3.10 and illustrate the varied phenomena of solutions to the
aggregation equation, including blowup and pattern formation.

4.1. Numerical implementation. We implement the blob method in Python,
using the NumPy, SciPy, and Matplotlib libraries [47, 49, 69]. We approximate
solutions to the ordinary di↵erential equations which comprise our method using
the VODE solver [19], which uses either a backward di↵erentiation formula (BDF)
method or an Adams-Moulton method, depending on the sti↵ness of the problem.

In one dimension, we use the mollifiers

 

(4)(x) =
4

3
p
⇡

e

�|x|2 � 1

6
p
⇡

e

�|x|2/4
,  

(6)(x) =
16

15
 

(4)(x) � 1

30
 

(4)(x/2) .(4.1)

These satisfy Assumption 3.3 with m = 4, 6, L = +1. In two dimensions, we use

 

(4)(x) =
2

⇡

e

�|x|2 � 1

2⇡
e

�|x|2/2
,(4.2)

which satisfies Assumption 3.3 with m = 4 and L = +1.
After selecting a mollifier, we next compute rK

�

= rK⇤ 
�

and �K

�

= �K⇤ 
�

.
If rK and �K are polynomials of degree less than m, convolution with  preserves
the polynomial and rK

�

= rK, �K

�

= �K. (See Remark 3.4.) If K is the New-

tonian potential (�)�1, we have �K

�

=  

�

and rK

�

(x) = x

|x|d
R |x|
0 s

d�1
 

�

(s)ds.
Aside from these special cases, in which an exact expression for the mollified

kernel may be found, we compute the convolution numerically using a fast Fourier
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transform in radial coordinates on a ball of radius 2.5 centered at the origin. De-
pending on the accuracy we seek, we partition the domain into between 100 and
2 ⇥ 106 grid points and interpolate to obtain rK

�

(x) and �K

�

(x).
Finally, when K is the Newtonian potential, we may also compare our approx-

imate numerical solutions to exact solutions. We are able to compute exact so-
lutions for radial initial data by rewriting the aggregation equation in mass co-
ordinates. This gives the following formula for the particle trajectories in radial
coordinates [12, Section 4] and the density along particle trajectories [13],

r(t)d = r(0)d � dt

Z

Br(0)

⇢0(x)dx , ⇢(Xt(↵), t) =

8

<

:

⇣

1
⇢0(↵)

� t

⌘�1
if ⇢0(↵) 6= 0 ,

0 if ⇢0(↵) = 0 .
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Figure 1. A comparison of exact solutions (solid lines) with blob
method solutions (dashed lines). The densities (B) are shown at
times t = 0, 0.4, 0.8. The log-log plot (D) corresponds to t = 0.5.

4.2. One dimension, K = Newtonian Potential = (�)�1.
Blob method, regular initial data: Figure 1 compares exact and blob method
solutions to the one dimensional aggregation equation when K is the Newtonian
potential and the initial initial data is

⇢0(x) =

(

(1 � x

2)20 if |x|  1 ,

0 otherwise .

(4.3)

For this initial data, finite time blowup for the classical solution occurs at t = 1.
We discretize the domain [�1, 1] using h = 0.04. With this refinement of the

grid, the approximate and exact particle trajectories are visually indistinguishable
(A), though the approximate density loses resolution at t = 0.8 (B). Focusing
on a smaller spatial scale (C) reveals that the approximate particle trajectories
bend away from the exact solution to avoid collision at t = 1. This is due to the
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regularization of the kernel, which causes the velocity field to be globally Lipschitz.
Bhat and Fetecau observed the same bending e↵ect for an analogous regularization
in their work on Burgers equation [17].

In spite of the bending, blob method solutions converge to exact solutions with
a high order rate of convergence for t < 1. We choose the m = 4 mollifier  (4) (4.1)
and � = h

q for q = 0.9. A log-log plot of the L

1
h

error of the particle trajectories
and density (D) reveals a numerical rate of convergence close to the theoretically
predicted rate of mq = 3.6. Note that the numerical result is slightly stronger
than the theoretical result, which measures the error of the approximate density in
W

�1,1
h

and requires the exact solution to be smooth.
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Figure 2. A comparison of exact solutions (solid lines) and par-
ticle method solutions (dashed lines). The log-log plot of the error
(right) corresponds to t = 0.5.

