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Abstract. We propose a new method for computing Dynamic Mode Decomposition (DMD) evolution matrices,4
which we use to analyze dynamical systems. Unlike the majority of existing methods, our approach5
is based on a variational formulation consisting of data alignment penalty terms and constitutive6
orthogonality constraints. Our method does not make any assumptions on the structure of the data7
or their size, and thus it is applicable to a wide range of problems including non-linear scenarios or8
extremely small observation sets. In addition, our technique is robust to noise that is independent9
of the dynamics and it does not require input data to be sequential. Our key idea is to introduce a10
regularization term for the forward and backward dynamics. The obtained minimization problem is11
solved efficiently using the Alternating Method of Multipliers (ADMM) which requires two Sylvester12
equation solves per iteration. Our numerical scheme converges empirically and is similar to a provably13
convergent ADMM scheme. We compare our approach to various state-of-the-art methods on several14
benchmark dynamical systems.15
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1. Introduction. Over the last few years, data-driven approaches became prevalent in18

analyzing dynamical systems [22]. In the common scenario, a collection of system observations19

is provided and a linear object that encodes the dynamics is generated based solely on the data.20

These data-driven approaches are advantageous in that they make minimal assumptions on21

the governing equations of the system, and in particular, these techniques are applicable even22

to non-linear dynamics. In this context, Dynamic Mode Decomposition (DMD) [30] methods23

gained a lot of attention lately, in part due to their computational efficiency as well as their24

analysis capabilities of the system at hand. DMD-based methods were successfully applied to25

various flows including detonation waves, cavity flows and jets [25, 32, 31]. In short, DMD26

computes a matrix whose spectrum, represented by the eigenvalues and eigenvectors, provides27

meaningful information such as growth and decay rates of the system or dominant coherent28

structures in the flow. The goal of this paper is to propose a new method for computing DMD29

matrices that is based on interpreting the problem in a variational form, taking into account30

the forward and backward dynamics and solving it efficiently via splitting.31

Developing data-driven methodologies for the analysis of non-linear dynamical systems32

is an active research domain with DMD being one of its main avenues. In particular, DMD33

was recently generalized and extended in several works having the objective of alleviating34

some of the shortcomings in the original technique. For instance, a limiting assumption35
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2 AZENCOT ET AL.

in [29, 30] requires that the data is given in a sequential form, namely, the input snapshots36

represent an equally spaced time series of observations. In Tu et al. [34] and other works, this37

limitation is relaxed and pairs of equispaced observations are used instead, whereas in [15, 24,38

1], no assumption is made on the regularity of the temporal sampling. Another drawback of39

several DMD methods is the bias they exhibit in the presence of noise and whether the noise40

interacts with the dynamics [2] or not [7]. To address this challenge, variants of DMD were41

proposed in the literature based on solving jointly for the basis and the evolution operator [36],42

formulating the problem as a total least squares minimization [17], and fitting an exponential43

model [1]. Other methods cope with noise by utilizing Kalman filters [26, 27], adapting DMD44

to online data [18, 16], and developing a Rayleigh–Ritz modal decomposition [8], among other45

approaches [7]. Under this classification, our method is applicable to non-sequential data and46

it performs extremely well when sensor noise corrupts the data, as we show in Section 5.47

Perhaps closest to our approach is the work of Dawson et al. [7] where the idea of making48

DMD more robust to noise by considering the forward and backward evolution is investigated.49

More specifically, in forward-backward DMD (fbDMD) [7], the DMD matrix is estimated via50

the square root of the product of the forward model with the inverse of the backward DMD51

matrix. The backward estimate is generated by switching the “before” and “after” roles of52

the snapshots. Our machinery is based on the same observation of exploiting the forward53

and backward dynamics, but in a completely different way. Inspired by ideas from Computer54

Graphics [28, 19], we formulate the task of computing the DMD matrix in a variational form55

that includes penalties for both directions. The obtained minimization is unfortunately highly56

non-linear and non-convex, and thus we introduce an auxiliary variable that represents the57

backward dynamics, arriving at an optimization problem with quadratic objective terms and58

bilinear constraints. This problem can be solved efficiently using splitting techniques such59

as the Alternating Direction Method of Multipliers (ADMM) [5]. The obtained scheme is60

iterative, where at each step we solve two Sylvester equations and perform a trivial update.61

In addition, we show that our problem can be modified such that a provably convergent scheme62

can be devised. Overall, we obtain an efficient algorithm that exhibits fast convergence rates63

in practice and provides improved estimates of various properties of the dynamical system.64

The rest of the paper is organized as follows. In Section 2 we provide background details65

related to dynamic mode decomposition techniques and the alternating method of multipliers.66

Section 3 details our approach for generating consistent DMD evolution matrices where we67

derive the variational formulation, and we propose an effective ADMM splitting scheme to68

solve it in practice. In Section 4, we prove that the problem we consider can be changed so69

that it admits an ADMM-type algorithm which is provably converging. Section 5 provides a70

quantitative and qualitative evaluation of our method with respect to several DMD algorithms.71

Section 6 concludes our work, discusses limitations, and offers a few potential directions for72

future work.73

2. Background. In what follows, we briefly present the most relevant details regarding74

DMD algorithms. We refer to [22] for a more comprehensive text on the recent developments75

and applications of DMD-based techniques. In addition, we describe the essential components76

of ADMM and their link to our work, where we point to the paper by Boyd et al. [5] for77

additional information.78
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Figure 1. The dynamical system ϕ maps from the manifold M at time 1 to time 2 (left), whereas the
associated Koopman operator maps between scalar functions defined on M (right).

