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Abstract. In this paper we study the pattern formation of a kinematic aggregation model for
biological swarming in two dimensions. The swarm is represented by particles and the dynamics are
driven by a gradient flow of a non-local interaction potential which has a local repulsion long range
attraction structure. We review and expand upon recent developments of this class of problems as
well as present new results. As in previous work, we leverage a co-dimension one formulation of the
continuum gradient flow to characterize the stability of ring solutions for general interaction kernels. In
the regime of long-wave instability we show that the resulting ground state is a low mode bifurcation
away from the ring and use weakly nonlinear analysis to provide conditions for when this bifurcation
is a pitchfork. In the regime of short-wave instabilities we show that the rings break up into fully 2D
ground states in the large particle limit. We analyze the dependence of the stability of a ring on the
number of particles and provide examples of complex multi-ring bifurcation behavior as the number of
particles increases. We are also able to provide a solution for the “designer potential” problem in 2D.
Finally, we characterize the stability of the rotating rings in the second order kinetic swarming model.
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1. Introduction

Mathematical models for swarming, schooling, and other aggregative behavior in
biology have given us many tools to understand the fundamental behavior of collective
motion and pattern formation that occurs in nature [10, 6, 2, 26, 25, 14, 7, 13, 27, 19,
33, 32, 23, 11, 17, 37, 38, 34, 36, 9, 15, 29, 21, 20, 24, 8]. One of the key features of many
of these models is that the social communication between individuals (sound, chemical
detection, sight, etc...) is performed over different scales and are inherently nonlocal
[11, 22, 2]. In the case of swarming, these nonlocal interactions between individuals
usually consist of a shorter range repulsion to avoid collisions and medium to long
range attraction to keep the swarm cohesive. While some models include anisotropy
in this communication (e.g. an organism’s eyes may have a limited field of vision)
simplified isotropic interactions have been shown to capture many important swarming
behaviors including milling [20, 10]. More recently it has been shown [17, 38, 37] that the
competition between the desire to avoid collisions and the desire to remain in a cohesive
swarm can sometimes result in simple radially symmetric patterns such as rings, annuli
and uniform circular patches and other times result in exceedingly complex patterns.
Moreover how modelers select the strength and form of the repulsion near the origin
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Fig. 1.1. Dynamics of (1.2). First column: f(r) =1−r, N = 80. The equilibrium solution is a
stable ring. Second column: f(r) = r−0.5−r5, N = 300. Third column: Simulation of the continuum
limit (1.4) with f as in the second column. Fourth column: f(r) =1−r2.2, N = 100. Fifth column:
f(r) = r−0.5−r0.5, N = 300. Reproduced from [17] with authors permission. Copyright (2011) by the
American Physical Society.

has a direct effect on the co-dimension of the swarm [1]. In particular, the possible co-
dimensionality of the ground state is directly related to the singularity of the interaction
kernel at the origin.

This work is a combination of a review paper and a research paper, since some of
the results in this paper already appeared elsewhere (in a shorter form); while others are
new. The focus of this paper is to develop an understanding of which patterns will form
(in 2D) in a given swarm as a function of the nonlocal social interaction. The goal is
to develop tools that can help us predict when a swarm will aggregate into a ring or an
annulus or some other complex ground state from a given model for their social interac-
tions. The classical approach to understanding pattern formation (say in PDEs), first
suggested in Turing [35], is to perform a careful stability analysis around a homogeneous
state and to determine the unstable modes. In the case of classic Turing instabilities
driven by diffusion the resulting unstable Fourier modes sometimes characterize the final
ground state pattern (e.g. stripes and spots) in the solution. To understand patterns
driven, not by diffusion, but nonlocal repulsion-attraction interactions such as the ones
found in Figure 1.1, we take a similar approach.

To develop a theory for predicting the final ground state formation of a swarm, we
formulate our pattern as extrema of the N -particle pairwise interaction energy

E(x1,. ..,xN ) =
∑
k,j 6=k

P (|xk−xj |), (1.1)

where P denotes the isotropic pairwise interaction potential. We consider the associated
gradient flow to the interaction energy (1.1) which takes the form

dxk
dt

=−∇xkE=
1

N

∑
j=1...N
j 6=k

f (|xk−xj |)(xk−xj), k= 1.. .N, (1.2)
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where f(r) =F (r)/r and F (r) =−P ′(r) is the force associated to our potential P .
We will be able to characterize the patterns seen in Figure 1.1 by employing a sta-

bility analysis of Equation (1.2), but, unlike classical Turing patterns, we will linearize
around uniform ring solutions. The instabilities of these co-dimension one, radially sym-
metric solutions nicely characterize the resulting ground state even when the resulting
pattern is not co-dimension one.

We will make use of the underlying continuum formulation of (1.2) known as the
aggregation equation [17, 18, 3, 4] which takes the form

ρt(x,t)+∇·(ρ(x,t)u(x,t)) = 0, x∈R2, t≥0

u(x,t) =

∫
R2

f (|x−y|)(x−y)ρ(y,t) dy. (1.3)

Here, ρ describes the density of particles and u is the velocity field. By considering a
weak formulation of (1.3) where the density aggregates on a co-dimension one curve one
can derive, see [30, 17, 38], the evolution equation for the material point of the curve,
y(ξ), to be

d

dt
y(ξ,t) =u=

∫
D

f(|y(ξ)−y(ξ′)|)(y(ξ)−y(ξ′))ρ0(ξ′)dSξ′ , (1.4)

where we parameterize the curve with Lagrangian parameter ξ∈D⊂R1.
We now summarize the results of this paper. In Section 2 we derive the character-

ization of the stability of the ring solution. In Section 3 we use asymptotic techniques
to give a characterization of stability with respect to high-order modes. When the high
modes are unstable, the ring breaks up completely; the resulting steady state may be
an annulus or more complex two-dimensional shapes such as shown in the last column
of Figure 1.1. In Section 4 we analyze a family of power law interaction kernels using
the stability theory and provide bifurcation diagrams. In Section 5 we analyze the de-
formation of a ring due to low mode instability near the bifurcation point using weakly
nonlinear analysis.

In Section 6 we study high-mode instabilities which can cause the ring to break up.
Under certain conditions detailed in Proposition 6.1, a single ring undergoes multiple
bifurcations as the number of particles increases. The bifurcation sequence yields steady
states consisting of one, two, three, or a higher number of concentric rings, all clustered
around a single-ring solution. We study in detail the first such bifurcation from one
to two rings, and then present numerical simulations showing further bifurcations to
multiple rings. The first bifurcation happens when N exceeds an “exponentially large”
number Nc which we compute asymptotically (see Proposition 6.1 for details). We also
compute the inter-distance between the resulting two rings.

In contrast to high-mode instabilities, the low-mode instabilities can deform the
ring while preserving the curve-type structure. In Section 7 we solve a restricted inverse
problem: given an instability of a certain mode, design the kernel f which leads to such
an instability in the ground state. Finally in Section 8 we extend our analysis to second
order models of self-propelled particles considered in [20, 10] to characterize the stability
of a rotating ring.

Some of the statements of results of sections 2, 4, 5 appeared previously in a shorter
form in [17] but without proofs. Here, we provide the detailed derivations of these
calculations. The three and higher-dimensional analogue of a ring and its stability was
also solved in [38] using a different technique that relies on spherical harmonics. In
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Section 6 we explore the “bifurcation cascade” whereby a single ring bifurcates into
multiple rings as the number of particles is increased. This phenomenon is related to
annular solutions that were analysed in [16]. In the continuum limit (1.3) of the particle
model (1.2), the multi-ring solution becomes an annulus whose density distribution
was analyzed in [16]. However the “bifurcation cascade” phenomenon is specific to
the particle system and cannot be captured by the continuum limit. The results on
custom kernels in Section 7 are based on ideas first presented in [37], where the same
problem was solved in three dimensions. We include the two-dimensional case here for
completeness. Results in Section 8 have not appeared elsewhere and are new to this
paper.

2. Stability of ring solutions

We begin by considering the ring steady state for the Equation (1.2) consisting of
N equally spaced particles located on a ring of radius R,

xj =Rexp(2πij/N) , j= 1.. .N.

The equilibrium value for R then satisfies

0 =

N−1∑
j=1

f(2Rsin(πj/N))(1−ei2πj/N ); (2.1)

in the continuum limit N→∞, this becomes∫ π
2

0

f(2Rsinθ)sin2θdθ= 0. (2.2)

We can now analyze the stability of the ring equilibrium of radius R given from (2.2).
Our first result is the following characterization of local stability.

Theorem 2.1. In the continuum limit N→∞, consider the ring equilibrium of radius
R given by (2.2) for the flow (1.4). Suppose that f(r) is piecewise C1 for r≥0. Define

I1(m) :=
4

π

∫ π/2

0

(Rf ′ (2Rsinθ)sinθ+f (2Rsinθ))sin2((m+1)θ)dθ; (2.3)

I2(m) :=
4

π

∫ π/2

0

(Rf ′ (2Rsinθ)sinθ)
[
sin2(θ)−sin2(mθ)

]
dθ; (2.4)

M(m) :=

(
I1(m) I2(m)
I2(m) I1(−m)

)
. (2.5)

If λ≤0 for all eigenvalues λ of M(m) for all m∈N then the ring equilibrium is linearly
stable. It is unstable otherwise.