Particle method, regular initial data: Figure 2 compares a particle method
approximation with an exact solution for initial data (4.3). To compute the particle
method approximation, we remove the singularity at zero by setting rK(0) = 0,
instead of regularizing the kernel. Since K is the Newtonian potential, the particle
method densities are point masses, which do not belong to L

p

h

. Thus, we only
consider the particle trajectories defined by this method.

Unlike the blob method solution from in the previous example, the particle
method trajectories do not bend away at blowup time. However, a log-log plot of the
L

1
h

error reveals a slower rate of convergence than for the blob method, consistent
with the rate of O(h2�✏) for particle approximations of the Euler equations [40,43].

Discontinuous initial data: Figure 3 compares exact and blob method solutions
to the one dimensional aggregation equation with discontinuous initial data

⇢0(x) = 1[�1,1](x) =

(

1 if |x|  1 ,

0 otherwise .

(4.4)

Though our convergence results only apply to su�ciently regular solutions to the
aggregation equation, the definition of the blob method (Definition 2.2) merely
requires that initial data to be a compactly supported function.

We discretize the domain [�1, 1] using h = 0.04. At this level of resolution,
the approximate and exact particle trajectories are visually indistinguishable (A),
though the approximate density becomes rounded at t = 0.8 (B), with a similar
oscillating profile as the mollifier (4.1).
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Figure 3. A comparison of exact solutions (solid lines) and blob
method solutions (dashed lines) with � = h

q for q = 0.9. The
densities (B) are shown at t = 0, 0.4, 0.8. The log-log plot (D)
corresponds to t = 0.5.

Considering the particle trajectories on a smaller spatial scale (C), we again
observe the trajectories bending away to avoid collision. As expected, a log-log
plot of the L

1
h

error (D) reveals a slower rate of convergence than the more regular
solution in Figure 1. Unlike in the previous example, for which the slower rate of
convergence was due to using a particle method instead of the blob method, in this
example the slower rate of convergence is due to the lower regularity of the initial
data.

4.3. One dimension, Various potentials. Figure 4 compares the rate of conver-
gence of numerical solutions when K = (��)�1 or K(x) = |x|3/3. The mollifiers
(4.1) are of order m = 4 and m = 6. The scaling of the regularization is � = h

q for
q = 0.9, and the initial data is

⇢0(x) =

(

(1 � x

2)10 if |x|  1 ,

0 otherwise .

(4.5)

The more singular the kernel, the greater improvement we see in using the blob
method over a particle method. For the negative Newtonian potential, the m = 4
blob method improves upon the particle method, and the m = 6 blob method shows
even greater improvement. For the cubic potential, the particle method is better
than the m = 4 blob method for the trajectories, but not for the density. The
m = 6 blob method is best for both trajectories and density.

For both kernels, the rates of convergence for the m = 4 blob method are very
close to the theoretically predicted rate of mq = 3.6, while the rates of convergence
for the m = 6 blob method are not as good as the theoretically predicted rate of
mq = 5.4, due to other sources of error in the numerical implementation.
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Figure 4. A comparison of the L
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error at t = 0.5 for various
kernels and numerical methods. For K = �|x|/2, we use analytic
expressions for rK ⇤ 

�

and �K ⇤ 
�

. For the cubic potential, we
compute the convolutions using a fast Fourier transform in radial
coordinates on a ball of radius 2.5 with 5 ⇥ 105 grid points (for
m = 4) and 2 ⇥ 106 grid points (for m = 6).
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sional aggregation equation when K = (�)�1.

4.4. Two Dimensions.
Newtonian potential: Figure 5 compares the rate of convergence of numerical
solutions when K = (�)�1 for various choices of initial data. In the first and third
plot, the numerical solution is computed via the blob method with a mollifier (4.2)
of order m = 4 and � = h

q for q = 0.9. In the second plot, the numerical solution
is computed via a particle method.

As in the one dimensional case, we see the best rates of convergence for the blob
method applied to regular initial data (left). This agrees with our theoretically



24 KATY CRAIG AND ANDREA L. BERTOZZI

predicted rate of mq = 3.6. The rates of convergence for a particle method applied
to regular initial data (middle) and the blob method applied to discontinuous initial
data (right) are slower.