2.1. DMD. Dynamic Mode Decomposition (DMD) emerged in the fluid dynamics field [30]79

as a data driven approach for analyzing a dynamical system based on observational data. DMD80

is strongly related to Koopman theory [21], where a non-linear dynamical system ϕ acting81

on a finite-dimensional manifoldM is encoded using an infinite-dimensional linear Koopman82

operator K. In this context, DMD can be viewed as a practical approach to produce a matrix83

A whose spectrum approximates the spectrum of the operator K. Thus, A is an informative84

object and its dominant eigenvalues and eigenvectors are directly linked to dynamical features85

of the system such as growth, decay, frequency and flow modes. These results encourage the86

community to investigate DMD as an effective tool for analyzing various linear and nonlinear87

dynamical systems [22].88

A common scenario, considered in several DMD-based techniques, is to assume to be given89

a set of temporally related pairs of observations x̃j and ỹj , j = 1, 2, .., n, such that90

ỹj(z) = x̃j(ϕ(z)) ,(2.1)9192

where z ∈ M, the dynamical system is ϕ : M → M, and x̃j , ỹj : M → R. Namely, if x̃j93

represents some quantity at time t, then ỹj measures the same quantity at a later time t+∆t,94

as it changes due to the dynamics ϕ, see Fig. 1 for an illustration of this setup. Examples of95

the input observations could be the spatial coordinates [7] or the scalar vorticity [34], among96

other system-related data. The time series of observations {x̃j}nj=1 and {ỹj}nj=1 is used to97

construct matrices X̃ and Ỹ such that98

X̃ = [x̃1 x̃2 ... x̃n] ∈ Rm×n, Ỹ = [ỹ1 ỹ2 ... ỹn] ∈ Rm×n ,(2.2)99100

where the manifoldM is of dimension |M| = m. We note that our data is equispaced in time,101

i.e., ∆t is the same for every j, as is commonly assumed in the DMD literature, although102

other scenarios were considered, e.g., [33]. Using the above notation, the goal of many DMD103

algorithms is to find a matrix Ã ∈ Rm×m such that ÃX̃ = Ỹ .104

In practice, solving directly for Ã could be challenging, especially when m is extremely105

large or when m > n, leading to an underdetermined system. One way to mitigate these106

difficulties is to reduce the spatial dimension of the input data. Many dimensionality reduction107

techniques have been developed in recent years, where the Proper Orthogonal Decomposition108
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(POD) [4] is typically chosen mostly due to its algorithmic simplicity and computational109

efficiency. One of the outputs of POD is a set of r orthogonal modes B ∈ Cm×r such that the110

linear subspace spanned by B approximates Rm well enough. From now on, we denote by X111

and Y the projection of X̃ and Ỹ onto the first r POD modes. Formally,112

X = B∗X̃ ∈ Rr×n , Y = B∗Ỹ ∈ Rr×n ,(2.3)113114

where B∗ is the conjugate transpose of B. To compute the matrix B, we facilitate the Singular115

Value Decomposition (SVD) to obtain the expression X̃ = Ũ S̃Ṽ ∗ and B = Ũr, i.e., the first116

r left singular vectors that correspond to the dominant r singular values. In this reduced117

form, the problem of DMD is to solve the equation AX = Y , for which the least squares118

solution is analytically given by A = Y X+, where X+ is the Moore–Penrose pseudoinverse of119

X. The DMD algorithms we will present next can be thought of as various approaches for120

approximating such A matrices.121

The following Algorithm 2.1 was introduced in Tu et al. [34] and is known as the Exact122

DMD method. While this approach is not one of the original DMD techniques as was proposed123

in [29, 30], it is a close variant of these methods and it serves as the baseline algorithm for124

many extensions and comparisons in the DMD literature. We note that in Step (3), instead of125

taking the pseudoinverse X+, the authors took its projection onto the first r modes. Indeed,126

we have that127

X+ =
(
B∗X̃

)+
=
(
Ũ∗r Ũ S̃Ṽ

∗
)+
≈
(
Ũ∗r ŨrS̃rṼr

∗)+
= ṼrS̃

−1
r .128

Also, Step (4) involves the eigendecomposition (EIG) of A, typically yielding a complex-valued129

spectrum since A does not exhibit a special structure in general. Finally, in many DMD-based130

algorithms, Steps (1− 2) and (4− 5) are shared, whereas Step (3) is different. This is also the131

case in our Algorithm 3.1 where the main change is the way we construct the matrix A.132

Algorithm 2.1 Exact Dynamic Mode Decomposition (Exact DMD)

1: Input matrices X̃, Ỹ ∈ Rm×n and a scalar r ∈ R

2: Compute the SVD of X̃ = Ũ S̃Ṽ ∗, and generate X = Ũ∗r X̃, Y = Ũ∗r Ỹ

3: Denote A = Y ṼrS̃
−1
r

4: Compute the EIG of A, with Avj = λjvj , where vj ∈ Cr, λj ∈ C

5: The DMD spectrum is defined as the set of eigenvalues λj , and vectors ψj = λ−1j Ỹ ṼrS̃
−1
r vj

2.2. Regularizing DMD. In many scenarios, the time sequence of data is generated using133

sensory devices. For example, Schmid et al. [31] applied DMD to snapshots of a helium jet,134

collected using particle-image-velocimetry (PIV) measurements. Naturally, in these settings,135

the observations are assumed to be corrupted with various types of noise. The existence of136

process or sensor noise results in a certain bias in traditional DMD algorithms such as Exact137

DMD, as was recently shown in [7, 17, 1]. To address these shortcomings, several extensions138

to DMD were recently proposed in the literature. From an optimization standpoint, these139
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modified DMD methods as well as our approach can be viewed as regularizing the original140

minimization problem, introducing algorithms that are more robust in the presence of noise.141

In our discussion here, we focus on the methods fbDMD [7], tlsDMD [17] and Optimized DMD [1].142

The main idea behind the forward-backward DMD (fbDMD) technique is to take into143

account the forward dynamics, i.e., transforming X into Y , as well as the backward system144

where Y is mapped to X. The motivation is that by considering both directions, much of the145

bias to noise can be eliminated. In fact, we build on the exact same observation, however,146

we arrive at a completely different method. The algorithm fbDMD follows the same steps147

of Algorithm 2.1, except for the matrix construction which is given by148

A =
(
AfA

−1
b

)1/2
,(2.4)149150

where Af = Ũ∗X Ỹ ṼX S̃
−1
X is the forward estimate, and Ab = Ũ∗Y X̃ṼY S̃

−1
Y is the backward one.151

Notice that the SVD of both X̃ = ŨX S̃X Ṽ
∗
X and Ỹ = ŨY S̃Y Ṽ

∗
Y are used. Assuming that152

efficient routines for computing the square root of a matrix such as sqrtm of MATLAB are153