For finite N , the ring is stable if λ≤0 for all eigenvalues λ of M(m) for all m=
1,2,. ..N, but with I1,I2 as given by (2.13, 2.14) below.

An example of a stable ring is provided by interaction kernel f(r) = 1−r. In this
case a straightforward computation yields

R=
3π

16
;
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I1(m) =− m2 +2m+3

(1+2m)(3+2m)
; I1(−m) =

−
m2−2m+3

(1−2m)(3−2m)
m 6= 1

0 m= 1;

I2(m) =− m2−1

4m2−1
,

so that, for m>1, we have

detM(m) =
12m2(2m2−1)

(1−4m2)
2
(4m2−9)

>0, traceM(m) =
9+4m2−m2

(1−4m2)(4m2−9)
<0.

This shows that the eigenvalues corresponding to m>1 are all negative. Similarly,
the eigenvalues corresponding to mode m= 0,1 are also stable. Moreover, for large m,
the two eigenvalues are λ∼− 1

4 and λ∼− 3
8m2 →0 as m→∞. The presence of small

eigenvalues implies the existence of slow dynamics near the ring equilibrium. Further
analysis shows that the eigenvector corresponding to the small eigenvalue and large m
is nearly tangential to the circle; the other eigenvector is nearly perpendicular. The
corresponding two time-scale dynamics are also clearly visible in simulations (Figure
1.1, column 1): initially (up to t∼20), the particles form a ring structure in O(1) time
so that at t= 20, the ring structure is very clear (Figure 1.1, column 1, row 3). However
even at time t= 1000, the ring is still not completely uniform and the particles continue
to move slowly along the a ring (Figure 1.1, column 1, row 4). Finally at t= 10000 the
particles appear to settle into a uniform steady state (Figure 1.1, column 1, row 5).

Proof. (Proof of Theorem 2.1.) Consider the perturbations of the ring of N
particles of the form

xj =Rexp(2πij/N)(1+hj) with hj�1. (2.6)

We compute

xj−xk =Rexp(2πik/N)
(
1−eiφ+hj−eiφhk

)
where φ=

2π(k−j)
N

,

|xk−xj |∼2R

∣∣∣∣sin φ2
∣∣∣∣+ R

4
∣∣∣sin φ

2

∣∣∣
[
(1−eiφ)

(
hk+hj

)
+(1−e−iφ)

(
hk+hj

)]
.

Substituting (2.6) into (1.2) leads to the following linearized system:

dhj
dt

=
∑
k

f ′
(

2R

∣∣∣∣sin φ2
∣∣∣∣) R

4
∣∣∣sin φ

2

∣∣∣ [(1−eiφ)
(
hk+hj

)
+(1−e−iφ)

(
hk+hj

)
]
(
1−eiφ

)
+
∑
k

f

(
2R

∣∣∣∣sin φ2
∣∣∣∣)(hj−eiφhk), where φ=

2π(k−j)
N

.

Next we use the identities

(1−eiφ)2 =−4sin2

(
φ

2

)
eiφ; (1−eiφ)(1−e−iφ) = 4sin2

(
φ

2

)
to obtain

dhj
dt

=
∑
k,k 6=j

G1(φ/2)
(
hj−eiφhk

)
+G2(φ/2)

(
hk−eiφhj

)
,

where φ=
2π(k−j)

N
,

(2.7)
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with

G1(φ) =
1

N
Rf ′ (2R |sinφ|)|sinφ|+ 1

N
f (2R |sinφ|);

G2(φ) =
1

N
Rf ′ (2R |sinφ|)|sinφ| .

(2.8)

Using the ansatz

hj = ξ+(t)eimθ+ξ−(t)e−imθ, θ= 2πj/N, m∈N, (2.9)

we can write

hk = ξ+e
imθeimφ+ξ−e

−imθe−imφ, (2.10)

and substituting (2.9), (2.10) into (2.7) and collecting like terms in eimφ, e−imφ leads
to the system

ξ′+ = ξ+
∑
k,k 6=j

G1(φ/2)
(

1−ei(m+1)φ
)

+ ξ̄−
∑
k,k 6=j

G2(φ/2)
(
eimφ−eiφ

)
, (2.11)

ξ′−= ξ−
∑
k,k 6=j

G1(φ/2)
(

1−ei(−m+1)φ
)

+ ξ̄+
∑
k,k 6=j

G2(φ/2)
(
e−imφ−eiφ

)
. (2.12)

It is easy to check that the sums in (2.11, 2.12) are all real so that the system becomes

ξ′+ = ξ+I1(m)+ ξ̄−I2(m), ξ̄′−= ξ̄−I1(−m)+ξ+I2(−m),

where

I1(m) =
∑
k,k 6=j

G1(φ/2)
(

1−ei(m+1)φ
)

= 4

N/2∑
k=1

G1(
πk

N
)sin2

(
(m+1)πk

N

)
, (2.13)

I2(m) =
∑
k,k 6=j

G2(φ/2)
(
eimφ−eiφ

)
= 4

N/2∑
k=1

G2(
πk

N
)

[
sin2

(
πk

N

)
−sin2

(
mπk

N

)]
. (2.14)

We thus obtain (
ξ′+
ξ̄′

)
=M

(
ξ+
ξ̄

)
,

where M is given by (2.5). Finally, I1 and I2 are just the Riemann sums so that in the
continuum limit N→∞, these sums are given by (2.3, 2.4), provided that G1, G2 are
Reimann-integrable; the fact that f and f ′ are piecewise-continuous ensures that this
is indeed the case. Substituting ξ±= b±exp(λt) we find that λ is the eigenvalue of the
matrix M.

3. High wave-number stability
We next examine the behaviour of the eigenvalues as m→∞, i.e. the high frequency

wave limit. We shall call a ring short-wave stable if the eigenvalues corresponding to all
sufficiently large modes m have negative real part; otherwise we call the ring short-wave
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unstable. Kernels that are short-wave unstable generally result in ground state patterns
which are no longer co-dimension one as we will see in Section 6. In contrast, short-wave
stable kernels often contain low mode symmetries bifurcating away from the ring but
otherwise remain a co-dimension one curve. For simplicity, we restrict ourselves to the
case where f(s) may be written as a generalized power series, although a similar result
can be derived for a more general case where f is sufficiently smooth. Our main result
is the following.

Theorem 3.1 (Conditions for short-wave (in)stability). Suppose that f(r) admits
a generalized power series expansion of the form

f(s) =a0s
p0 +a1s

p1 + .. ., p0<p1<.... (3.1)

Moreover, suppose that p0>−3, a0>0, and all constants aj, j=1,2,. . . are non-zero. Let
pl be the smallest power which is not even. Then the following conditions are sufficient
for the ring to be short-wave stable:

p0>−1; (3.2)∫ π/2

0

(Rf ′ (2Rsinθ)sinθ+f (2Rsinθ))dθ<0; (3.3)

either al>0 and pl∈ (−1,0)∪(1,2)∪(4,6).. .
or al<0 and pl∈ (0,1)∪(2,4)∪(6,8).. ..

(3.4)

The ring is short-wave unstable if either p0≤−1 or the inequality in either (3.3) or
(3.4) is reversed.

Remark 3.2. Note that the condition p0>−3 is needed in order for the ring to exist;
otherwise, the integral in (2.2) is undefined. Theorem 3.1 does not apply if all powers pj
in the expansion (3.1) are even. Conversely, if at least one of the powers is not even, then
Theorem 3.1 provides both necessary and sufficient conditions for short-wave stability
for kernels written in terms of generalized power series (3.1).

Proof. First, suppose that −3<p0≤−1. Then by Lemma A.1 from Appendix A,
we have that

I1(m)∼ I1(−m)∼
{
Cm−p0−1, p0∈ (−3,−1)
C lnm, p0 =−1

as m→∞,

where C>0. In this case trace(M(m))→+∞ as m→∞ so that λ>0 for all m suffi-
ciently large. Therefore we obtain (3.2) as the necessary condition for eventual stability
of a ring. When (3.2) holds, we may estimate

I1(m)∼ I1(−m)∼ 2

π

∫ π/2

0

(Rf ′ (2Rsinθ)sinθ+f (2Rsinθ))dθ.

The necessary condition for stability is that trace(M(m))<0 as m→∞ or∫ π/2

0

(Rf ′ (2Rsinθ)sinθ+f (2Rsinθ))dθ<0. (3.5)

To establish sufficient conditions for eventual stability, we also require that detM>0
as m→∞. To simplify the computations we may assume, by rescaling the space, that
R= 1/2 and write

I1(±m)∼ I10 +I11; I2(±m)∼ I20 +I21,
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with

I10 =
2

π

∫ π/2

0

(
1

2
f ′ (sinθ)sinθ+f (sinθ)

)
dθ;

I20 =
2

π

∫ π/2

0

f ′ (sinθ)

(
sin3θ− 1

2
sinθ

)
dθ;

I11 =− 2

π

∫ π/2

0

(
1

2
f ′ (sinθ)sinθ+f (sinθ)

)
cos(2mθ)dθ;

I21 =
2

π

∫ π/2

0

1

2
f ′ (sinθ)sinθcos(2mθ)dθ.