K(x) = log |x|/2⇡ K(x) = |x|2/2 K(x) = |x|3/3
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Figure 6. A comparison of blob method solutions for the two di-
mensional aggregation equation. The scaling of the regularization
is � = h

q for q = 0.9, and the mollifier (4.2) satisfies m = 4. In the
top six plots, the unit square is discretized using h ⇡ 0.13. In the
bottom six plots, the unit square is discretized using h ⇡ 0.07.
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Newtonian, quadratic, and cubic potentials: Figure 6 illustrates various phe-
nomena of blob method solutions for three choices of kernel (Newtonian, quadratic,
and cubic) as well as two choices of initial data (regular and discontinuous).

The top six plots illustrate the behavior of solutions with smooth, compactly
supported initial data,

⇢0(x) =

(

e

1/(x2�1) if |x|  1 ,

0 otherwise .

The first row shows the space-time trajectories of twenty particles, and the second
row shows the density at time t = 1.4. For K = (�)�1, finite time blowup of the
classical solution occurs at t = 1/⇢0(0) ⇡ 1.2, and the particle trajectories become
very close at this time, bending to avoid collision. Two subsequent near-collisions
occur before t = 3.2. For K(x) = |x|2/2, the particles converge to a point in infinite
time, while for K(x) = |x|3/3, the particles asymptotically approach a shrinking
delta ring. Each of these phenomena is reflected in the evolution of the density.

The second two rows consider discontinuous initial data given by the character-
istic function on a star shaped patch,

⇢0(r, ✓) =

(

1 if r <

�

sin2( 5✓2 ) + 1
2

�

/4 ,

0 otherwise .

(4.6)

For each density, we have a side view and a bird’s eye view. For the Newtonian
potential, the density is shown at time t = 0.8 and exhibits the same rounding due
to regularization as in the one dimensional case. For the quadratic potential, the
density is shown at time t = 3.2, and there is no rounding due to regularization
since convolution with a mollifier of accuracy m = 4 preserves polynomials of degree
less than 4, including rK and �K. For the cubic potential, the density is shown
at time t = 10 and exhibits a shrinking star profile, with its edges curling up to a
ring.

Repulsive-attractive power law kernels: Figure 7 displays the evolution of
particle trajectories for numerical solutions to the two dimensional aggregation
equation with repulsive-attractive power law kernels. In the past few years, there
has been significant interest in such kernels, due to the stationary patterns which
develop [4–6,10–14,21,23,29,34–37,44–46,50,61,62,66,67].

Figure 7 compares the results of a particle method (� = 0) with the blob method
(� = 0.32). In all six plots, the initial data is

⇢0(x) =

(

C(1 � x

2)2 if |x|  1 ,

0 otherwise ,

(4.7)

with C chosen so that
R

⇢0 = 1.
For each of the three choices of kernel, the corresponding plots demonstrate

that a large regularization parameter—in this case � ⇡ 0.32—can a↵ect the steady
states of blob method solutions. This e↵ect vanishes as � becomes small, but it
still of interest since it illustrates the important role of the kernel’s regularity in the
dimensionality of steady states. Balagué, Carrillo, Laurent, and Raoul proved that
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Figure 7. A comparison of numerical solutions to the aggregation
equation. The mollifier (4.2) satisfies m = 4, and the unit square
is discretized with h ⇡ .11. For the first kernel, we use an analytic
expression for rK

�

. For the remaining two kernels, we numerically
compute the convolution rK ⇤  

�

in radial coordinates on a ball
of radius 2.5 with 100 grid points.

the dimensionality of the support of steady state solutions depends on the strength
of the repulsive forces at the origin [4]. For a repulsive-attractive power law kernel,

K(x) = |x|a/a � |x|b/b , a > b ,

the repulsive part is more singular than the attractive part, so regularizing the
kernel by convolution with a mollifier has a greater e↵ect for the repulsive part,
and we expect this to dampen the repulsive forces.