available, the time complexity for this algorithm is O
(
min{mn2,m2n}+ r3

)
, and thus it is154

governed by the SVD part as we typically have r � m,n.155

In a different paper [17], the authors propose another algorithm known as the total least156

squares DMD (tlsDMD). Intuitively, this approach tries to symmetrize the way noise is being157

handled so that it assumes noise polluted both X and Y , whereas other methods implicitly158

account only for noise in Y . Similarly to the latter algorithm, tlsDMD provides an alternative159

definition for the A matrix. Specifically,160

A = Ubr U
−1
tr , with

(
X
Y

)
= USV ∗ and U =

(
Utr Utr
Ubr Ubr

)
.(2.5)161

162

Namely, the projected observations X and Y are combined into a matrix of size 2r×n, whose163

r dominant left singular vectors are used to compute A. The matrix Utr ∈ Cr×r encodes the164

top left part of U and Ubr ∈ Cr×r represents the bottom left part of U . The scalar r satisfies165

r < n/2 in this method. Overall, the computational requirements of tlsDMD are on the order166

of O
(
min{mn2,m2n}+ r3

)
.167

Finally, a recent development for computing DMD matrices was introduced in [1] resulting168

in the Optimized DMD method. Essentially, the authors formulate DMD as a non-linear least169

squares minimization problem. To this end, the ensemble of observations is put together,170

e.g., Z =
(
X Y

)
∈ Rm×2n, and the goal is to fit Z with a linear combination of non-linear171

functions Φ ∈ R2n×l. In practice, Φ is taken from a family of exponential functions such172

as Φ(α, t)j = exp(αjt), where the set of parameters α ∈ Ck is unknown. The optimization173

problem takes the form of174

minimize
α,B

|ZT − Φ(α)B|2F ,(2.6)175
176

where B ∈ Cl×m is the set of unknown coefficients which determine the linear superposition177

of non-linear functions from Φ. Observing that B can be eliminated from the optimization,178

problem (2.6) may be efficiently solved using the variable projection method [14]. We note179

that the DMD spectrum and the matrix A could be constructed using the computed outputs180

Φ and B, and we refer to [1] for further details.181

This manuscript is for review purposes only.



6 AZENCOT ET AL.

2.3. ADMM. The Alternating Direction Method of Multipliers (ADMM) is a numerical182

optimization approach for efficiently solving separable objective functions. ADMM was first183

introduced in 1970’s in [12, 10], recently popularized by [13, 5], and generalized for nonconvex184

optimization in [35, 11]). A general scenario for which ADMM is effective involves the following185

minimization problem,186

minimize
x,z

f(x) + g(z) , s.t. Ax+Bz = c ,(2.7)187
188

where f(x) : Rn → R and g(z) : Rm → R are convex functions, the linear constraints include189

matrices A ∈ Rp×n, B ∈ Rp×m and a vector c ∈ Rp. To solve (2.7), we define the following190

augmented Lagrangian,191

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) +
ρ

2
|Ax+Bz − c|22 .(2.8)192

193

ADMM exploits the fact that Lρ can be decomposed with respect to the variables x and z,194

leading to a numerical splitting scheme consisting of the iterations195

xk+1 = arg minLρ(x, zk, yk)
zk+1 = arg minLρ(xk+1, z, yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c) ,
(2.9)196

197

where ρ > 0 is the penalty parameter in the augmented Lagrangian. The advantage of utilizing198

ADMM is twofold, solving alternately for x and z typically involves simpler minimization199

problems compared to a joint optimization, and convergence results require mild assumptions.200

It is often useful to facilitate a change of variables and to define a scaled version for the201

dual variable y, denoted by ρu = y. This choice significantly reduces the length of formulas,202

and thus we will opt for this version throughout the paper. We denote by r(x, z) = Ax+Bz−c,203

and we re-write the scaled augmented Lagrangian in terms of u,204

Lρ(x, z, u) = f(x) + g(z) +
ρ

2
|r + u|22 −

ρ

2
|u|22 .205

The associated splitting scheme is similar in the x and z updates where we replace yk with206

uk in (2.9), whereas for the u update we have uk+1 = uk + r(xk+1, zk+1).207

3. Consistent Dynamic Mode Decomposition. In this section we describe our main208

algorithm for computing an approximation of the DMD operator that is associated with some209

known dynamical observations. The key observation in our approach is the consideration of210

the forward and backward dynamics within the same framework. In this context, we propose211

a variational formulation of the problem where we simultaneously solve for the forward and212

backward DMD operators. Unfortunately, the formulation we arrive at is highly non-linear and213

non-convex, and thus challenging to solve in practice. Our main contribution is an effective214

splitting numerical scheme which is efficient yet easy to code.215
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Figure 2. Our method penalizes the obtained inconsistency of composing the forward and backward evolution
operators, A,B. In practice, employing consistency constraints in our optimization regularizes the problem
significantly, yielding robust estimates in the presence of noise as we show in Section 5. In the plots above,
we demonstrate the consistency error for the sine example (5.2) as achieved by various DMD techniques. Our
method yields extremely low error rates, whereas Exact DMD, fbDMD and tlsDMD obtain higher rates that decrease
as the number of observations n increases. Finally, optimized DMD generates the second to best consistency
estimates with the exception of low number of observations, where their error rates are the highest.

3.1. Forward and backward dynamics. Let the two matrices X,Y ∈ Rr×n represent our216

POD-projected data such that each column in X is associated with the corresponding column217

in Y under the dynamics (see Subsection 2.1). Several Dynamic Mode Decomposition (DMD)218

algorithms study the forward dynamics, i.e., find A such that AX ≈ Y . We advocate the219

consideration of the backward dynamics, namely, we also want that A−1Y ≈ X. This idea220

was previously explored in [7, Section 2.4], where the authors proposed the fbDMD algorithm221

which takes into account both directions. However, there are a few key differences between222

our approach and theirs, as we detail below. Formally, we consider the following variational223

problem,224

minimize
A

1

2
|AX − Y |2F +

1

2

∣∣X −A−1Y ∣∣2
F
,(3.1)225

226

where | · |F is the Frobenius norm. We note that if A is orthogonal, i.e., A−1 = AT , then the227