Next, using (2.2) and integration by parts, we note the following identity:∫ π/2

0

f(sinθ)dθ=

∫ π/2

0

f(sinθ)
(
1−sin2θ

)
dθ

=

∫ π/2

0

f(sinθ)cosθ
d

dθ
sinθdθ

=

∫ π/2

0

f ′(sinθ)
(
sin3θ−sinθ

)
dθ.

It follows that I10 = I20. Therefore we obtain

detM ∼2I10 (I11−I21).

Now from Lemma A.1 we have the following identity:∫ π/2

0

sinp (x)sin(2mx)dx∼−sin
(πp

2

)
c(p)m−p−1 as m→∞; p>−1,

where c(p) =
1

2
√
π

Γ

(
p

2
+

1

2

)
Γ(
p

2
+1).

Using the series expansion (3.1), we then obtain

I11−I21∼−al (1−pl)c(pl)sin
(
π
pl
2

)
m−pl−1,

where l is such that pl is the smallest non-even power in the generalized power series
expansion (3.1). Now by Assumption (3.2), we have pl>−1 and also note that

(1−pl)c(pl)sin
(
π
pl
2

)
<0 , if pl∈ (−1,0)∪(1,2)∪(4,6).. .

>0, if pl∈ (0,1)∪(2,4)∪(6,8).. ..

Assuming I10<0, we have detM>0 provided that (3.4) holds.

4. Power force law
In this section, we present more explicit results for the force where the attraction

and repulsion are given by power laws. That is, we consider the interaction force
F (r) = rp−arq, corresponding to

f(r) = rp−1−arq−1 with p<q, a>0. (4.1)
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(a)

(b)

Fig. 4.1. (a) Stability region of a ring solution for the force law (4.1). Instability boundaries
corresponding to m= 3,4,5 and m=∞ are indicated. Crossing any of these boundaries triggers the
corresponding instability. The stable region is bounded by the instability of mode 3 from above and the
curve pq= 1 (corresponding to instabilities of modes m→∞) from below. (b) Bifurcation diagram for
interaction force (4.1) near the dot shown in (a), with p= 0.5, and as q is varied. The solid curve is
derived from weakly nonlinear analysis while the dots are simulations of (1.2). Reproduced from [17]
with authors permission. Copyright (2011) by the American Physical Society.

The constant a can be scaled out, and so it does not affect stability. For convenience,
we will choose a such that the ring radius is precisely R= 1

2 . From (2.2) we then obtain:

a=

∫ π/2
0

sinp+1θdθ∫ π/2
0

sinq+1θdθ
=

Γ(1+p/2)Γ(3/2+q/2)

Γ(3/2+p/2)Γ(1+q/2)
.

We also evaluate ∫ π/2

0

(Rf ′ (2Rsinθ)sinθ+f (2Rsinθ))dθ

=
p+1

2

∫ π/2

0

sinp−1θdθ−aq+1

2

∫ π/2

0

sinq−1θdθ

=(p−q)(pq−1)

√
πΓ(p/2)

8Γ(3/2+p/2)
.

From Theorem 3.1, it follows that the ring is short-wave stable provided that pq>1 and
p>0.

Next, we compute det(M(m)), using the key integral (A.1) derived in the Ap-
pendix. Omitting the details, we obtain the following polynomial expressions for when
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det(M(m)) = 0, for the low modes m= 2,3,. .. :

m= 2 : 7+38(p+q)+12pq+3(p2 +q2)+2
(
pq2 +p2q

)
−p2q2 = 0

m= 3 : 723−594(p+q)−27(p2 +q2)−431pq+106
(
pq2 +p2q

)
+19

(
p3q+pq3

)
+10

(
p3q2 +p2q3

)
+6
(
p3 +q3

)
+p3q3 = 0.

The instability thresholds for modes m≥4 can be analogously computed, each resulting
in a symmetric polynomial in p,q of degree 2m. Each of these polynomials corresponds
to the stability boundary of mode m. Using Maple, we have plotted each of these
boundaries for m= 2,3,4,5, as well as the stability boundary pq= 1 for large modes m.
These are shown in Figure 4.1(a).

5. Weakly nonlinear analysis: low mode bifurcations
Theorem 2.1 characterizes the conditions for a ring solution to be stable in the

limit N→∞. That is, the eigenvalues of the matrix M(m) defined in (2.5) must be
both non-positive. For a given mode m, when one of the eigenvalues becomes zero, the
stability changes. In this section, we study the general bifurcation dynamics near a ring
solution using weakly nonlinear analysis. As such, we take the continuum limit of (1.2)
as described in [30]:

x′(θ,t) =
1

2π

∫ 2π

0

f(ν, |x(θ,t)−x(θ˜,t)|)(x(θ,t)−x(θ˜,t))dθ˜, (5.1)

where ν is considered to be the bifurcation parameter and x′(θ,t) denotes ∂x(θ,t)/∂t.
We are particularly interested in the critical value of ν, i.e. ν=ν0, which yields a zero
determinant of M(m), with the corresponding ring steady state solution

x(θ,t) =u0(θ,t) =Reiθ. (5.2)

For the sake of brevity, in the rest of this section we use the notation x for x(θ,t), x˜ for
x(θ˜,t), f for f(ν0, |x(θ,t)−x(θ˜,t)|), ∂νf for ∂f/∂ν evaluated at (ν0, |x(θ,t)−x(θ˜,t)|),and f ′, f ′′, etc. for the corresponding derivatives of f with respect to the second
argument evaluated at (ν0,|x(θ,t)−x(θ˜,t)|).Let 0≤ ε�1 be an expansion parameter near a bifurcation point u0,

x(θ,t) =u0(θ,t)+εu1(θ,t)+ε2u2(θ,t)+ε3u3(θ,t)+ ·· · , (5.3)

ν=ν0 +εν1 +ε2ν2 + ·· · . (5.4)

At order O(ε), we obtain the linear equation

L(u1,ū1) =
1

π

∫ π

0

(f ′Rsin∆θ+f)(u1−u˜1)d∆θ

−e
2iθ

π

∫ π

0

f ′Rsin∆θe2i∆θ(ū1− ū˜1)d∆θ

=−ν1I0e
iθ, with I0 =

4

π

∫ π/2

0

R∂νf sin2 ∆θd∆θ (5.5)

and ∆θ= (θ˜−θ)/2. The solution to (5.5) is u1 = b1e
i(m+1)θ+b2e

−i(m−1)θ+b0e
iθ, where

[b1,b2]t is in the null-space of the matrix M(m) given by (2.5) and b0 =ν1c1, with
c1 =−I0/(I1(0)+I2(0)). This is the eigenvalue problem for the linear stability of the
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ring solution. Typically one measures the amplitude that the solution deviates either
radially as |b2 +b1| or tangentially as |b2−b1|.

At order O(ε2), we obtain

L(u2,ū2)

=−ν1 (b1,b2) ·
(

2c1I3(m)+∂νI1(m) −2c1I4(m)+∂νI2(m)
−2c1I4(m)+∂νI2(m) 2c1I3(−m)+∂νI1(−m)

)
·
(
ei(m+1)θ

e−i(m−1)θ

)
−
(

b21I5(m)+b22I6(m)−b1b2I7(m)
b21I5(−m)+b22I6(−m)−b1b2I7(−m)

)t
·
(
ei(2m+1)θ

e−i(2m−1)θ

)
−
(
ν2I0 +

ν2
1

2
∂νI0 +

(
b1b2I4(m)+b21I3(m)+b22I3(−m)

))
eiθ,

(5.6)

where

I3(m) =
4

π

∫ π/2

0

(2Rf ′′ sin∆θ+3f ′2)(m+1)∆θsin∆θd∆θ,

I4(m) =
4

π

∫ π/2

0

(2Rf ′′ sin∆θ+f ′)sin(m−1)∆θsin(m+1)∆θsin∆θd∆θ,

I5(m) =
2

π

∫ π/2

0

(
3

2
f ′+Rf ′′ sin∆θ)sin2 (m+1)∆θsin(2m+1)∆θd∆θ,

I6(m) =
2

π

∫ π/2

0

(−1

2
f ′+Rf ′′ sin∆θ)sin2 (m−1)∆θsin(2m+1)∆θd∆θ,

I7(m) =
2

π

∫ π/2

0

(3f ′+2Rf ′′ sin∆θ)sin(m−1)∆θsin(m+1)∆θsin(2m+1)∆θd∆θ.