For K(x) = |x|4/4 � log |x|/2⇡, we recover the radial, integrable, compactly
supported steady states found by Fetecau, Huang, and Kolokolnikov [37]. A large
regularization parameter causes the steady states to collapse to a ring. For K(x) =
|x|4/4 � |x|3/2/(3/2), we recover the stable delta ring found by Kolokonikov, Sun,
Uminsky, and Bertozzi [50]. A comparison of the particle and blob methods at t = 8
indicates that the blob method solution converges to the ring more quickly. For
K(x) = |x|7/7 � |x|3/2/(3/2), we recover the ring formation and breakup found by
Bertozzi, Sun, Kolokolnikov, Uminsky, and Von Brecht [14]. A large regularization
parameter lowers the dimension of the steady state to three point masses.

Repulsive-attractive Morse potential: Figure 8 shows the evolution of particle
trajectories for numerical solutions to the aggregation equation when the kernel is
given by a repulsive-attractive Morse potential, comparing the results of a particle
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Figure 8. A comparison of numerical solutions to the aggregation
equation computed by particle and blob methods. The mollifier
(3.1) is chosen so that m = 4, and the unit square is discretized
with h ⇡ 0.11. The spatial scale in the first column is the unit
square, and the spatial scale is doubled in the second and third
columns. For all three kernels, we numerically compute the con-
volution rK ⇤  

�

and �K ⇤  
�

in radial coordinates on a ball of
radius 5 with 200 grid points.

method (� = 0) with the blob method (� = 0.32). In the first two columns, the
initial data is given by (4.7), with C chosen so that

R

⇢0 = 1. In the third column,
the initial data is given by a star shaped patch (4.6).

We only observe the e↵ect of a large regularization parameter for the kernel
K(x) = 2e

�|x| � 2e

�|x|/2 with regular initial data. This is likely due to the fact
that the repulsive and attractive components of the kernel have the same regularity,
so regularization does not disproportionately a↵ect one without the other.

5. Conclusion

We develop a new numerical method for the aggregation equation for a range
of kernels, including singular kernels, kernels which grow at infinity, and repulsive-
attractive kernels. We prove that our blob method solutions converge to classical
solutions of the aggregation equation with arbitrarily high rates of convergence,
depending on the choice of blobs. We also provide several numerical examples
which confirm our theoretically predicted rates of convergence and illustrate key
properties of the method, including long-time existence of particle trajectories and
dampening of repulsive forces from repulsive-attractive power law kernels.
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There are several directions for future work. First, our estimates do not di↵er-
entiate between purely repulsive, purely attractive, or repulsive-attractive kernels,
and our numerical method may be improved by leveraging the di↵erent dynamics
in each of these cases. In particular, a numerical method for repulsive or repulsive-
attractive kernels might leverage steady states to obtain global in time bounds on
the error. Preliminary analysis in this direction indicates that it will be necessary
to measure error in di↵erent norms. Our current discrete L

p norms measure the
distance between exact and approximate solutions along particle trajectories that
begin at the same grid point. However, small perturbations of the functional change
where particles settle in a steady state. This causes the discrete L

p

h

norm of the
error to be large, even if the overall structure of the steady states is the same.

Another direction for future work would be to adapt the blob method to the
Keller-Segel equation by the addition of (possibly degenerate) di↵usion. From the
perspective of classical vortex methods, the addition of di↵usion corresponds to
passing from the Euler equations to the Navier Stokes equations, so it may be pos-
sible to adapt random vortex or core spreading methods from the Navier Stokes
equations to the Keller-Segel equation [26, 39, 52, 54, 64]. Our method might also
be extended to the Keller-Segel equation by separately simulating the e↵ects of
aggregation and (degenerate) di↵usion at each time step. Yao and Bertozzi devel-
oped such a method by using a radial particle method to simulate aggregation and
an implicit finite volume scheme to simulate degenerate di↵usion [72]. The blob
method would allow one to perform the aggregation step for non-radial solutions
with a high degree of accuracy.

Finally, our result on the convergence of the blob method to classical solutions
of the aggregation equation might be extended to weak measure solutions. Lin and
Zhang [51] used a blob method to prove existence of weak measure solutions for the
two dimensional aggregation equation when K = (��)�1. The blob method might
also be used to prove existence of weak measure solutions for the multidimensional
aggregation equation for a range of singular kernels. This would build on the work
of Bertozzi, Garnett, and Laurent for radial initial data and kernels of the form
K(x) = |x|a, 2 � d  a < 2 [12]. Such a result would be of particular interest for
kernels in the range K(x) = |x|�1 to K(x) = |x|, for which uniqueness may also
hold.