above addends are equal, however in the general case we have228

|AX − Y |2F = Tr(XTATAX − 2XTATY + Y TY )229

6= Tr(XTX − 2XTA−1Y + Y TA−TA−1Y ) =
∣∣X −A−1Y ∣∣2

F
.230231

3.2. Change of variables. The optimization problem (3.1) is highly non-linear and non-232

convex due to the A−1 term. Therefore, instead of directly solving this challenging problem,233

we introduce the auxiliary variable B = A−1, and we re-formulate to arrive at,234

minimize
A,B

1

2
|AX − Y |2F +

1

2
|X −BY |2F , s.t. AB = I,BA = I ,(3.2)235

236

where the constitutive constraints AB = I and BA = I guarantee that minimizers of (3.2) are237

inverse of each other. From an optimization point of a view, if one of the constraints is satisfied238

then the second constraint holds as well. However, in practice, adding both constraints is a239

reasonable choice as they symmetrize the approximate invertible relations of A and B. We240
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refer to the above re-formulation as the Consistent Dynamic Mode Decomposition (CDMD)241

problem. To motivate our methodology, we quantify the consistency error |AB−I|F obtained242

by several existing methods including ours, and we plot the results in Figure 2. Indeed, our243

technique is highly consistent compared to the other approaches, almost independently of the244

number of observations n. We note that when the consistency error is large, it may hint of245

overfitting to data, since the forward and backward estimations represent systems that are far246

from being inverse of each other.247

The CDMD functional (3.2) appeared previously in Computer Graphics applications where248

a discrete map between two dimensional surfaces is being sought. Namely, given two geometric249

shapes such as two different poses of the same person, the goal is to determine where each250

point on one shape is mapped to its corresponding point on the second shape. DMD operators251

(also known as functional maps [28]) arise in this application as they allow to align features252

in the spectral domain and to extract a point to point map as a post processing step. With253

respect to CDMD, Eynard et al. [9] investigate a close variant of our CDMD problem, and254

solved it directly using a non-linear conjugate gradients approach. An alternative formulation255

was studied in [19], based on the observation that the matrix256

Z =

(
I A
B I

)
257

is low-rank when AB = I. Instead of minimizing the rank of Z, Huang et al. [19] replace the258

low-rank constraint with its convex relaxation expressed via the nuclear norm [6].259

Our approach depends on the following straightforward insight. Under the change of260

variables B, the energy functional in (3.2) becomes fully separable. Namely, if we denote261

f̂(A) =
1

2
|AX − Y |2F , f̃(B) =

1

2
|X −BY |2F ,(3.3)262

263

then we seek to minimize f̂(A)+f̃(B) subject to the constitutive invertibility constraints. This264

understanding calls for the development of an Alternating Direction Method of Multipliers265

(ADMM)-type approach [5]. ADMM is advantageous in effectively solving separable opti-266

mization problems, since it systematically leads to splitting schemes composed of potentially267

simpler minimization tasks. Moreover, the theory associated with ADMM-based techniques is268

well-developed with several general results related to convergence, optimality conditions and269

stopping criteria. Unfortunately, the constraints associated with our problem are non-linear,270

and thus while one can employ an ADMM approach, the theoretical guarantees of standard271

ADMM do not apply. Recently, Gao et al. [11] showed that under mild assumptions, ADMM272

with multiaffine constraints converges if the penalty parameter in the augmented Lagrangian273

is sufficiently large. In Section 4, we show that CDMD can be modified to fit a family of274

optimization problems that are considered in [11] for which converging ADMM schemes can275

be devised.276

3.3. A splitting scheme. We now turn to present the main algorithm in this work. Our277

starting point is to define the augmented Lagrangian for problem (3.2) given by,278

L(A,B,Q) = f̂(A) + f̃(B) +
ρ

2
|R(A,B) +Q|2F −

ρ

2
|Q|2F ,(3.4)279

280
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where ρ ∈ R+ is a scalar penalty parameter, the matrix R(A,B) combines the constitutive281

constraints into a single matrix, and the matrix Q is the scaled dual variable (see e.g., [5,282

Section 3.1.1]). Specifically, the matrices R and Q are given by283

R(A,B) =

(
AB − I
BA− I

)
∈ R2r×r , Q =

(
Q1

Q2

)
∈ R2r×r .284

We note that if one adopts the method of multipliers approach, the augmented Lagrangian285

L(A,B,Q) could be directly minimized, as was done in [9]. However, the term |R(A,B)+Q|2F286

includes a quartic combination of unknowns, and thus the optimization problem (3.4) is highly287

non-linear. Instead, our numerical scheme splits the updates so that A and B are not updated288

jointly but in an alternate fashion. Specifically, given initial A0, B0, Q0 and ρ, ADMM takes289

the form of290

1. Ak+1 = arg minA f̂(A) + ρ
2 |R(A,Bk) +Qk|2F291

2. Bk+1 = arg minB f̃(B) + ρ
2 |R(Ak+1, B) +Qk|2F292

3. Qk+1 = Qk +R(Ak+1, Bk+1)293

Below, we show that minimizing Steps (1) and (2) lead in both cases to a Sylvester Equation294

which can be efficiently solved using the QR decomposition, see [3] for further details. The295

update in Step (3) is trivial and requires a single evaluation of R. Overall, we obtain an efficient296

algorithm with time complexity of O(Kr3), where K is the total number of iterations.297

The minimization tasks in Steps (1) and (2) are relatively simple as they comprise of298

energy functionals that are quadratic in A and in B, respectively. Thus, the associated first299

order optimality conditions are linear. For instance, the Jacobian of the energy in Step (1) is300

∇A
[
L(A,Bk, Qk)

]
= ∇A f̂(A) +

ρ

2
∇A

(
|R(A,Bk) +Qk|2F

)
301

= (AX − Y )XT + ρ
(
ABk − I +Qk1

)
(Bk)T + ρ(Bk)T

(
BkA− I +Qk2

)
.302303

After re-arrangement and equating to zero, we arrive at the following Sylvester Equation,304

C1A+AC2 = C3, which is linear in A. The matrices C1, C2 and C3 are given by305

C1 = ρ(Bk)TBk ,

C2 = XXT + ρBk(Bk)T ,

C3 = Y XT + 2ρ(Bk)T − ρQk1(Bk)T − ρ(Bk)TQk2 .

