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Singularities and Similarities in
Interface Flows

Andrea L. Bertozzi, Michael P. Brenner,
Todd F. Dupont, and Leo P. Kadanoff

6.1 Introduction

The onset of singularities in systems of nonlinear partial differential equa-
tions is an important issue in fields ranging from general relativity [27], to
thermodynamic phase transitions [10], to fluid dynamics [13]. The devel-
opment of a mathematical singularity, when some quantity associated with
the PDE “blows up,” reflects the creation of a new structure in the phys-
ical system which in turn forces the mathematical formulation to change.
Whether or not such singularities are possible for a given system can be a
difficult question. A famous problem from the theory of homogeneous in-
compressible fluids is the question of finite time singularity development in
the three-dimensional Navier-Stokes equation: It is unknown if an initially
smooth solution can develop a finite time singularity in which the vorticity
becomes unbounded [23]. To date, no rigorous proof or counterexample ex-
ists; neither numerical nor physical experiments have produced definitive
answers [22, 25]. When a particular system allows finite time singularities,
many related questions become relevant. For example, do all singularities
have universal characteristics, or are there many possible behaviors? Which
quantities are unbounded at the singular time?

In this chapter we study these questions for a model equation describing
a simple hydrodynamic system that is both easily accessible to experiments
and well known to develop singularities in finite time. Consider two different
fluids separated by an interface that evolves with dynamics including a
pressure jump determined by the Gibbs-Thomson relation

Ap = VK. (1.1)

Here, « is the mean curvature of the surface, Ap denotes the pressure jump
across the interface, and 7 is the surface tension of the interface. Whenever
the topology of the interface changes, the mean curvature and hence the
pressure field develops a singularity. In typical situations, the singularity
can also cause the flow velocity to diverge. This type of singularity happens
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whenever a mass of fluid separates into two pieces. Examples in nature
range from dripping faucets to nuclear fission.

The mathematical description of such surface tension driven flows in-
cludes the Navier-Stokes equation [1] for the fluid velocity v

Ve+(v-V)v = —Vp/p+ (u/p)V?v,

R 0 (1.2)

coupled with boundary conditions at the interface. Here p is the density, u
the viscosity, and p the pressure. At the interface we impose equation (1.1)
along with the condition that the normal component of the fluid velocity is
continuous across the interface and that the interface moves with the fluid
velocity.

In this chapter, we consider singularity formation in a 1D model equation
that follows from the above equations using the lubrication approximation
and specific geometric constraints. The physical systems are flow in a Hele-
Shaw cell and the flow of a thin film of viscous liquid on a solid surface.
By reducing the hydrodynamic equations to a partial differential equation
in only one spatial dimension we can more easily obtain numerical and
analytical results.

The chapter proceeds as follows: After this section we derive the equa-
tions of motion in the two examples above. In Section 6.1.3, we present
the model equation and discuss its mathematical features. In Section 6.1.4
we summarize our observations of singularity formation in the system. An
important feature of the simulations is the ubiquitous presence of “simi-
larity” (i.e., self-similar) solutions in the development of singularities. In
Section 6.2, we describe in detail the types of similarity solutions associated
with the model system and describe their characteristics. In Section 6.3,
we present a detailed analysis of the numerically observed singularities for
the model equation and demonstrate that most singularities are well de-
scribed by similarity solutions. Finally, in Section 6.4 we point out unsolved
problems.

6.1.1 Hele-Shaw Flow

In this case, two fluids (usually air and a viscous liquid) are trapped be-
tween two closely separated flat surfaces. For small Reynolds number, the
evolution equation is the Navier-Stokes equation (1.2) without the iner-
tial terms. The equation is simplified because the pressure is only a weak
function of the z coordinate perpendicular to the flat surfaces. Thus, the
essential dynamics follow from averaging the fluid velocity field over the
perpendicular z direction to obtain Darcy’s law [2]

2

b
v= —mVP(x,y)- (1.3)

r
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FIGURE 1.1. Picture of the thin neck in a Hele-Shaw environment. This picture
is motivated by an experiment [16]. Here, 2h(z,t) represents the width of the
neck at position z and time ¢.

Here b is the plate separation, u is the viscosity, and v is the average
horizontal fluid velocity. The zy plane is parallel to the flat surfaces.