6. Appendix

6.1. Proof of Regularity of Velocity Field and Particle Trajectories. In this
section we prove Lemma 3.6 on the regularity of the velocity field v = �rK ⇤⇢, the
divergence of the velocity field r · v = ��K ⇤ ⇢ and Lemma 3.7 on the regularity
of the particle trajectories X

t(↵) and the Jacobian determinants J

t(↵).

Proof of Lemma 3.6. By the linearity of di↵erentiation and convolution, it is enough
to show the result in the specific case that that K = K1 with s = S � 1 � d.

When s = 1 � d, K is a constant multiple of the Newtonian potential. By As-
sumption 3.5, ⇢ 2 C

1([0, T ], Cr

c

(Rd)) for r � max{m, L} and has compact support.
It is a classical result that �K ⇤ ⇢ = C⇢. Thus r · v = ��K ⇤ ⇢ belongs to
C

L(Rd) \ C

m(Rd) and has bounded derivatives up to order m.
Now, we may assume that both rK and �K are homogeneous of order at least

1� d. We treat both simultaneously by proving the result for a kernel K, which for
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fixed l � 1 � d satisfies

|@�K(x)|  C|x|l�|�|
, 8x 2 Rd \ {0}, 0  |�|  l + d � 1 .

Note that this implies @�K 2 L

1
loc(Rd) for all |�|  l+d�1. When K(x) = rK(x),

l = s, and when K(x) = �K(x), l = s � 1. The fact that K ⇤ ⇢ 2 C

L(Rd) is
immediate, since ⇢ 2 C

L

c

(Rd) and K 2 L

1
loc(Rd). We now turn to the estimates

that imply K ⇤ ⇢ 2 C

m(Rd) and the bound on its derivatives.
We first prove by induction that for 0  |�|  l + d � 1,

@

�K ⇤ ⇢(x) =

Z

@

�K(x � y)⇢(y)dy .

If |�| = 0, equality holds. Suppose |�| � 1 and @

�K ⇤ ⇢(x) =
R

@

�K(x � y)⇢(y)dy

for all |�| = |�| � 1. If |⌘| = 1 satisfies @⌘@� = @

� ,

@

�(K ⇤ ⇢) = @

⌘((@�K) ⇤ ⇢) = (@�K) ⇤ (@⌘⇢) .

We now move @⌘ onto K. Fixing ✏ 2 (0, 1),

(@�K) ⇤ (@⌘⇢)(x) =

Z

|y|<✏

@

�K(y)@⌘
x

⇢(x � y)dy +

Z

|y|�✏

@

�K(y)@⌘
x

⇢(x � y)dy

= O(✏d+l�|�|) +

Z

|y|�✏

@

�K(y)⇢(x � y)dy + O(✏d�1+l�|�|) .

Since |�| = |�| � 1  l + d � 2, sending ✏ ! 0 gives

(@�K) ⇤ (@⌘⇢)(x) = (@�K) ⇤ ⇢(x) .

This shows K ⇤⇢ 2 C

l+d�1(Rd). We now show K ⇤⇢ 2 C

m(Rd). If m  l+d�1,
this is immediate, so suppose m > l + d � 1. By Assumption 3.5, ⇢ 2 C

r

c

(Rd) for
r � m�(s+d�1). Since @�(K⇤⇢) = (@�K)⇤⇢ and @�K 2 L

1
loc for all |�|  l+d�1,

for any |�| = m, there exists |⌘| = m � (l + d � 1)  r so that

@

�K ⇤ ⇢ = (@�K) ⇤ (@⌘⇢) .

Thus, K ⇤ ⇢ 2 C

m(Rd).
Finally, we show that |@�K ⇤ ⇢(x, t)|  C(1 + |x|(l�|�|)+) for |�|  m. If

|�| � l + d � 1, let |⌘| = |�| � (l + d � 1) and |�| = l + d � 1 so that @� = @

⌘

@

� .
Otherwise, let � = � and ⌘ = 0. Since @�K ⇤ ⇢(x) is continuous, it is bounded for
|x|  2R0. If |x| > 2R0,

|@�K ⇤ ⇢(x)| = |(@�K) ⇤ (@⌘⇢)(x)|  C

Z

|x � y|l�� |@⌘⇢(y)|dy  C

Z

BR0

|x � y|l��

dy


(

C|x|l�� if l > � ,

C if l  � .