(3.5)306

307

The derivation for Step (2) follows along the same lines, yielding a different Sylvester Equation308

D1B +BD2 = D3 with coefficient matrices given by309

D1 = ρ(Ak+1)TAk+1 ,

D2 = Y Y T + ρAk+1(Ak+1)T ,

D3 = XY T + 2ρ(Ak+1)T − ρ(Ak+1)TQk1 − ρQk2(Ak+1)T .

(3.6)310

311
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3.4. The numerical algorithm. We summarize our technique for computing consistent312

dynamic mode decomposition in Algorithm 3.1. Note that Steps 1 − 2 and 10 − 11 are313

shared with Algorithm 2.1, whereas our main contribution is provided in Steps 3 − 9 where314

the construction of the DMD matrix A is described. We note that the algorithm below315

describes how to compute an approximation of the forward dynamics A and its associated316

decomposition, however, an estimate of the backward dynamics can be extracted as well by317

defining B = Bk, where k is the last iteration index.318

Algorithm 3.1 Consistent Dynamic Mode Decomposition (CDMD)

1: Input matrices X̃, Ỹ ∈ Rm×n and scalars r, ρ ∈ R

2: Compute the SVD of X̃ = Ũ S̃Ṽ ∗, and generate X = Ũ∗r X̃, Y = Ũ∗r Ỹ

3: Initialize A0 = Y X+, B0 = XY +, Q0 = 0
4: for k = 0, 1, 2, ... do
5: Solve Ak+1 = sylvester(C1, C2, C3), using Eq. (3.5)

6: Solve Bk+1 = sylvester(D1, D2, D3), using Eq. (3.6)

7: Update Qk+1 = Qk +R(Ak+1, Bk+1)
8: Update ρ following Eq. (3.8)
9: end for

10: Compute the EIG of the last A, with Avj = λjvj , where vj ∈ Cr, λj ∈ C

11: The DMD spectrum is defined as the set of eigenvalues λj , and vectors ψj = λ−1j Ỹ ṼrS̃
−1
r vj

3.5. Stopping criteria. To establish a practical stopping condition, we keep track of two319

residual quantities that are related to the primal and dual problems. A similar termination320

approach is described in [5]. We define the following primal residual and dual residual,321

rk = R(Ak, Bk) , sk = ρ

(
Ak −Ak−1
Bk −Bk−1

)
,(3.7)322

323

where the termination rule we employ is given by |rk|F ≤ εpri and |sk|F ≤ εdual. The tolerances324

εpri and εdual can be computed using absolute and relative thresholds, such as325

εpri =
√
rεabs + εrel max

{
|AkBk|F , |BkAk|F

}
,

εdual =
√

2rεabs + εrelρ|Qk|F .
326

327

3.6. Dynamic update of the penalty parameter ρ. In general, varying ρ based on the328

current estimates of the primal and dual residuals may lead to faster convergence rates. We329

implement a simple scheme that was proposed in e.g., [5] and is given by330

ρk+1 :=


τρk if |rk|F > µ|sk|F
ρk/τ if |sk|F > µ|rk|F
ρk otherwise,

(3.8)331

332

where we take τ = 2 and µ = 5 in practice.333
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Figure 3. The empirical convergence of our Algorithm 3.1 when applied to non-linear data with high levels
of noise is demonstrated in the above plot. Our method terminates in ≈ 100 steps, where the objective function
is stabilized on an optimal value (left) and the primal and dual residuals converge rapidly (middle and right).
We repeat this test N = 1000 times, and we show the variance in convergence via the shaded areas where the
average is represented by bold curves.

4. Provably Convergent CDMD Scheme. Unfortunately, while the above Algorithm 3.1334

is effective and behaves well in practice as we show in Section 5 and in Fig. 3, it is not335

provably convergent. In what follows, we address this shortcoming and propose an alternative336

converging scheme, which requires only an additional negligible amount of computations.337

To this end, we follow the recent work of Gao et al. [11] which showed that under certain338

conditions, ADMM and its convergence can be extended to include multiaffine constraints.339

In particular, we show that by introducing additional variables to the CDMD problem (3.2),340

the obtained minimization problem is of the required form, while satisfying all the necessary341

conditions in [11].342

Gao et al. investigate the convergence of ADMM for problems taking the form,343

minimize
A,B,C

h(A,B, C) , s.t. P(A,B) +Q(C) = 0 ,(4.1)344
345

where A = (A0, A1, ..., Ana), B = (B0, B1, ..., Bnb
), and a variable block C. In addition, we346

have that h(A,B, C) = f(A,B)+g(C). Finally, Q is a linear map and, in contrast to “standard”347

ADMM problems, P is a multiaffine map. Namely, the transformation obtained from fixing348

all variables Ai and Bj but one, is affine. It is shown in [11] that when several assumptions349

on h,P,Q are met, an ADMM scheme converges to a constrained stationary point, i.e., the350

sequence {Ak,Bk, Ck}∞k=0 is bounded, and that every limit point (A∗,B∗, C∗) is a constrained351

stationary point. While various configurations of assumptions are considered in [11], we list352

here a more restrictive set of conditions that hold in our case.353

Assumption 4.1. Solving problem (4.1), the following hold.354

1. The update order is A0, A1, ..., Ana , B0, B1, ..., Bnb
and a single block C.355

2. Im(Q) ⊇ Im(P).356

3. The objective h(A,B, C) is coercive on the feasible set

Ω = {(A,B, C) : P(A,B) +Q(C) = 0} .
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4. The function f(A,B) can be written as

f(A,B) =

na∑
i

f̂i(Ai) +

nb∑
j

f̃j(Bj) ,

where every f̂i and f̃j are (mi,Mi)- and (mj ,Mj)-strongly convex functions.357

5. The function g(C) is a (m,M)-strongly convex function.358

6. For sufficiently large penalty ρ, every ADMM subproblem attains its optimal value.359

To motivate our discussion, we present an illustrative example related to Nonnegative360

Matrix Factorization (NMF). As we show below, this problem is similar to ours with respect361

to the biaffine constraints, and thus it provides a natural starting point for our case. Given362

a matrix Z, its NMF involves the task of finding a pair of nonnegative matrices A ≥ 0 and363

B ≥ 0 such that Z = AB [23]. An ADMM formulation to NMF was originally proposed in [5],364

yielding the following problem,365

minimize
A,B,C

ı(A) + ı(B) +
1

2
|C − Z|2F , s.t. C = AB ,(4.2)366

367

where ı is the indicator function, i.e., ı(A) = 0 if A ≥ 0 and ı(A) = ∞ otherwise. Gao and368

colleagues reformulate (4.2) to arrive at an optimization problem whose subproblems are easy369

to solve while meeting the assumptions required for convergence. The modified version is370

given by371

minimize
A,A′,B,B′,C,A′′,B′′

ı(A′) + ı(B′) +
1

2
|C − Z|2F +

µ

2
|A′′|2F +

µ

2
|B′′|2F ,

subject to C = AB, A = A′ +A′′, B = B′ +B′′ .