We further simplify the problem by considering the evolution of a very
thin neck of liquid, such as that of Figure 1.1. We assume the neck is
symmetric about the center line y = 0 and has a small width 2h(z,t) which
varies slowly with z. Using the lubrication approximation [7], we assume
that the pressure field is independent of y, so that the £ component of the
velocity, u, is , ,

b = %y_h1137
7

since in this approximation, k ~ h... Finally, the conservation of mass
implies that

(1.4)

ht + lz = 0, (15)

where | = uh is the current of matter in the = direction. Combining (1.4)
and (1.5) we obtain [8, 14, 15]

b2y
——(hhzzz)z = 0. 1.
he + 12“( )z =0 (1.6)

Equation (1.6) involves two approximations: First it assumes that the
Reynolds number of the flow is small. This condition might be violated near
a singularity. The derivation also assumes that the width of the thin neck
2h is much greater than the plate spacing b. When 2k < b, the dynamics
is intrinsically three dimensional and Darcy’s law (1.3) does not apply. We
point out, however, that in favorable circumstances, equation (1.6) might
apply until A ~ b. In such a situation the Reynolds number of the flow
around the singularity does not become large until the flow is fully three
dimensional. For more information see [4].
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Air y 4

FIGURE 1.2. Picture of thin film of viscous liquid on a solid surface. Here, 4
represents the local height of the liquid at position = and time ¢.

6.1.2 Flow of a Thin Film

In a similar fashion, we derive approximate equations for the evolution of
a one-dimensional thin layer of viscous liquid on a solid surface. We con-
sider a thin film of local thickness h(z,t) (see Figure 1.2). Here, there are
two different boundary conditions: the tangential component of the liquid
stress tensor vanishes at z = h(z,t), the air-liquid interface. In addition,
we must prescribe a boundary condition at the liquid—solid interface. The
classical “no-slip” boundary condition, uy|.—o = 0 (u) is the component
of v parallel to the solid surface), is a valid approximation as long as the
microscopic solid-liquid interactions do not significantly affect the macro-
scopic flow field [9]. This condition is reasonable for films with a thickness
much larger than the range h of the solid-liquid interactions. However, the
no-slip boundary condition breaks down near contact lines (where the lig-
uid thickness approaches zero) [20, 26| and loses applicability when the film
thickness is of order h, a length scale that depends on the particular phys-
ical problem at hand. In all cases, the solid exerts an enormous frictional
force on the liquid, so that 8,u(z,t)|,=o is very large. Thus, the boundary
conditions imply that the gradient of 8,u) is large across the liquid film,
so that the dominant viscous stress in the Navier-Stokes equation is 82u;.
For low Reynolds number flows, this viscous stress balances the horizontal
pressure gradient, V| p. Again using the lubrication approximation, so the
pressure field is independent of the coordinate normal to the solid surface,
we obtain an equation for the horizontal component of the liquid velocity

u = w (%2 — hz - B(I, y)) - (17)

The interactions at the solid interface determine the function B. Averaging
(1.7) over the 2 direction, we obtain

v
iy = —3—|l'f)(h2 +3B). (1.8)
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If we assume that h is independent of y, then the equation depends on only
one spatial dimension. We are interested in the case where surface tension
dominates the pressure; in particular, we neglect the effect of gravity. The
evolution equation for h becomes [17]

Y /13 -
h, + (@(h +Bh)hu,> =0. (1.9)

T

The choice of B depends on conditions at the solid surface. When h > A,
we can take B = 0. When the surface is porous, B = a, where « is the
porosity of the surface [24]. Also of interest are polymeric liquids, which
obey the boundary condition u|,—¢ = ¢0,u|,=¢, which yields B = ch. Here
c is a length scale associated with the polymer [9]. The reader should note
that for film thicknesses h < h, the term Bhh;,, dominates the flux in
equation (1.9).

6.1.3 The Model Equation

The examples considered above have a common feature: When h is suffi-
ciently small, the dominant term in the flux has the same functional form,
other than the exponent of h. Mathematically, these cases differ only in
that the liquid velocity is proportional to h.,, (Hele-Shaw and liquid on
porous medium) , hh,,, (polymeric liquids), and h%h,., (macroscopic thin
film). The velocities all have the general form

u~h*""Theg,. (1.10)

In nondimensional form, neglecting the terms with higher powers of h, the
evolution equation is
ht + (A" hgzz)z = 0. (1.11)

We note that equations of this general form with 1 < n < 2 also appear
in the literature as slip models for modeling motion near contact lines [19,
26).