Thus, |@�K⇤⇢(x)|  C(1+|x|(l�|�|)+). The constant depends on the exact solution,
the kernel, the dimension, �, T , and R0. ⇤

We now prove Lemma 3.7 on the regularity of the particle trajectories.

Proof of Lemma 3.7. By Lemma 3.6, v 2 C

L(Rd), so there exists a time interval
[0, T0] on which for ↵ 2 B

R0+2 the particle trajectories X

t(↵) and their inverses
X

�t(↵) uniquely exist, are continuously di↵erentiable in time, and belong to C

L.
Likewise J

t(↵) and J

�t(↵) belong to C

L�1 and satisfy equation (3.2) .
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Suppose T0 < T . Then there exists ↵ so that |Xt(↵)| ! +1 as t ! T0. This
contradicts Assumption 3.5. Therefore, T0 = T . ⇤

6.2. Proof of Regularized Kernel Estimates. We now prove the regularized
kernel estimates from Section 3. Throughout, we use that

(

|y|s 2 L

1(B1(0)) and |y|s 2 L

1(Rd \ B1(0)) if 1 � d  s  0 ,

|y|s 2 L

1(B1(0)) if 0 < s .

(6.1)

Proof of Lemma 3.15. By the linearity of di↵erentiation and convolution, it is enough
to show the result in the specific case that that K = K1 with s = S � 1 � d.

If s = 1 � d, K is a constant multiple of the Newtonian potential. In this case,
since  2 C

L(Rd) for L � d+2, it is a classical result that �K

�

= �K ⇤ 
�

= C 

�

.
Assumption 3.3 ensures  

�

2 C

L(Rd), hence �K

�

2 C

L(Rd).
We may now treat the cases of rK

�

and �K

�

simultaneous by proving the result
for a kernel K

�

= K ⇤  
�

, which for fixed l � 1 � d satisfies

|@�K(x)|  C|x|l�|�|
, 8x 2 Rd \ {0}, 0  |�|  l + d � 1 .

When K(x) = rK(x), l = s and when K(x) = �K(x), l = s � 1.
It is enough to show that in a neighborhood around every x, there exists g(y) 2

L

1(Rd) which dominates K(y)@�
x

 

�

(x � y). Then, the mean value theorem ensures
that the di↵erence quotient which converges to the derivative at x is also dominated
by g(y), allowing us to conclude

@

�

Z

K(y) 
�

(x � y)dy =

Z

K(y)@� 
�

(x � y)dy ,

and K
�

2 C

L(Rd). We use Assumption 3.3 on the decay and regularity of  to find
dominating functions when l  0 and l > 0.

If 1 � d  l  0, the decay and regularity assumptions ensure that there exists
✏ > 0 so that |@� (x)|  C|x|�d�✏ for all |�|  L. If l > 0 the regularity assumption
ensures that |@� (x)|  C|x|�d�l�✏ for all |�|  L. Since @� is bounded near the
origin, there exists C

0
> 0 so that for all x 2 Rd,

|@� (x)| 
(

C

0(|x| + 1)�d�✏ if 1 � d  l  0 ,

C

0(|x| + 1)�d�✏�l if 0 < l .

Therefore,

|K(y)@� 
�

(x � y)| 
(

C

�

|y|l(|x � y| + 1)�d�✏ if 1 � d  l  0 ,

C

�

|y|l(|x � y| + 1)�d�✏�l if 0 < l .

(6.2)

If |x| < R and |y| > 2R, |x � y| + 1 > |y| � |x| > |y| � R >

1
2 |y|. This gives the

following dominating functions when |x| < R:

|K(y)@� 
�

(x � y)| 
(

C

�,R

1|y|2R + C

�,R

|y|�d�✏+l1|y|>2R if 1 � d  l  0 ,

C

�,R

1|y|2R + C

�,R

|y|�d�✏ 1|y|>2R if 0 < l .