(4.3)372

373

The update order of the variables is B,B′, A,A′ and (C,A′′, B′′). We stress that problem (4.3)374

satisfies a different set of assumptions than those appear in Assumption 4.1, but it is well375

within the family of problems considered in [11]. We refer to their paper for additional details376

of the NMF problem considered in relation to converging ADMM schemes.377

We now turn to modify the CDMD problem (3.2) to a form which fits all the conditions378

in Assumption 4.1 and thus its ADMM is provably convergent, due to [11]. We observe that our379

invertibility constraints AB = I and BA = I are reminiscent of the NMF constraints, and, in380

particular, they are biaffine with respect to (A,B). Moreover, our objective function consists381

of highly smooth Frobenius norm terms. Encouraged by these similarities, we introduce the382

auxiliary variables C,A′, A′′, B′, B′′, and we modify the above (3.2) to arrive at the following383

minimization,384

minimize
A,A′,B,B′,C,A′′,B′′

1

2
|A′X − Y |2F +

1

2
|X −B′Y |2F +

ν

2
|C − I|2F +

µ

2
|A′′|2F +

µ

2
|B′′|2F ,

subject to C = AB, C = BA, A = A′ +A′′, B = B′ +B′′ ,

(4.4)385

386

where ν, µ ∈ R+ are penalty parameters for the C,A′′ and B′′ variables.387
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Algorithm 4.1 Provably Convergent CDMD (CDMD2)

1: Input matrices X̃, Ỹ ∈ Rm×n and scalars r, ρ, µ ∈ R

2: Compute the SVD of X̃ = Ũ S̃Ṽ ∗, and generate X = Ũ∗r X̃, Y = Ũ∗r Ỹ

3: Initialize A0 = A′0 = Y X+, B0 = B′0 = XY +, A′′0 = B′′0 = 0, C0 = I,Q0 = 0
4: for k = 0, 1, 2, ... do
5: Solve Ak+1 = sylvester(A1, A2, A3), where

A1 = I + (Bk)TBk ,

A2 = Bk(Bk)T ,

A3 = (Ck −Qk1)(Bk)T + (Bk)T (Ck −Qk2) +A′k +A′′k −Qk3 .

6: Solve A′k+1 = linsolve
(
ρI +XXT , Y XT + ρ(Ak+1 −A′′k +Qk3)

)
7: Solve Bk+1 = sylvester(B1, B2, B3), where

B1 = I + (Ak+1)TAk+1 ,

B2 = Ak+1(Ak+1)T ,

B3 = (Ak+1)T (Ck −Qk1) + (Ck −Qk2)(Ak+1)T +B′k +B′′k −Qk4 .

8: Solve B′k+1 = linsolve
(
ρI + Y Y T , XY T + ρ(Bk+1 −B′′k +Qk4)

)
9: Solve Ck+1 = ρ

2ρ+ν (Ak+1Bk+1 +Bk+1Ak+1 +Qk1 +Qk2) + ν
2ρ+ν I

10: Solve A′′k+1 = ρ
µ+ρ(Ak+1 −A′k+1 +Qk3)

11: Solve B′′k+1 = ρ
µ+ρ(Bk+1 −B′k+1 +Qk4)

12: Update Qk+1 = Qk +R(Ak+1,Bk+1, Ck+1)
13: Update ρ following Eq. (3.8)
14: end for

15: Execute steps (10)− (11) of Algorithm 3.1

To verify that (4.4) meets all the required conditions, we denote f̂(A′) = 1
2 |A
′X − Y |2F ,388

f̃(B′) = 1
2 |X −B

′Y |2F , and g(C,A′′, B′′) = ν
2 |C − I|

2
F + µ

2 |A
′′|2F + µ

2 |B
′′|2F . Also, we define the389

following residual390

R(A,B, C) = P(A,A′, B,B′) +Q(C,A′′, B′′) =


AB
BA

A−A′
B −B′

+


−C
−C
−A′′
−B′′

 .391

392

The conditions in Assumption 4.1 hold because the update order is A,A′, B,B′ and (C,A′′, B′′)393

as we show below in Algorithm 4.1. The image of Q is indeed a superset of P’s image, since394

it is the (minus) identity transformation in each of its entries, and thus span the entire space.395
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The objective function h is coercive on the feasible set, because its terms behave as |x|2F , and396

therefore whenever |x|F →∞ so does |x|2F . Under some mild conditions, namely, that X and397

Y are full rank matrices, the function f is composed of (m,M)-strongly convex functions as398

we show in Appendix A. Similarly, g is a strongly convex function because the Hessian of its399

terms is positive definite. Finally, the subproblems in our formulation are trivial, linear or a400

Sylvester-type equation and thus attain their optimal value when ρ is sufficiently large.401

We conclude this section with presenting our convergent ADMM scheme along with the402

specification of its subproblems. The derivation of the matrix expressions that take part in403

lines 5 and 7 could be carried over in a fashion similar to Eqs. (3.5) and (3.6). We note that404

lines 6 and 8 of Algorithm 4.1 involve a call to X = linsolve(A,B) which numerically solves405

the system XA = B.406

5. Results. In this section, we evaluate the proposed CDMD approach and compare it to407

several state-of-the-art techniques for computing DMD matrices. In particular, we compare408

against Exact DMD [34], fbDMD [7], tlsDMD [17] and optimized DMD [1]. The dynamical systems409

we consider appeared previously e.g., in [7, 1], and thus can be considered as “benchmark”410

examples for quantitative and qualitative study of DMD algorithms.411
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Figure 4. We plot 95% confidence ellipses (see [7]) for estimating one of the eigenvalues of a periodic
linear system (5.1) when varying number of observations n = 8, 16, 32 are given. The zoom in boxes show the
average estimation for each method. The results above indicate that CDMD is second to best in terms of accuracy
and variance for all values of n.