We now ask the following questions: Does equation (1.11) allow h to go
to zero in finite time? Does this answer depend on on the exponent n?
We will show that the value of n determines whether such singularities are
possible. There are several transitions in allowable behavior as n varies,
some of which are in the range corresponding to the physical models.

Mathematical Background of the Model Equation

The model equation is a fourth-order parabolic equation. The degeneracy
of the equation as h — 0 requires h to be bounded away from zero for stan-
dard parabolic theory to ensure well-posedness. In this work we consider
equation (1.11) as an initial value problem on the bounded domain [-1, 1].
In general, one can use either periodic boundary conditions on the interval
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or two fixed conditions for h or higher derivatives at each endpoint. We
specifically consider the fixed conditions

h(x1) =1, hez(£1)=p (pressure), (1.12)
h(£1) =1, heze(£l) =xec, ¢>0 (current). (1.13)

The boundary condition (1.12) comes from the work of Constantin et al,
[8] and Dupont et al. [11] in analyzing the Hele-Shaw problem, where
p has the physical interpretation of the external pressure. The boundary
condition (1.13) corresponds a fixed current, drawing liquid out of the cell
at a finite rate (a situation in which a singularity must occur). Another
choice introduced by Bernis and Friedman (3] is

he(£a) =0, haogz(+a) = 0. (1.14)

In the remainder of this section we combine both theoretical results and
numerical data to illustrate when singularities are allowed in (1.11). We
begin with some mathematical aspects of the solutions and present rigorous
results. Then, we summarize the results of numerical simulations.

Rigorous Results
Existence of Solutions

If we consider smooth initial data hg(z) satisfying the chosen boundary
conditions and ho(z) > 0, then, in general, there exists a solution to (1.11)
on a finite time interval. This solution is infinitely differentiable and can be
continued in time as long as h(z, t) > 0. The reader will find a detailed proof
of this fact with the boundary conditions (1.14) in [3]. Here we summarize
the main ideas as well as differences resulting from different boundary con-
ditions. First we note that h describes a height, a non-negative quantity.
Therefore, we demand that the solution satisfies & > 0 and replace (1.11)
by

he + (|h|"hzzz)z = 0. (1.15)

Proof of local existence of solutions to (1.15) follows from first proving local
existence of solutions to the regularized equation

he + (fc(h)hzz::):: = 01 (116)

where f.(h) — |h|" as ¢ — 0 and fc(h) > € [an example is f.(h) = (h? +
€2/™)™/2]. For a given ¢, the equation is uniformly parabolic and, thus,
by classical theory, has a solution on a short time interval. To prove the
existence of solutions to equation (1.15) we pass to the limit in €. As long as
he(z,t) is bounded away from zero uniformly in ¢, all derivatives converge
uniformly to a C* solution h(z,t) of the original equation. If h(z,t) >
0, the limit is unique. Such a limiting process is crucial for proving the
existence of weak solutions even when A is not bounded away from zero

v
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[3]. We continue this process in time until h(z, t) hits zero for some value
of z. Notice that finite time h — oo type singularities are impossible for
many of the boundary conditions. On any finite time interval, with either
the boundary conditions (1.12), (1.14), or periodic boundary conditions,
||hz(-, t)||z2{-1,1] is an a priori bounded quantity on any time interval [0, T]
which forbids A to become unbounded in finite time.