Applying the Fredholm alternative to ensure that the right hand side of (5.6) is in the
range space of the linear operator L determines a unique solution u2 = b21c3e

i(2m+1)θ+
b21c4e

−i(2m−1)θ+(ν2c1 +b21c2)eiθ, subject to the condition that ν1 = 0, where

c2 =−−I1(m)I4(m)/I2(m)+I3(m)+I1(m)2I3(−m)/I2(m)2

I1(0)+I2(0)
,[

c3
c4

]
=−M(2m)−1 ·

[
I5(m)+I1(m)2I6(m)/I2(m)2 +I1(m)I7(m)/I2(m)

I5(−m)+I1(m)2I6(−m)/I2(m)2 +I1(m)I7(−m)/I2(m)

]
. (5.7)

Finally, at O(ε3), we use the equation L(u3,ū3) =R3(u0,u1,u2,ν2), to determine the
relation between ν2 and b1, b2. Applying the Fredholm alternative to this equation,

Im
(
R3(u0,u1,u2,ν2)(I1(m)e−i(m+1)θ+I2(m)ei(m−1)θ)

)
= 0,

which yields

ν2 =κb21,

κ=
τ4I1(m)I2(m)−τ3I2(m)2

τ1I2(m)−τ2I1(m)+I2(m)2∂νI1(m)−2I1(m)I2(m)∂ν +I1(m)2∂νI1(−m)
, (5.8)
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where

τ1=2c1I2(m)I8(m)+2c1I1(m)I9(m),

τ2=−2c1I1(m)I8(−m)−2c1I2(m)I9(m),

τ3=2c2I8(m)+2c2I1(m)I9(m)/I2(m)

+c3I1(m)I11(m)/I2(m)+c3I10(m)+c4I1(m)I11(−m)/I2(m)+c4I12(−m)

+I14(m)+I1(m)I15(m)/I2(m)+I1(m)2I16(m)/I2(m)2+I1(m)3I13(−m)/I2(m)3,

τ4=−2c2I1(m)I8(−m)/I2(m)−2c2I9(m)

−c4I11(−m)−c4I1(m)I10(−m)/I2(m)+c3I1(m)I11(m)/I2(m)+c3I12(m)

−I1(m)3I14(−m)/I2(m)3−I1(m)2I15(−m)/I2(m)2−I1(m)I16(−m)/I2(m)−I13(m),
(5.9)

I8(m) =
2

π

∫ π/2

0

(2Rf ′′ sin∆θ+3f ′)sin2 (m+1)∆θsin∆θd∆θ,

I9(m) =
2

π

∫ π/2

0

(2Rf ′′ sin∆θ+f ′)sin(m−1)∆θsin(m+1)∆θsin∆θd∆θ,

I10(m) =
2

π

∫ π/2

0

(2Rf ′′ sin∆θ+3f ′)sin2 (m+1)∆θsin(2m+1)∆θd∆θ,

I11(m) =
2

π

∫ π/2

0

(2Rf ′′ sin∆θ+3f ′)sin(m−1)∆θsin(m+1)∆θsin(2m+1)∆θd∆θ,

I12(m) =
2

π

∫ π/2

0

(2Rf ′′ sin∆θ+f ′)sin2 (m−1)∆θsin(2m+1)∆θd∆θ,

I13(m) =
2

π

∫ π/2

0

(2Rf ′′′ sin∆θ+3f ′′− 3f ′

2Rsin∆θ
)sin(m−1)∆θsin3 (m+1)∆θd∆θ,

I14(m) =
2

π

∫ π/2

0

(2Rf ′′′ sin∆θ+5f ′′+
3f ′

2Rsin∆θ
)sin4 (m+1)∆θd∆θ,

I15(m) =
2

π

∫ π/2

0

(
5

3
Rf ′′′ sin∆θ+2f ′′− f ′

Rsin∆θ
)sin3 (m+1)∆θsin(m−1)∆θd∆θ,

I16(m) =
2

π

∫ π/2

0

(
5

3
Rf ′′′ sin∆θ+2f ′′+

f ′

Rsin∆θ
)sin2 (m−1)∆θsin2 (m+1)∆θd∆θ.

(5.10)

These calculations allow us to summarize this section with the following theorem:

Theorem 5.1. Let f(ν,r) be an attractive-repulsive kernel, with a parameter ν, where
mode m perturbation is stable for ν <ν0, unstable for ν >ν0, and f(ν0,r) gives the
instability threshold det(M(m)) = 0. Given the following conditions:

1. I0 6= 0.

2. I1(0)+I2(0) 6= 0.

3. The matrix N(m) =

(
2c1I3(m)+∂νI1(m) −2c1I4(m)+∂νI2(m)
−2c1I4(m)+∂νI2(m) 2c1I3(−m)+∂νI1(−m)

)
has

nonzero determinant.

4. The matrix M(2m) has nonzero determinant.

5. The denominator of κ in (5.8) is nonzero.
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Then we have a pitchfork bifurcation for solutions of (5.1) at ν=ν0, with bifurcation
coefficient defined as either

ν2/|b1 +b2|2 =κI2(m)2/(I1(m)−I2(m))2 (radially), or

ν2/|b1−b2|2 =κI2(m)2/(I1(m)+I2(m))2 (tangentially),

where ν2 and κ are defined in (5.8).

With this theorem, we are able to say that the bifurcation type for the kernel
f(ν,r) = r−0.5−νrν−1 at ν0≈4.9696 is pitchfork with bifurcation coefficient ν2/|b1 +
b2|2≈84.18. We can see the details of the pitchfork bifurcation in Figure 4.1, also re-
fer to [17]. In contrast, we can re-examine the stability of collapsing rings with power
law f(r) = rν−2, with ν >2, studied in [31]. We can conclude that this is not a pitch-
fork bifurcation and moreover it is condition (4) in Theorem 5.1 that is not satisfied.
Whenever M(m) has zero determinant, M(2m) has zero determinant as well. In this
situation, the stable scaled ring solution collapses sharply to clusters that form vertices
of a regular simplex once the bifurcation parameter ν passes its critical value.

6. High mode bifurcations: ring to annulus
In Theorem 3.1 we characterized the stability of the ring with respect to high modes.

In particular, we showed that if f(r) =O(rp) as r→0, then p>−1 is the first necessary
condition. It is natural to ask what kind of bifurcation can occur when this condition
fails. To answer this question, we concentrate on the following function f(r) :

f(r) =f0(r)+
1

r
δ with δ�1, (6.1)

where we assume that (6.1) with δ= 0 admits a stable ring solution. In particular,
we assume that f0(r) satisfies the conditions of Theorem 3.1 to guarantee shortwave
stability of a ring when δ= 0. To motivate the discussion, Figure 6.1 shows a numerical
computation of the steady state for f(r) = r−1+ δ

r for several values of N and with
δ= 0.35. Note that when N = 80, the steady state appears to converge to a simple ring
solution, which on the surface appears to contradict the condition (3.2) of Theorem 3.1.
This discrepancy is due to the finiteness of N. Indeed, when N is increased to 100, the
steady state consisting of two rings begins to emerge. As N is increased further, complex
patterns emerge consisting of more and more rings. The bifurcation to k−ring pattern
appears to take place when the mode m=N/k first becomes unstable. We start by
characterizing the first such transition, when the two-ring pattern first bifurcates from
a single ring. We summarize the result as follows.

Proposition 6.1. Suppose that f(r) is given by (6.1). Let N =Nc be given by

Nc=
π

4
exp

(α
δ
−γ−1

)
, (6.2)

where

α :=−4R

∫ π/2

0

(Rf ′0 (2Rsinθ)sinθ+f0 (2Rsinθ))dθ (6.3)

and where R satisfies (2.2). Then the ring is stable for all N <Nc and is unstable for
N >Nc. More explicitly, we have

Nc∼
π

4
exp(α1−γ−1)exp

(α0

δ

)
, (6.4)
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Fig. 6.1. Bifurcations of a ring into multiple rings as a function of N , using f(r) =1−r2 +0.35/r.
Top: steady states with N as indicated. These were computed by evolving (1.2) starting from random
initial conditions. A part of the annulus-type solution is shown at t= 25,000. Bottom: The bifurcation
diagram with N on the horizontal axis. The vertical axis shows the distribution of the radii of the
particles obtained by computing a steady state up to t= 5000 using random initial conditions.

where α=α0 +δα1 +O(δ2) with

α0 =−
∫ π/2

0

4R2
0f
′
0 (2R0 sinθ)sinθ+4R0f0 (2R0 sinθ)dθ (6.5)

α1 =−
∫ π/2

0

16R0R1f
′
0 (2Rsinθ)sinθ+8R2

0R1f
′′
0 (2R0 sinθ)sin2θ+4R1f0 (2Rsinθ)dθ

(6.6)

and R=R0 +δR1 +O(δ2) with

0 =

∫ π/2

0

f0(2R0 sinθ)sin2(θ); (6.7)

0 =
1

2R0
+2R1

∫ π/2

0

f ′0(2R0 sinθ)sin3(θ). (6.8)

When a single ring becomes unstable, it bifurcates into two rings as Figure 4.1
illustrates. The distance between the two rings of such a solution can be asymptotically
computed as follows.