5.1. A periodic linear system. In this example, we use the following linear and non-412

normal system413

ż =

(
1 −2
1 −1

)
z ,(5.1)414

415

where the system has purely imaginary eigenvalues that are given by λ = ±i. Eq. (5.1) is416

integrated over the [0, 2π] temporal segment, starting from the initial point z0 = [1 0.1]T . To417

stress test our method, we investigate this system when relatively low number of observations is418

given and high levels of white Gaussian noise affect the data. Specifically, we show in Figure 4419

the performance of various methods for computing the eigenvalue −i when noise with variance420

σ2 = 0.1 and Signal-to-Noise (SNR) ratio of 8.6 dB is introduced. We repeat our experiment421

N = 104 times, and the average of each of the methods is marked by a dot with a corresponding422

color. Additionally, we plot the ellipses which enclose the region of 95% of the estimates that423
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Figure 5. We compare the above methods based on their approximation for the eigenvalue of System (5.1)
when various levels of noise are introduced, −4 ≤ SNR ≤ 4. Interestingly, while optimized DMD is extremely
accurate when SNR > 0, it fails for higher levels of noise, and thus it does not appear on these graphs. The
methods fbDMD and tlsDMD perform well in terms of average, but their spread is much larger than our results
which maintain relatively small spread as well as accurate average.

are closest to the true eigenvalue for each of the techniques. We use the values n = 8, 16, 32 for424

the number of observations, which make the system overdetermined as it is two-dimensional.425

Nevertheless, these values are relatively small in comparison to related work on this example,426

see e.g., [7].427

Overall, optimized DMD achieves excellent results in terms of spread and average values,428

across all values of n. On the other end, exact DMD struggles both in accuracy and spread.429

fbDMD and tlsDMD exhibit comparable performance, except for n = 8 where fbDMD produces a430

correct mean, but with an extremely large deviation. Finally, our approach outputs consistent431

deviation and averages, regardless of the value of n. We additionally experiment with various432

high level of noise −4 ≤ SNR ≤ 4 and present the results in Figure 5. Note that the bottom433

row axes are twice as large as the axes in the top row. As can be seen in the graphs, optimized434

DMD is very accurate as long as SNR > 0, but fails when the signal-to-noise ratio drops below435

zero, and therefore it is omitted from the other graphs. In most cases, Exact DMD produces436

poor approximations when compared to the other methods. In comparison, fbDMD and tlsDMD437

generate estimates that are centered around the eigenvalue in general, with growing spread as438

the SNR decreases. Remarkably, our approach exhibits the least increase in deviation when439

compared to all other techniques, while producing a relatively accurate average.440

In addition, we reconstruct the trajectory using the approximations of the dynamics pro-441

vided by each of the methods, and we plot the results in Fig. 6 separated to y-coordinate442

(top row) and x-coordinate (bottom row) over time. It is evident that Exact DMD yields a443
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Figure 6. We reconstruct the trajectory of the periodic system (5.1) using the computed DMD matrices for
various noise variances with 32 observations. Most methods yield paths that are close to the true trajectory,
where optimized DMD and our method obtain the best results.

highly distorted path, whereas the other methods are generally close to the true trajectory.444

As the amount of noise increases, fbDMD and tlsDMD develop a significant shift in phase. We445

measure the distance between the computed paths to the desired curve and we observe that446

our method achieves second to best results after optimized DMD. Specifically, for σ2 = 0.125,447

the L2 error between the computed path to the ground-truth trajectory divided by the length448

of the latter is 0.0837 and 0.2611 for optimized DMD and CDMD, respectively. When σ2 = 0.25,449

the error is 0.1403 and 0.7844 for optimized DMD and CDMD. In comparison, the other methods450

yield errors that are five times larger or more.451

5.2. Dominant and hidden dynamics. The next system is a superposition of a growing452

sine function and a decaying sine function given by453

z(x, t) = sin(k1x− ω1t) exp(γ1t) + sin(k2x− ω2t) exp(γ2t) ,(5.2)454455

where in our experiments we used k1 = 1, ω1 = 1, γ1 = 1 and k2 = 0.4, ω2 = 3.7, γ2 = −0.2.456

This example is more challenging than the previous one since it involves dynamical features457

which are of lower magnitude alongside dominant structures. The eigenvalues of this system458

are of the form γi ± ωi, i = 1, 2, where the “dominant” mode is associated with i = 1 and the459

“hidden” mode is linked to i = 2. In Figure 7, we compute N = 104 times the eigenvalues of460

the system while employing a noise level of σ2 = 0.25, SNR = 30 dB over the observations. The461

results show that for the dominant dynamics, most methods perform well where optimized462

DMD obtains improved estimates as n increases (top row). For the hidden mode, similar results463

are obtained for n = 16, 32, whereas for the lowest n = 8, fbDMD does not appear in the plot464

and tlsDMD is shifted differently than the other approaches (bottom row).465
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Figure 7. Given a noisy superposition of sine functions, we estimate the system’s eigenvalues for various
number of observations n and noise with variance σ2 = 0.25 and SNR = 30 dB. We observe that the dominant
eigenvalue is approximated well (top row), whereas the hidden dynamics is achieved by most methods with
decreasing error as n grows (bottom row).