-~ . ',/‘ -
*for /,’KJ,V,‘" e, -

7~

Existence and Behavior of Singularities r g/h}’ oy . oh e
- (g hiaph

We ask whether it is possible for h — 0 either in finite or infinite time.
Clearly boundary conditions play an important role. For example, in the
case of the “pressure” boundary conditions (1.12), k definitely goes to zero if
p > 2; the issue is whether it happens in finite or infinite time (see below).
Moreover, for the current boundary conditions, a finite time singularity
always occurs; the issue is whether it occurs on the boundary or in the
interior.
We begin by noting that for n > 1 if h — 0, then necessarily

fot‘ |hzzzz| L dt must blow up. We present a formal argument that can be
made rigorous:

d d, . d
a(hmin(t)) - a(mznz(h(z’t))) - E(h(zminvt))
= h (zmin, t) + he (zminv t)i:min
h; (zminv t) = ~h"hzzzs (zmin, t) - nhn_lhx:thx (zmin,t)
—hmin (t)nhzzxzx(zminv t)-

Hence, for n > 1, hy,in(t) can only go to zero in finite time if
f0° hzzzz (Tmin,t)dt, and, hence, hyz., diverges. Here we use the fact that
hz (xm,-,,, t) =0.

We now show a result that rules out finite time singularities for some
values of n. Furthermore, we include additional results that rule out finite
time singularities when h., is bounded; we observe that this bound holds
in many (but not all) of our simulations. We remark that our numerical
simulations indicate that the bounds on n presented here may not be sharp.
See Section 6.3 for more details.

Theorem 6.1.1 Let h be a solution to (1.11) with either periodic boundary
conditions or (1.14) and smooth initial data ho(z) > 0. Then (1) ifn > 3.5,
then there ezists a unique smooth solution h(z,t) for all time that satisfies
h(z,t) > 0. (2) If n > 2, then the above is true, provided that h.(z,t)
remains bounded.

The proof is an extension of the one found in [3] showing (1) to be
true for n > 4. We omit some details that are identical to those found
in [3]. First consider the case of periodic or (1.14) boundary conditions.
We first note that [ h2 is an energy function because integration by parts

~

o fase .
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yields (d/dt) [ hZ = — [ h™hZ, .. The Cauchy inequality then implies an a
priori bound on the C/% norm of h. There is also an a priori bound op
G(h,n) = [ h%?~™ by integration by parts:

1
dG/dt = (%—n)/h’:""(—h"huz)zdx
1
= G-} =n) [ h herhads
1
— —G-mG - ([rhr - [h k)

=~ -m-n ( [am, - [hontas).

Using the fact that

‘ / hiR—5/2

we see that for n > 3/2

1/2 1/2
coffroma] [

dG/dt < 0.

Hence, G is a priori bounded. For n > 3.5 this gives an a priori bound on
f1/h? which in conjunction with the a priori bound in the C*/2 norm of
h makes it impossible for h(z,t) to reach zero.

Part (2) follows similarly, by noting that for n > 2, [ h~1/2 is a priori
bounded. If k., is bounded, then h — 0 implies [ h~'/2 must become
unbounded.

We now consider the constant pressure boundary conditions (1.12). In
this case the energy function is [ @2, where ¢(z,t) = h(z,t) — hoo(z) and
heo(z) is the minimum energy solution satisfying the boundary conditions

= ‘2/1:311,,,};-3/2

hoo(z) =1— 2 + 222, (1.17)
2 2

For the linear equation, with n = 0, the solution tends toward h., at large
times. Note, however, that hoo < 0 on (—Zer, Zer), Ter = /2/p— 1 for
p > 2. For p > 2, the solution will not attain the “least energy” state
hoo(z) because h cannot change sign. We assume that the solution is non-
negative for all time’!; hence, we expect an alternative “least energy” state
that satisfies this constraint. For p > 2, the correct choice is the weak
solution

'n > 1 guarantees existence of a non-negative (possibly weak) solution for all
time. The proof is a direct extension of a similar result described in [3].
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U(z) = 0, |z[<z,,
p
Weo(z) = 'Q'(Ix‘ - xc)2v 12 |z| >z, (1.18)
z. = 1—+/2/p.

This weak solution has a jump in its second derivative at +z. and hence
will produce a singularity in h if A — w.(z) in infinite time. Thus, when
p > 2, we always expect a singularity to form, either in finite or infinite
time. The details of the infinite time case with n = 1 are presented in [8,
11, 28].