Since R was arbitrary, @�K
�

(x) = K ⇤ @� 
�

(x) for all x 2 Rd. ⇤

Proof of Lemma 3.16. By the linearity of di↵erentiation and convolution, it is enough
to show the result in the specific case that that K = K1 with s = S � 1 � d.
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We first prove the following pointwise bounds for |�|  L and r > 0:

|@�rK

�

(x)| 

8

>

<

>

:

C|x|S�|�| if 1  |x| ,

C|x|s�|�| if �  |x|  1 ,

C�

s�|�| if |x|  r�.

We begin with |x|  r�. By Lemma 3.15, @�rK

�

= rK ⇤ (@� 
�

), so

|@�rK

�

(x)| 
Z

|rK(y)||@� 
�

(x � y)|dy  C

Z

|y|s��d�|�|
�

�

�

�

@

�

 

✓

x � y

�

◆

�

�

�

�

dy ,

 C

Z

|�y|s��|�|
�

�

�

@

�

 

⇣

x

�

� y

⌘

�

�

�

dy = C�

s�|�|
Z

|y|s
�

�

�

@

�

 

⇣

x

�

� y

⌘

�

�

�

dy .(6.3)

Suppose 1 � d  s  0. By (6.1),

|@�rK

�

(x)|  C�

s�|�|

(

k@� k
L

1(Rd)

Z

|y|1
|y|sdy + sup

|y|�1
|y|s k@� k

L

1

)

 C�

s�|�|
.

If s > 0, we apply Assumption 3.3, |x|  r�, and (6.3) to conclude

|@�rK

�

(x)|  C�

s�|�|
Z

�

�

�

y +
x

�

�

�

�

s

�

�

@

�

 (y)
�

�

dy ,

 �

s�|�|
Z

(|y| + r)s
�

�

@

�

 (y)
�

�

dy  C�

s�|�|
.

We now turn to the the pointwise estimate on |@�K

�

(x)| for |x| � �. First
suppose 1 � d  s  0. In this case, our proof generalizes the approaches of Beale
and Majda [8] and Anderson and Greengard [3]. Let �0(s) be a smooth function,
0  �0(s)  1 satisfying

�0(s) = 0 for s  1/4 , �0(s) = 1 for s � 1/2 .

Define �
x

(y) = �0(|y|/|x|). By Lemma 3.15,

|@�rK

�

(x)| =

�

�

�

�

Z

rK(y)@� 
�

(x � y)dy

�

�

�

�

,


�

�

�

�

Z

rK(y)�
x

(y)@� 
�

(x � y)dy

�

�

�

�

+

�

�

�

�

Z

rK(y)(1 � �

x

(y))@� 
�

(x � y)dy

�

�

�

�

,

= I1 + I2 .

To control I1, we integrate by parts,

I1 
�

�

�

�

Z

@

�

y

(rK(y)�
x

(y)) 
�

(x � y)dy

�

�

�

�

.

As �
x

(y) is only nonzero for |y|/|x| > 1/4, we only need to bound I1 for � 
|x| < 4|y|. For any multiindex �, |@�

y

�

x

(y)|  C|x|�|�| and by Assumption 3.2,

|@�rK(y)|  C|y|s�|�|  C|x|s�|�| for |x| < 4|y|. Combining these facts with the
product rule gives |@�

y

(rK(y)�
x

(y))|  C|x|s�|�|. Since  
�

2 L

1(Rd), this shows

I1  C|x|s�|�|
.

We now turn to I2. Since 1��
x

(y) is nonzero for |y|/|x| < 1/2, and |1 � �

x

(y)|  1,

I2 
�

�

�

�

�

Z

|y||x|/2
rK(y)@� 

�

(x � y)dy

�

�

�

�

�

.
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For y in this range, |x| � � implies that |x � y| � |x| � |y| � |x|/2. By Assumption
3.3 on the regularity of the mollifier, |x|d+|�||@� (x)|  C. Therefore,

|@� 
�

(x�y)| = �

�d�|�|
�

�

�

�

@

�

 

✓

x � y

�

◆

�

�

�

�

 C�

�d�|�||(x�y)/�|�d�|�|  C|x|�d�|�|
.

Furthermore, since s � 1 � d,

I2  C|x|�d�|�|

�

�

�

�

�

Z

|y||x|/2
rK(y)dy

�

�

�

�

�

 C|x|�d�|�|
Z |x|/2

0
r

s

r

d�1
dr  C|x|s�|�|

.