Proposition 6.2. Using the notation as in Proposition 6.1, suppose α>0. Then in
the large N limit the particle system admits a double-ring steady state consisting of two
rings of radii R−ε and R+ε with

ε∼4eRexp(−α/δ) (6.9)

∼4eR0 exp(−α1)exp(−α0/δ) . (6.10)
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Before proving propositions 6.1 and 6.2, consider the following example:

f(r) = 1−r+δ/r. (6.11)

Formulas (6.5) to (6.8) yield

R0 =
3π

16
; R1 =

2

π
; α0 =

3π2

64
; α1 = 5,

so that (6.4) and (6.10) then yield

Nc∼
π

4
e4−γ exp

(
3π2

64δ

)
; ε∼ 3π

4
e−4 exp

(
−3π2

64δ

)
as δ→0. (6.12)

Taking δ= 0.35, this yields Nc∼90.29 and 2ε∼0.01975. A more accurate estimate, valid
to all algebraic orders in δ, is given by (6.2, 6.9) and yields Nc∼80.63 and 2ε∼0.03331.
This agrees very well with full numerical simulation of the flow (1.2) as Figure 6.1
demonstrates: taking N = 80, random initial conditions were observed to converge to a
ring solution; on the other hand, the double-ring structure is clearly visible when N =
100. Moreover, the distance between the inner and outer ring of the resulting annulus
is about 0.03, in line with the theoretical prediction of 2ε∼0.033.

Proof. (Proof of Proposition 6.1.) Using the notation of Theorem 2.1, we recall
that

I1(m−1) = 4

N/2∑
k=1

G1(
πk

N
)sin2

(
mπk

N

)
, (6.13)

I2(m) = 4

N/2∑
k=1

G2(
πk

N
)

[
sin2

(
πk

N

)
−sin2

(
mπk

N

)]
. (6.14)

We set m= N
2 in (6.13); then sin2

(
mπk
N

)
= sin2

(
πk
2

)
=

{
0, k even
1, k odd

so that (6.13) be-

comes

I1(m−1) = 4

N/2∑
k odd

G1(
πk

N
) = I10 +I11,

where we define

I10 =
4

N

N/2∑
k odd

Rf ′0

(
2R

∣∣∣∣sin πkN
∣∣∣∣)∣∣∣∣sin πkN

∣∣∣∣+f0

(
2R

∣∣∣∣sin πkN
∣∣∣∣) ; I11 =

δ

NR

N/2∑
k odd

1

sin πk
N

.

(6.15)
We estimate

I10∼
2

π

∫ π/2

0

(Rf ′0 (2Rsinθ)sinθ+f0 (2Rsinθ))dθ

and to isolate the singularity in I11 we write

I11 =
δ

NR

N/2∑
k odd

(
1

sin πk
N

− N

πk

)
+

δ

πR

N/2∑
k odd

1

k
.



970 RING PATTERNS IN BIOLOGICAL SWARMS

Next, we use the identity

M∑
k=0

1

2k+1
=

1

2
lnM+

γ

2
+ln(2)+O(M−1)

and approximate

2

N

N/2∑
k odd

(
1

sin πk
N

− N

πk

)
∼ 1

π

∫ π/2

0

(
1

sin(θ)
− 1

θ

)
dθ=

1

π
(2ln2− lnπ)

so that

I11∼
δ

2πR
(lnN+ln(4/π)+γ) .

Similarly, we find that

I2 = 4

N/2∑
k=1

G2(
πk

N
)sin2

(
πk

N

)
−4

N/2∑
k odd

G2(
πk

N
) = I20 +I21,

where

I20∼
2

π

∫ π/2

0

Rf ′ (2Rsinθ)2sin3θ−Rf ′0 (2Rsinθ)sinθdθ; (6.16)

I21 = I11. (6.17)

Next we further simplify I20 as follows. From (2.2) we have∫ π/2

0

f0(2Rsinθ)sin2θdθ=− δ

2R
. (6.18)

Use integration by parts and (6.18) to obtain∫ π/2

0

f ′ (2Rsinθ)sin3θdθ

=

∫ π/2

0

f ′0 (2Rsinθ)sin3θdθ− δ

4R2

=

∫ π/2

0

f ′0 (2Rsinθ)sinθdθ−
∫ π/2

0

d

dθ
(f0(2Rsinθ))

sinθcosθ

2R

=

∫ π/2

0

f ′0 (2Rsinθ)sinθ+
1

2R

∫ π/2

0

f0 (2Rsinθ)dθ+
δ

4R2
. (6.19)

Substituting (6.19) into (6.16) yields

I20 = I10 +
δ

Rπ
.

In summary, we obtain I2 = I1 + δ
Rπ so that

detM = I2
1 −I2

2 ∼−
δ

Rπ
(2I1 +

δ

Rπ
).
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It follows that the threshold detM = 0 occurs when 2I1 + δ
Rπ = 0, or

4R

∫ π/2

0

(Rf ′0 (2Rsinθ)sinθ+f0 (2Rsinθ))dθ+δ (lnN+ln(4/π)+γ+1) .

Solving for Nc=N yields (6.2). Expanding (6.2) in δ yields (6.4).

Proof. (Proof of Proposition 6.2.) We seek a two-ring equilibrium state of radii
Ri,Ro, each having the same number of particles. Let

Ri=R−ε; Ro=R+ε.

Then similar to a single ring, and in the limit N→∞, the radii satisfy

0=

∫ π/2

0

dθ[
f(2(R−ε)sinθ)2(R−ε)sin2θ+f

(
2
√

(R2−ε2)sin2θ+ε2
)(

2sin2(θ)(R+ε)−2ε
)]

0=

∫ π/2

0

dθ[
f(2(R+ε)sinθ)2(R+ε)sin2θ+f

(
2
√

(R2−ε2)sin2θ+ε2
)(

2sin2(θ)(R−ε)+2ε
)]
.

Define

I1(ε) :=

∫ π/2

0

f(2(R+ε)sinθ)2(R+ε)sin2θdθ;

I2(ε) :=

∫ π/2

0

f

(√
4(R2−ε2)sin2θ+4ε2

)
4Rsin2(θ);

I3(ε) :=

∫ π/2

0

f

(√
4(R2−ε2)sin2θ+4ε2

)
4εcos2(θ);

so that the steady state satisfies

I1(ε)+I1(−ε)+I2(ε) = 0; I1(ε)−I1(−ε)+I3(ε) = 0.

We have

I1(ε)+I1(−ε) = 4R

∫ π/2

0

f(2Rsinθ)sin2θdθ+O(ε2);

I1(ε)−I1(−ε) = 2ε

{∫ π/2

0

4Rf ′(2Rsinθ)sin3θ+

∫ π/2

0

f(2Rsinθ)sin2θ

}
,

and we simplify

I2(ε)∼
∫ π/2

0

f(2Rsinθ)4Rsin2θ+O(ε2).

For I3 we split off the singularity to write it as I3 = I31 +I32 with

I31 := 4ε

∫ π/2

0

f0(2Rsinθ)cos2(θ);
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I32 := 4δε

∫ π/2

0

(
4(R2−ε2)sin2θ+4ε2

)−1/2
cos2(θ).

Using the asymptotics∫ π/2

0

(
sin2θ+ε2

)−1/2
cos2θ∼−lnε−1+ln4+O(ε2 lnε)

we then obtain

I32 = 2δ
ε

R

(
−ln

ε

R
−1+ln4

)
.

In summary, we get

0∼
∫ π/2

0

f(2Rsinθ)sin2θdθ; (6.20)

0∼
∫ π/2

0

4Rf ′(2Rsinθ)sin3θ+2

∫ π/2

0

f0(2Rsinθ)cos2(θ)+
δ

R

(
−ln

ε

R
−1+ln4

)
.

(6.21)

Next we simplify (6.21) by using identities (6.19) and (6.18); this yields (6.9), from
which (6.10) follows by expanding in δ.

In the continuum limit N→∞, the steady state consisting of a thin annulus even-
tually forms, as illustrated in Figure 6.1. The density of the resulting annulus is non-
uniform, and was studied in [16]. There, it was shown that for the force (6.11), the
radial density along the annulus is proportional to the inverse root of the distance from
the edge and thus blows up near the edges of the annulus. This is reflected in the bifur-
cation diagram in Figure 4.1, where locations of multiple rings tend to cluster towards
the edges for very high N ≈4000. For the force (6.11), the distance 2εcont between the
inner and outer edge of the annulus for the continuum model was computed in [16] to be

εcont∼3πe−5 exp
(
− 3π2

64δ

)
. This has the same scaling as ε in (6.12), although a different

constant so that ε/εcont=e/4.
The analysis in this section clearly shows the pitfalls of approximating the contin-

uum model using the discrete particle system. For example taking δ= 0.04 in (6.11),
simulations of the particle model (1.2) with N = 10,000 results in a stable ring equi-
librium. The instability of this equilibrium manifests itself only for N >Nc≈2.5×106,
which is too large to simulate on a laptop. Based purely on particle simulations and
without the detailed analysis above, one might wrongly conclude that this kernel has
a stable (co-dimension one) ring equilibrium while in truth the stable equilibrium is a
(co-dimension two) annulus.