When p < 2, there need not be a singularity, since the solution can tend
toward the positive solution h(z). However, we cannot rigorously rule out
the possibility of finite time singularities for the constant pressure boundary
conditions with n < 4. This result follows from an extension of Theorem
1.1. First we integrate by parts to see that [ (2 is a priori bounded where
¢ = h — hoo, which, in turn, gives an a priori bound for [ A2 and from the
boundary conditions, a bound for [ h. A calculation shows that

21w v -2 [ 1= GUH®)] = -1 [ -phersaz

For n > 2 this time derivative is bounded from above by the constant
(n — 2)(n — 1)p?/2. Hence, finite time singularities are impossible for n > 4.
Note that this bound is higher than the bound of n > 3.5 for the boundary
conditions of Theorem 1.1. The boundary conditions (1.12) provide extra
boundary terms that we cannot control as in the a priori estimates used for
proving Theorem 1.1. However, we can show part (2) of Theorem 1.1. The
bound on [ h gives a bound on fOT (hzzz(1) —hzzz(—1))dt and knowing that
hzz is a priori bounded gives definite bounds on fOT [R3(1) — R3(-1)] and
fOT [hz(1) — hz(—1)]. Using these facts, we can bound all of the boundary
terms in the dG/dt integral to show that G is a priori bounded on any time
interval and produce the following:

Corollary 6.1.1 Let h be a solution to (1.11) with boundary conditions
(1.12) and smooth initial data ho(z) > 0. If p > 2, then h will go to zero
in either finite or infinite time. If (1) n > 4, then finite time singularities
are impossible and h hits zero in infinite time. If (2) n > 2, the above is
true providing that h, remains bounded.

If we consider the “current” (1.13) boundary conditions, we force a finite
time singularity to happen and the question becomes one of whether or not
it happens on the boundary or in the interior. We have the following:

Theorem 6.1.2 Let h be a solution to (1.11) with boundary conditions
(1.13) and smooth initial data ho(z) > 0. (1) If n > 3.5 then h(z,t) goes
to zero in finite time with the singularity occurring on the boundary of
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the domain, that is at least one of hy(1,t), hp(1,t) ho(—1,t), hze(~1,¢)
becomes unbounded as t — t., and min;(h(z,t)) — 0 as t — t. for q
arbitrarily small neighborhoods I of the boundary. (2) If n > 2, then th,
above is true provided that on every compact set contained in the interjop
of [-1,1] hzz(x,t) remains bounded.

We note that the bound on A, at the end of this theorem will depeng
sharply on the chosen set. Numerically we observe that the minimum of 4
goes to zero by moving to the boundary as it touches down for n 2 2.0,
The proof of Theorem 1.2 follows in the same fashion as that of Theorem
1.1. We integrate by parts while keeping the boundary terms. By previous
arguments, the only way that the results of Theorem 1.1 can fail is if one of
the boundary terms blows up. Since .., is constant on the boundary, at
least one of hz;(%1) or h-(+1) must become unbounded. In the case where
n 2 2, we cannot require that h;; be bounded on all of I since typically its
boundary value will blow up as ¢ — t.. However, we can rule out interior
singularities with the assumption that on every set contained in the interior
of I, h;, remains bounded (the bound is not uniform). The result that 4
goes to zero in any arbitrarily small open neighborhood of the boundary
comes from the fact that one can show as in (3] that h;; and h; (and
all higher derivatives) will remain bounded in a region where h remains
bounded away from zero.

6.1.4 Simulations and Similarity Solutions

We summarize numerical results for the model system. Some of the results
extend previous research conducted for the n = 1 case in [8, 11, 28]. We
classify the singularities as follows:

(a) Solutions in which A — 0 in finite time versus solutions in which
h — 0 at infinite time. In the latter situation, the infinite time singularity
is a result of the solution trying to reach a “least energy” equilibrium
state, weo(Z), that has we (z) = 0 on a set of positive measure and a jump
discontinuity in (W )zz-

(b) Solutions which have reflection symmetry about the singular point
versus solutions which do not.

(c) Solutions in which h — 0 at an interior point [z € (-1, 1)] versus
h — 0 at a boundary point (z = +1). Boundary singularities are necessarily
asymmetric, in the sense of (b).

There are six different cases described by this list. Table 1 shows the ones
we observe in our simulations. The cases listed in Table 1 are those for which
we have both numerical and analytical evidence for the singularity.
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FIGURE 1.3. Finite time singularities at the center of the computational domain

for n = 0.75. We show a log-linear plot of h(z,t) for successive times before
the singularity. Initial conditions and boundary conditions for this solution are

detailed in Section 6.3.