In addition, we investigate this system across different levels of noise. In particular, we466

set σ2 = 2−2, 2−1, ..., 210 corresponding to SNR in the range [−10, 30]. Each noise level is467

used N = 103 times, for which we compute both the dominant and hidden DMD eigenvalues.468

We show the error results of the different methods in Fig. Figure 8, where the error is a linear469

combination of the average error between the computed eigenvalue and the ground-truth and470

the minimum radius of the deviation ellipse. Formally,471

E = a|λavg − λgt|+ (1− a)rmin ,(5.3)472473

where λavg is the average taken over all eigenvalue estimates, λgt is the analytic eigenvalue, and474

rmin is the minimum radius. In our experiments, we used a = 0.9. Similar to Fig. Figure 5,475

when SNR approaches zero, optimized DMD fails and thus its graphs are shorter. Interestingly,476

up to a certain SNR, all methods present similar error behavior, where at SNR ≈ 17 there477

is an exponential increase in the error estimates. When inspecting the individual results, it478

seems like this high level of noise leads to an extremely large deviation in results, which further479

affects our error measure.480

5.3. Cylinder wake. The last example we consider in this work is of a fluid flow past a481

cylinder simulated using a numerical solver. We obtain a time series of fluid vorticity fields482

consisting of n = 150 snapshots regularly sampled in time with ∆t = 0.2. We refer to [22]483

for additional details regarding this dataset such as the chosen physical parameters and other484

numerical considerations. It is important to note that this particular flow is inherently non-485

linear and thus the underlying assumptions of methods such as optimized DMD may not hold.486

Specifically, it is unclear which functions to fit and whether exponential functions are a good487
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Figure 8. We compute approximations of the dominant and hidden DMD eigenvalues for various levels of
noise, −10 ≤ SNR ≤ 30 and we compute the error for each method using Eq. (5.3). Naturally, for low levels of
noise, most methods perform reasonably well, whereas when SNR ≤ 17 the spread becomes orders of magnitude
larger. See the text for further details.

choice in this scenario. In contrast, our approach (as well as other DMD techniques) does488

not impose restricting conditions on the input data, making it applicable in such challenging489

scenarios. In Figure 9, we repeatedly compute the eigenvalues associated with a noisy version490

of the input data for various noise levels, and we plot the average results as compared to the491

estimates obtained from the clean observations. Specifically, we repeat this experiment N =492

1000 times for noise with variance σ2 = 0.001, 0.01, 0.1 and SNR = 30, 20, 10 dB, respectively.493

Clearly, Exact DMD exhibits a bias in its estimations which is consistent with previous reports494

such as [7]. On the other hand, fbDMD and tlsDMD generate improved approximations of the495

eigenvalues with less accuracy as the noise increases. Our approach is successful in measuring496

nearly zero growth for all eigenvalues and noise levels with a bias in frequencies for the least497

dominant eigenvalues. In Figure 10, we demonstrate the averaged dominant DMD modes498

obtained for σ2 = 0.1. In this case, all methods perform comparably well in the noiseless case,499

where the averaged modes associated with less dominant eigenvalues are clearly noisier.500
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Figure 9. We compute r = 21 eigenvalues using simulation snapshots of a cylinder wake for noise levels
σ2 = 0.001, 0.01, 0.1 respectively SNR = 30, 20, 10 dB. As the noise increases, our method maintains its zero
growth estimate (notice that the x-axis represents the real part, cf. Fig. Figure 7), whereas the other methods
produce significant erroneous growth/decay estimates.
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Figure 10. The averaged DMD modes associated with the cylinder wake are shown for data consisting
of noise with variance σ2 = 0.1. In spite of the large amounts of white Gaussian noise, all methods produce
relatively good estimations when compared to the noiseless scenario (bottom row).

6. Discussion and Future Work. In this work, we presented a new method for computing501

Dynamic Mode Decomposition operators that is based on a variational formulation of the502

underlying problem, while taking into account the forward and backward dynamics. The503

obtained minimization is solved using an effective splitting ADMM scheme, which performs504

well in practice in terms of computational requirements and achieved accuracy. Moreover, it505

is shown that CDMD could be modified to a provably convergent ADMM scheme at the cost506

of insignificant additional computations. We demonstrate the performance of our method on507

a few benchmark dynamical systems, compared to several state-of-the-art approaches. Our508

conclusion is that the generality of our model, along with its improved accuracy for high levels509

of noise and low number of observations, makes it an interesting alternative among current510

existing techniques.511

One limitation of our approach is related to the non-linearity and non-convexity of the512

problem we aim to solve. In particular, it is not clear at this point whether the obtained513

minimizers are local or global, which is a general challenge in these type of problems, as was514

also noted in [1]. Another difficulty associated with our work involves the interplay between515

the chosen value of the penalty parameter ρ and the obtained solutions. While in general516

our technique is robust to the initial value of ρ due to scheme (3.8), it still affects our results517

to some extent, as can be seen in Figure 2, where for large values of n, our consistency518

error increases. Finally, our algorithm is more computationally demanding compared to the519

alternatives. However, this is highly dependent on the particular implementation and choice520

of parameters such as convergence thresholds and thus can be reduced, depending on the521

particular application at hand.522

We believe that formulating DMD in a variational form is important as other regularizers523

may be considered along with our consistency constraints such as sparsity promoting penalty524

terms [20]. We leave this consideration for future work. Moreover, we would like to explore the525

relation of our approach to existing techniques such as tlsDMD. Another interesting direction526

is to combine the current work with methods that numerically compute an optimal basis [36].527

The associated problem is extremely challenging as it is of high dimension, non-linear and528

typically non-convex. We believe that some of the ideas that we presented in this work could529

be generalized to this case and we plan on pursuing this direction in the future.530
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Appendix A. Convexity of f(A,B).531

The function f(A,B) is (m,M)-strongly convex if each of its terms is strongly convex.532

Thus, we show it for the first term f̂(A′) = 1
2 |A
′X−Y |2F , and we note that a similar derivation533

could be carried for the other term. We recall the gradient of f̂(A′) and we vectorize it to534

arrive at the following formulation535

∇f̂(A′) = (A′X − Y )XT = A′XXT − Y XT ≡ (XXT ⊗ I) vec(A′)− vec(Y XT ) .536537

Therefore, when viewed as a vectorized function, the Hessian of f̂ is given by ∇2f̂ = XXT ⊗I.538

The matrix X ∈ Rr×n can be assumed to have full rank, since r � n, and thus XXT is positive539

definite (PD). It is known that the product of two PD matrices is also PD, which means that540

there exists a scalar m > 0 such that the Hessian ∇2f̂ −mI is positive semi-definite, and we541

conclude that f̂ is an m-strongly convex function. Finally, f̂ is also M -Lipschitz differentiable542

since |(A′1 −A′2)XXT |F ≤ |XXT |F · |(A′1 −A′2)|F and |XXT |F is positive and bounded.543
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