7. Custom-designer kernels in 2D
In the previous sections our primary focus was to understand the resulting ground

state pattern from a given interaction kernel, f . In this section we consider the inverse
problem of, given a particular pattern, can one construct interaction kernel(s) who’s
ground state will exhibit this pattern? This problem is exceedingly complex and non-
unique in general but here we solve the following inverse problem: Consider a co-
dimension one ground state which can be approximated by a finite collection of Fourier
modes, can one construct an interaction kernel whose ground state will contain the same
set of Fourier modes?
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In three dimensions, this question was recently solved in full (though non-uniquely)
in [37]. In this chapter we apply the same techniques to two dimensions. While in three
dimensions, one has to work with Legendre polynomials, the two dimensional analogue
are the usual trigonometric functions, so the computation is somewhat simpler. To
begin recall that the eigenvalues of the matrix

M(m) :=

(
I1(m) I2(m)
I2(m) I1(−m)

)
determine the stability of mode m, in that we require strictly negative eigenvalues,
except for the zero eigenvalues that result from rotation and translation invariance of
the ring steady-state. We now reformulate this matrix using the notation introduced in
[38, 37]. For each fixed mode m, we perform a similarity transformation to M(m) to
obtain the matrix

Ω(m) :=
1

2

(
1 1
− 1
m

1
m

)(
I1(m) I2(m)
I2(m) I1(−m)

)(
1 −m
1 m

)
.

Note that this change of variables does not change the sign of the eigenvalues, so that
Ω(m) characterizes the stability of mode m in exactly the same fashion as M(m) does.
By straightforward computation,

Ω(m) :=
1

2

(
I1(m)+I1(−m)+2I2(m) m(I1(−m)−I1(m))

1
m (I1(−m)−I1(m)) I1(m)+I1(−m)−2I2(m)

)
.

First, let g(s) :=f(
√

2s) and let V (s) denote a potential, i.e. that V ′(s) =−g(s).
By applying the change of variables η= 2θ in the definition of the integrals I1(m) and
I2(m), integrating by parts and using the radius condition for R we discover that

I1(m)+I1(−m)+2I2(m) =
2

π

∫ π

0

g
(
R2−R2 cos(η)

)
(1−cos(η)cos(mη))dη

+
2

π

∫ π

0

R2g′
(
R2−R2 cos(η)

)
(1−cos(η))2 (1+cos(mη))dη,

I1(−m)−I1(m) =m
2

π

∫ π

0

g
(
R2−R2 cos(η)

)
(1−cos(η))cos(mη)dη,

I1(m)+I1(−m)−2I2(m) =−m
2

R2

2

π

∫ π

0

V
(
R2−R2 cos(η)

)
cos(mη)dη.

Next, define the auxiliary quantities

α=
1

π

∫ π

0

g
(
R2−R2 cos(η)

)
+R2g′

(
R2−R2 cos(η)

)
(1−cos(η))2 dη,

g1(η) =R2g′
(
R2−R2 cos(η)

)
(1−cos(η))2−cos(η)g

(
R2−R2 cos(η)

)
,

g2(η) =g
(
R2−R2 cos(η)

)
(1−cos(η)),

g3(η) =− 1

R2
V
(
R2−R2 cos(η)

)
.

These allows us to characterize stability in terms of the Fourier coefficients ĝi(m) of the
auxiliary quantities. That is, the matrix Ω(m) becomes

Ω(m) :=

(
α+ ĝ1(m) m2ĝ2(m)
ĝ2(m) m2ĝ3(m)

)
, (7.1)
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where

ĝi(m) =
1

π

∫ π

0

gi(η)cos(mη)dη. (7.2)

Therefore, for a mode m≥2 to have strictly negative eigenvalues we require that all of

α+ ĝ1(m)<0, ĝ3(m)<0, (ĝ2(m))
2
< (α+ ĝ1(m)) ĝ3(m)

simultaneously hold.
Now, let us fix a ring solution with R= 1 and turn to the task of destabilizing an

odd mode m= 2n+1. For this, we follow [37] and use take an interaction kernel of the
form

f(
√

2s) =g2n+1(s)

:= c0(1+2(1−s))+
2n−1

2n
(1+c1)(1−s)2n−2 +c1(1−s)2n−1−(1−s)2n (7.3)

for some choice of coefficients c0,c1 that are positive. We take a kernel of this form as
a careful choice of the coefficients c0 and c1 allows us to destabilize the desired mode
m= 2n+1 without destabilizing any of the lower modes 0≤m<2n+1. To see this,
note first that we have chosen the polynomial coefficients in defining (7.3) so that R= 1
for any choice of c0 and c1. A simple computation then yields

g3(η) =
cos2n+1(η)

2n+1

− 1

2n

[
c1 cos2n(η)+(1+c1)cos2n−1(η)

]
−c0

[
cos(η)+cos2(η)

]
. (7.4)

Recalling the standard identities

cos2n+1(η) =
1

22n

n∑
k=0

(
2n+1

k

)
cos((2n−2k+1)η),

cos2n(η) =
1

22n

(
2n

n

)
+

1

22n−1

n−1∑
k=0

(
2n

k

)
cos((2n−2k)η),

and the orthogonality of the cos(kη), k∈N in L2([0,π]) then shows that

ĝ3(2n+1)>0.

In other words, the mode m= 2n+1 is always unstable, independently of the choice of
c0 and c1 as claimed. Moreover, these identities and the formula (7.4) for g3(η) indicate
that for c0 and c1 positive and sufficiently large, the possibility exists to ensure the
necessary condition

ĝ3(m)<0

holds for all modes 0≤m<2n+1. In fact, a proper selection of c0 and c1 also suffices
to guarantee the remaining stability conditions

α+ ĝ1(m)<0, (ĝ2(m))
2
< (α+ ĝ1(m)) ĝ3(m)
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hold for all modes 0≤m<2n+1 as well. Furthermore, computing the auxiliary quanti-
ties shows that each gi(η) is a polynomial in cos(η) of degree at most 2n+1. Therefore,

ĝi(m) = 0

for all m>2n+1 by orthogonality and the above identities. In these cases, the matrix
Ω(m), m>2n+1 has eigenvalues λ=α,0. In other words, if α<0 then all modes larger
than 2n+1 are neutrally stable. The goal is then simply to choose c1 (depending on
n) and c0 (depending on c1) appropriately so that g2n+1(s) has all modes m<2n+1
stable as well. When a kernel g2n+1(s) has all modes less than 2n+1 stable, mode 2n+1
unstable, and all modes greater than 2n+1 neutrally stable we shall say g2n+1(s) is a
primitive kernel for the mode 2n+1. Using a kernel as above, we need to check only
a finite number of conditions to ensure that a given choice of c0,c1 results in a primitive
kernel.

For instance, if we choose (n,c0,c1) = (1,0,1) then it is tedious but routine to check
that

g3(s) = 1+(1−s)−(1−s)2

is a primitive kernel for mode 3. Similarly, taking (n,c0,c1) = (2,0,1) gives a primitive
kernel for mode 5,

g5(s) =
3

2
(1−s)2 +(1−s)3−(1−s)4.

In general, the methods of [37] would show that taking c1 =O(n) and c0 =O(c1/n)
results in a primitive kernel for mode 2n+1, although a complete proof of this fact is
well beyond the scope of this work.

Once again following [37], the procedure to destabilize an even mode 2n+2 proceeds
analogously. We first select a primitive kernel, i.e. a polynomial of degree 2n+1 that
takes the form

g2n+2(s) =c0(1+2(1−s))

+(1+c1)(1−s)2n−1 +c1(1−s)2n− 2n+2

2n+1
(1−s)2n+1; n≥1 (7.5)

again for appropriate choices of c1 (depending on n) and c0 (depending on c1). We
selected the polynomial coefficients in defining (7.5) so that R= 1 for any choice of c0
and c1, as before. We then proceed to make make appropriate choices for c1 (depending
on n) and c0 (depending on c1) to ensure mode 2n+2 is unstable while all modes
0≤m<2n+2 are stable. Indeed,

ĝ3(2n+2)>0

regardless of the choices of c0,c1, and Ω(m) has eigenvalues λ=α,0 for all m>2n+2.
Thus, we again have only a finite number of conditions to check to guarantee that
a particular choice of c0,c1 results in a primitive kernel for the mode 2n+2. Again,
straightforward calculations show that the choice (n,c0,c1) = (1,3,2) gives a primitive
kernel for mode 4,

g4(s) = 3(1+2(1−s))+3(1−s)+2(1−s)2− 4

3
(1−s)3.
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−1 0 1
−1

0

1

m=3

(a)

−1 0 1
−1

0

1

m=4

(b)

−1 0 1
−1

0

1

m=5

(c)

−1 0 1
−1

0

1

m=3+5

(d)

Fig. 7.1. Steady-states arising from custom-designer kernels using 200 particles. (a) Pure mode
m= 3 instability with g=g3 +1.1158g0. (b) Pure mode m= 4 instability with g=g4 +1.3g0. (c) Pure
mode m= 5 instability with g=g5 +1.3g0. (d) Mixed mode m= 3,5 instability with g= 1.1225g3 +g5 +
1.3g0.