This completes the proof of the pointwise bound for 1 � d  s  0.
Now we prove the pointwise estimate on |@�K

�

(x)| for �  |x| when s > 0. First,
note that for any multiindex � such that |�|  |�| and s � |�| � �1,

|@�rK

�

(x)|


�

�

�

�

�

Z

|y|>✏

rK(x � y)@� 
�

(y)dy

�

�

�

�

�

+

�

�

�

�

�

Z

|y|✏

rK(x � y)@� 
�

(y)dy

�

�

�

�

�


�

�

�

�

�

Z

|y|>✏

@

�rK(y)@���

 

�

(x � y)dy

�

�

�

�

�

+ C

�

|�|�1
X

m=0

�

�

�

�

�

Z

|y|=✏

|y|s�m

dy

�

�

�

�

�

+ C

�

�

�

�

�

�

Z

|y|✏

|y|sdy

�

�

�

�

�

✏!0���!
�

�

�

�

Z

@

�rK(y)@���

 

�

(x � y)dy

�

�

�

�

If there is some |�|  |�| so that s � |�| = �1, then |@�rK| is homogeneous of
order �1 and by the preceding argument for s < 0,

|r�

K

�

(x)|  |(@�rK)⇤(@���

 

�

)(x)|  C|x|�1�(|�|�|�|) = C|x||�|�1�|�| = C|x|s�|�|
.

On the other hand, if s � |�| > 0, integrating by parts |�| times and applying
Assumption 3.3 on the decay of the mollifier when s > 0 leaves us with

|@�rK

�

(x)| 
�

�

�

�

Z

@

�rK(y) 
�

(x � y)dy

�

�

�

�

 C

Z

|y|s�|�|| 
�

(x � y)|dy

 C

Z

|y|2|x|
|y|s�|�|| 

�

(x � y)|dy + C�

�d

Z

|y|>2|x|
|y|s�|�| �

d+s+✏

|x � y|d+s+✏

dy

The first term is bounded by C|x|s�|�|. The second term is bounded for |x| � � by

C�

s+✏

Z

|y|>2|x|
|y|s�|�| 1

(|y| � |x|)d+s+✏

dy  C�

s+✏

Z

|y|>2|x|
|y|s�|�| 1

|y|d+s+✏

dy

 C�

s+✏

Z 1

2|x|
r

�|�|�d�✏

r

d�1
dr  C�

s+✏|x|�|�|�✏  C|x|s�|�|
.

This completes the proof of the pointwise estimates.
Finally, we apply the pointwise estimates to obtain the L

1(B
R

) estimates. With-
out loss of generality, we may assume R � (C 0 +1)�. First, decompose the integral,
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with �0 = (C 0 + 1)�, as
Z

BR

|@�rK

�

(x + g(x))|dx


Z

BR\B�0

|@�rK

�

(x + g(x))|dx +

Z

BR\B�0

|@�rK

�

(x + g(x))|dx

= I3 + I4

When |x|  �

0, |x + g(x)|  2�0 = 2(C 0 + 1)� and I3  C�

s�|�|
�

d  C�

s+d�|�|.
When |x| > �

0, we use that |x + g(x)| � �

0 � C

0
� = � to conclude

I4  C

Z

BR\B�0

|x + g(x)|s�|�|
dx .

If s � |�| > 0, the fact that |x + g(x)|  2(C 0 + 1)�  2R implies the integral is
bounded by a constant which depends on R. If s � |�|  0,

I4  C

Z

BR\B�0

(|x| � |g(x)|)s�|�|
dx  C

Z

R

�

0
(r � C

0
�)s�|�|

r

d�1
dr

 C

Z

R�C

0
�

�

r

s�|�|(r + C

0
�)d�1

dr  C

Z

R

�

r

s+d�|�|�1(1 + C

0)d�1
dr



8

>

<

>

:

C(Rs+d�|�| � �

s+d�|�|)  C if s + d > |�| ,

C(log(R) � log(�))  C| log �| if s + d = |�| ,

C(�s+d�|�| � R

s+d�|�|)  C�

s+d�|�| if s + d < |�| .

The constant depends on the kernel, mollifier, dimension, �, and R. ⇤
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and Prof. Je↵ Eldredge for very helpful conversations.

References

1. Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient flows in metric spaces and in the
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