Lastly, we require a kernel that has a ring of radius R= 1 as a stable steady state.
Using Lemma 5.3 in [37], we can prove that

g0(s) = 1+2(1−s)+s−
1
4 −µ,

where

µ=
1

π

∫ π

0

(1−cosx)
3/4

dx≈0.93577,

gives precisely such a kernel. This gives us the final ingredient we need in order to
construct kernels with desired instabilities. For instance, if we want a kernel with only
mode 3 unstable, we take a primitive kernel g3(s) for mode 3 and set

g(s) =g3(s)+εg0(s).

Then for all ε sufficiently small, g(s) has a pure mode 3 instability, i.e. mode 3 is
unstable and all remaining modes are stable. Indeed, we simply take ε small enough
so that ĝ(3)>0. Figure 7.1 (a) shows a computed example of this construction for
ε= 1.1158, i.e. a steady-state resulting from a pure mode 3 instability. We selected
ε= 1.1158 for aesthetic reasons, as a larger value of ε results in a broader concentration
of particles along the ring. As the construction indicates, a smaller, positive value of
ε will still result in a kernel with a mode 3 instability. The subsequent minimizer will
appear similar to Figure 7.1 (a), in that three localized concentrations of particles will
appear along the ring. As ε decreases, these concentrations will appear increasingly
‘point-like,’ and for ε= 0 reduce to groups of particles that occupy the vertices of a
simplex. Starting with a different primitive kernel and repeating the same procedure
gives a kernel with a different, pure instability; for instance, modes 4 and 5 are shown
in 7.1 (b,c).

The straightforward generalization of this construction allows us to create kernels
with precisely two unstable modes. For concreteness, suppose we want a kernel that has
mode 3 and 5 instabilities, while all other modes remain stable. We first take a positive
linear combination of a primitive kernel for mode 5 and a stable ring as before,

g̃(s) :=g5(s)+ε1g
0(s).

As before, provided ε1>0 is sufficiently small g̃(s) has a pure mode 5 instability. We
take ε1 = 1.3 as in the previous example. Now, take a primitive kernel g3(s) for mode 3



A.L. BERTOZZI, T. KOLOKOLNIKOV, H. SUN, D. UMINSKY, AND J. VON BRECHT 977

and set

g(s) =
1

ε2
g3(s)+ g̃(s).

Then provided ε2>0 is sufficiently small, g(s) will have a mode 3 instability as well.
Moreover, as the auxiliary quantities g3

i (η) associated to the primitive kernel g3(s) are
polynomials of degree at most 3 in cos(η), the choice ε2 does not affect the instability
of mode 5, no matter how large or small. This yields a kernel that has mode 3 and
5 instabilities, while all other modes remain stable as desired. Figure 7.1(d) shows an
example of such a mixed 3+5 mode steady-state.

We remark that the above construction works for all modes ≥3; however it does not
work for the mode 2, since the primitive kernel (7.5) is singular when n= 0. It remains
an open question whether it is possible to design a kernel which destabilizes mode 2
only.

8. Second order model

Until now we have only considered the ground state patterns of the kinematic model
(1.2) for particle interactions, in particular the particles have no independent means of
self-motility. Here we extend the stability techniques to the second order models of
self-propelled particles such as studied in [20, 10], which incorporate acceleration. We
consider the general system

x′j =vj ; v′j =g(|vj |)vj+
1

N

∑
k,k 6=j

f (|xj−xk|)(xj−xk); (8.1)

the term g corresponds to the self-propulsion and typically has the form [10],

g(s) =α−βs2.

In [10], a solution consisting of a rotating ring was considered. Such solution has the
form

xj =Reiθ where θ=ωt+2πj/N ; vj =ωiReiθ.

Equating real and imaginary parts, we find that the frequency ω and the radius R satisfy

g(ωR) = 0;

−ω2 =
4

N

N/2∑
k=1

f

(
2R

∣∣∣∣sin πkN
∣∣∣∣)sin2

(
πk

N

)
. (8.2)

In the continuum limit, (8.2) becomes

−ω2 =
4

π

∫ π/2

0

f (2R |sinθ|)sin2θdθ; g(ωR) = 0.

We now take the perturbation of the form

xj =Reiθ (1+hj) , hj�1,
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and we compute,

x′j =Reθiωi

(
1+hj+

h′j
iω

)
;

∣∣x′j∣∣=Rω

(
1+

1

2

[
hj+hj+

h′j
iω
−
h′j
iω

])
;

g(|vj |)vj =Reθig′(Rω)Rω
1

2

[
iωhj+ iωhj+h′j−h′j

]
;

x′′j =Reθi
(
−ω2−hjω2 +2ωih′j+h′′j

)
so that the linearized equations become

−hjω2 +2ωih′j+h′′j =g′(Rω)Rω
1

2

[
iωhj+ iωhj+h′j−h′j

]
+
∑
k,k 6=j

G1(φ/2)
(
hj−eiφhk

)
+G2(φ/2)

(
hk−eiφhj

)
,

where G1 and G2 are defined in (2.8) and φ= 2π(k−j)
N .

As before, we make an ansatz

hj = ξ+(t)eimθ+ξ−(t)e−imθ, θ= 2πj/N, m∈N.

Equating the like terms in eimθ yields

−ξ+ω2 +2ωiξ′+ +ξ′′+ =A0

[
iωξ+ + iωξ−+ξ′+−ξ−

′]
+ξ+I1(m)+ξ−I2(m),

where I1 and I2 are defined in (2.3, 2.4) and where

A0 =g′(Rω)Rω
1

2
.

Equating the like terms in e−imθ and taking a conjugate yields

−ξ−ω2−2ωiξ′−+ξ′′−=A0

[
−iωξ+− iωξ−−ξ′+ +ξ−

′]
+ξ+I2(m)+ξ−I1(−m).

Setting ξ′±=η±, we obtain the following linear system:

d

dt


η+

η−
ξ+
ξ−

=


A0−2ωi −A0 iωA0 +ω2 +I1(m) iωA0 +I2(m)
−A0 A0 +2ωi −iωA0 +I2(m) −iωA0 +ω2 +I1(−m)

1 0 0 0
0 1 0 0



η+

η−
ξ+
ξ−

.
(8.3)

The solution to this linear system is given by


η+

η−
ξ+
ξ−

=eλt


a
b
c
d

 where λ is an eigenvalue

of the 4x4 matrix in (8.3). By eliminating c and d we then obtain the following system
that the eigenvalue λ must satisfy:

λ2v=M1vλ+M0v,
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Fig. 8.1. Dynamics of the 2nd order model (8.1) with N = 50, g(s) =1−s2, and f(r) =−rp, with
p as indicated. Row 1-3: The initial conditions are taken to be a slight random perturbation of a ring
of radius one rotating counterclockwise. Row 4: Initial positions and velocities are taken to be random
inside a unit square.

where v= (a,b)t and where

M1 =

(
A0−2ωi −A0

−A0 A0 +2ωi

)
;

M0 =

(
iωA0 +ω2 +I1(m) iωA0 +I2(m)
−iωA0 +I2(m) −iωA0 +ω2 +I1(−m)

)
; A0 =g′(Rω)Rω

1

2
.

Example 1. Consider f(s) =−1; g(s) =α−βs2. Then

ω= 1, R=
√
α/β.

Moreover, I1(m) =− 4
π

∫ π/2
0

sin2((m+1)θ)dθ=−1; I2(m) = 0; A0 =−α. Computing the
characteristic polynomial of (8.3) then yields

λ
(
λ3 +2αλ2 +4λ+4α

)
= 0.

Therefore Re(λ)≤0, by the winding number test. It follows that the ring is stable for
all choices of α,β>0.

Example 2. Take f(s) =−asp; we will choose the constant a to make R= 1
2 to

simplify the computations. Then a,ω satisfy

ω2 =
4a

π

∫ π/2

0

sin2+pθdθ; ω= 2
√
α/β.

Now we have ∫ π/2

0

sin2+pθdθ=

√
π

2

p+1

p+2

Γ(p2 + 1
2 )

Γ(p2 +1)
,

which yields

ω= 2
√
α/β, a= 2α/β

√
π

Γ(p2 +1)

Γ(p2 + 1
2 )

p+2

p+1
, R=

1

2
.
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Fig. 8.2. The stability with respect to modes m= 2, .. .,5 as a function of p for the rotating ring
of Example 2. All modes are stable if and only if p∈ (0,2).

Next we consider the stability. We have

I1(m) =−4a

π

(p
2

+1
)∫ π/2

0

sinpθsin2((m+1)θ)dθ;

I2(m)∼−4a

π

(p
2

)∫ π/2

0

sinpθ
[
sin2(θ)−sin2(mθ)

]
dθ;

A0 =−α.

Figure 8.2 shows the Re(λ) corresponding to the first few modes m= 2,. ..,5. As p is
increased from zero, the instability is first observed when p crosses 2. This instability
threshold happens when λ crosses zero at which point det(M0) = 0 or

ω4 +ω2I1(m)+I1(−m))+I1(m)I1(−m)−I2(m)2 + iwA0(I1(−m)−I1(m)) = 0.

This is only possible if

I1(m) = I1(−m) and ω4 +ω22I1(m)+I2
1 (m)−I2

2 (m) = 0. (8.4)

From Lemma A.1, the condition I1(m) = I1(−m) is satisfied if and only if p is even and
p
2 <m−2. In this case we obtain

I1(m) = I1(−m) =−α/β (p+2)
2

p+1
; I2(m) =−α/β p2

p+1
; p is even,

and moreover the second condition in (8.4) is then automatically satisfied.
Another type of instability occurs when p<0, as illustrated in Figure 8.2. This is

due to a Hopf bifurcation. For example, taking α,β= 1, the mode m= 3 undergoes a
Hopf bifurcation when p is decreased past ph≈−0.9405 with λ≈0.08044i. All higher
modes m also undergo a Hopf bifurcation for p<0. In fact, the ring is high wave
number unstable for p<0 and breaks up, as confirmed via numerical simulations.

9. Discussion
We have investigated the stability of a ring pattern in a two-dimensional aggregation

model. We extended the stability theory to the rotating ring state for the second-order
models of self-propelled particles. Some of the results were first published in [17] without
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proofs. Here we provide the detailed derivations. We also extended the results of [37, 38]
on custom kernels from three to two dimensions.

There are two basic types of instabilities that can occur: a low mode instability,
which leads to curve deformation, and a high-mode instability, which can lead to a
complete disintegration of the ring. We analyzed both types of instabilities in detail.
We clarified the shape of the bifurcation corresponding to a low-mode instability. Using
weakly nonlinear analysis, we derived a set of conditions for when such a bifurcation is
a pitchfork.

The high-mode instability depends on the local behaviour of the force F (r) near
r= 0. If the leading order behaviour is F (r)∼arp as r→0 where a>0, then we show that
a necessary (but not sufficient) conditions for stability of a ring is that p>0. Recently,
it was shown in [1] that the Hausdorff dimension of the steady state in two dimensions
is at least 1−p provided that −1≤p≤1, which is consistent with our analysis of the
high-mode perturbations. The threshold case p= 0 is particularly interesting: as we
show in Proposition 6.1, in this case it is possible for a discrete ring of N particles to
be stable for very large N , although it is unstable in the continuum limit. Moreover as
N is increased multiple “bifurcations” in N are observed, from single to multiple rings
to a continuum “thin annulus” (Figure 6.1). The density of the resulting annulus was
recently analyzed in [16]; it was shown that in the threshold case p= 0, the density blows
up near the boundaries of the annulus. The results in [16] and Section 6 of this paper
are complimentary to each other: this paper describes the initial instability, which only
happens at the discrete level for finite but large N, whereas [16] studies the continuum
limit N→∞ where the discrete effects “wash out” completely.

A key open question is to study the stability of co-dimension two patterns (for
stability of co-dimension zero patterns consisting of “black holes”, see [12] in one di-
mension and [16, 31] in two dimensions). Many such steady states can be constructed
analytically; see for example [16]. Unlike the ring patterns, there is no known unstable
co-dimension two patterns; they are difficult to compute numerically since the simula-
tions typically rely on the ODE particle formulation which will diverge away from any
unstable pattern.

For the second-order models, double-mill formations are commonly observed espe-
cially when the repulsion is relatively weak at the origin [10]. It is an open question to
analyze the stability of such double-mills.
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1024765 and DMS-0907031. AB was also partially supported by NSF grant CMMI-
1435709. DU was partially supported by NSF DMS-0902792. TK is supported by
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Appendix A. The key integral.

Lemma A.1. Let

I(p,m) :=

∫ π/2

0

sinp (x)sin2(mx)dx, with p>−3, m∈Z.

This integral has the following representations.

1. If p 6=−1 and p
2 /∈N then

I(p,m) =

√
π

4

Γ
(
p
2 + 1

2

)
Γ(p2 +1)

[
1−(−1)m

Γ(p2 +1)2

Γ(p2 +1+m)Γ(p2 +1−m)

]
(A.1)



982 RING PATTERNS IN BIOLOGICAL SWARMS

=

√
π

4

Γ
(
p
2 + 1

2

)
Γ(p2 +1)

[
1+

sin
(
π p2
)
Γ(p2 +1)2

π

Γ
(
m− p

2

)
Γ(m+ p

2 +1)

]
(A.2)

∼
√
π

4

Γ
(
p
2 + 1

2

)
Γ(p2 +1)

[
1+

sin
(
π p2
)
Γ(p2 +1)2

π
m−p−1

]
as m→∞ (A.3)

2. If p=−1 then

I(−1,m)∼2logm+O(1) as m→∞ (A.4)

3. If p
2 ∈N then

I(p,m) =


√
π

4

Γ
(
p
2 + 1

2

)
Γ(p2 +1)

if m> p
2

√
π

4

Γ
(
p
2 + 1

2

)
Γ(p2 +1)

[
1−(−1)m

Γ(p2 +1)2

Γ(p2 +1+m)Γ(p2 +1−m)

]
otherwise.

(A.5)

Proof. Let s= (sin(x))
2

so that the integral becomes

I(p,m) =
1

2

∫ 1

0

sp/2−1/2(1−s)−1/2 sin2(marcsins1/2)ds.

Next, we have the following identity:

sin2(marcsins1/2) =
1

2

[
1−2F1

(
m,−m

1/2
;s

)]
,

where 2F1 is the hypergeometric function, and write I(p,m) = 1
4I1−

1
4I2, where

I1 =

∫ 1

0

sp/2−1/2(1−s)−1/2ds; I2 =

∫ 1

0

sp/2−1/2(1−s)−1/2
2F1

(
m,−m

1/2
;s

)
ds.

Note that

I1 =

∫ 1

0

sp/2−1/2(1−s)−1/2 =
Γ
(
p
2 + 1

2

)
Γ( 1

2 )

Γ(p2 +1)
.

To evaluate I2, we make use of the following fundamental relationship (Euler’s trans-
form) [28]:∫ 1

0

tc−1(1− t)d−c−1
AFB

(
a1,. ..,aA
b1,. ..,bB

;tz

)
=

Γ(c)Γ(d−c)
Γ(d)

A+1FB+1

(
a1,. ..,aA,c
b1,. ..,bB ,d

;z

)
.

(A.6)
It follows that

I2 =
Γ(p2 + 1

2 )Γ( 1
2 )

Γ(p2 +1)
3F2

(
m,−m, p2 + 1

2
1/2, p2 +1

;1

)
.

Next, we apply the Saalschütz Theorem [5] which states that if the Saalschützian relation

e+f =a+b+1−n and n∈N+ (A.7)
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holds, then the following identity is true:

3F2

(
a,b,−n
e,f

;1

)
=

(e−a)n (f−a)n
(e)n(f)n

(A.8)

where

(a)n=a(a+1)(a+2) .. .(a+n−1) = Γ(a+n)/Γ(a).

It follows that

3F2

(
m,−m, p2 + 1

2
1/2, p2 +1

;1

)
=

Γ(1/2)2Γ(p2 +1)2

Γ( 1
2−m)Γ(p2 +1−m)Γ( 1

2 +m)Γ(p2 +1+m)
.

Using the identity

Γ(z)Γ(−z) =
−π

sin(πz)z

and the fact that m is an integer, we get

I2 = (−1)m
Γ(p2 +1)Γ(p2 + 1

2 )Γ( 1
2 )

Γ(p2 +1+m)Γ(p2 +1−m)
.

Putting all together we obtain (A.1, A.2, A.5).
Asymptotics, p 6=−1: First, note that

Γ(
p

2
+1+m)Γ(

p

2
+1−m) =−π

Γ(m+ p
2 +1)

Γ
(
m− p

2 −1
) (−1)

m

sin
(
π p2
)(
m− p

2 −1
) .

Now using Sterling’s identity, we have

Γ(m+ p
2 +1)

Γ
(
m− p

2 −1
) ∼mp+2 as m→∞.

This yields (A.3).
Asymptotics, p=−1: We write∫ π/2

0

sin2(mx)

sin(x)
dx=

∫ π/2

0

sin2(mx)

x
dx+

∫ π/2

0

sin2(mx)

(
1

sin(x)
− 1

x

)
dx.

The second integral on the right hand side is bounded independent of m. The first
integral is estimated as∫ π/2

0

sin2(mx)

x
dx=

∫ mπ/2

0

sin2y

y
dy∼ 1

2
ln(m) as m→∞

(to see the last estimate, note that
∫mπ/2

1
sin2y
y dy=

∫mπ/2
1

1−sin(2y)
2y dy= 1

2 lnm+O(1) as

m→∞; on the other hand,
∫ 1

0
sin2y
y dy is bounded). This proves (A.4).
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