(l- 12)  presswe BC

) (l o ;) vfrOng &
TABLE 1. Singularities seen in simulations.

case | time type of touchdown | boundary condition | observed for

i finite | symmetrical (112) 0<n<l1

ii finite asymmetrical (1.12) and (1.13) 0.75 <n <12
jii infinite | asymmetrical (1.12) 0.76 Sn< oo
iv infinite | symmetrical (1.12),p=2 0.75 Sn< oo
v finite boundary (1.13) n22

vi infinite | boundary (1.13) not observed

In Figures 1.3-1.6, we show typical simulation results illustrating the
behaviors of Table 1. Figure 1.3 shows case (i). Here, A goes to zero at
z = 0 (n = 0.75). Figure 1.4 shows case (ii). Here, h becomes small at
two nonzero values of z (n = 1.1). Figure 1.5 shows case (v), in which a
singularity occurs at the boundary of the computational domain (n = 2.5).
Finally, Figure 1.6 shows case (iii). Here, h remains positive for all time
but develops .a zero at infinite time (n = 2.0). The zero actually develops
in the entire interval [—z., z.|. Case (iv) is a special case of (iii). Here the
fact that p = 2 causes the singularity to be symmetric about the minimum,
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FIGURE 1.4. Finite time singularity at £z for n = 1.1. We show a log-linear plot
of h(z,t) versus z for successive times before the singularity. Initial conditions
and boundary conditions for this solution are detailed in Section 6.3. The inset
shows a blow-up near the singularity.

since in this case . = 0.

In general, a change in the initial condition will obviously affect the na-
ture of the solution at a later time, especially with regard to the possibility
and location of singularity formation. We use the above classification be-
cause we believe that for a fixed value of n, there exists an open, possibly
“large,” set (in the appropriate function space) of initial conditions which
lead to the same type of singularity, with many universal characteristics
independent of the specific properties of the initial conditions. In our simu-
lations, we consider a two-parameter family of initial conditions, described
in Section 6.3.1. The characterizations presented in Table 1 delineate the
different classes of observed singularities.

In all of the above cases, we would ideally like to prove that the observed
behavior is possible for certain initial data and develop a detailed analyt-
ical understanding of the mathematical nature of the singularity. We lack
rigorous proofs for these examples, but we can make arguments for the
observed behaviors based on analytical properties of similarity solutions of
the model equation. In most simulations, the region around the singularity
is described by a time-independent function, apart from changes in scale;
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FIGURE 1.5. Finite time singularity at the edge of the simulation region for
n = 2.5. We show a log-linear plot of h(z,t) versus z for successive times before
the singularity. Initial conditions and boundary conditions for this solution are
detailed in Section 6.3. The inset shows a blow-up near the singularity.

that is, h has the form

T —zp(t)

h(z,t) =r(H(), n=—FN

(1.19)
Here, z,(t) is the position of the minimum of h, and 7(t) is a time-dependent
length scale which describes the size of the region over which the singu-
larity occurs. A singularity happens when 7 — 0. We can obtain an ODE
for the shape of H by substituting (1.19) into the evolution equation and
making certain assumptions about the relative size of the time-dependent
terms in the equation, based on the observed behavior. We must then be
able to match the similarity solution, H, at large values of n to a solu-
tion in an outer region or to boundary conditions. The matching condition
puts a rather severe constraint on the types of similarity solutions that are
admissible. In many of the cases described in Table 1, the matching condi-
tions break down at specific values of n, explaining the transitions in the
numerical solutions of the PDE.

In the rest of this chapter we explore the link between similarity solutions
of the type (1.19) and formation of singularities in the model equation. In
the next section, we discuss several classes of similarity solutions, delineated
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FIGURE 1.6. Infinite time singularity at +z. for n = 2.0. We show a log-linear
plot of h versus z for large times. Initial conditions and boundary conditions are
detailed in Section 6.3. The inset shows a blow-up near the singularity.

by the relative dominance of the different terms in the time-dependent
equation. For each class, we study the admissible behavior of the functional
form of H. In Section 6.3 we use the classification scheme developed in
Section 2 to explain many of the observed characteristics of the numerical
solutions.

6.2 The Similarity Solutions

We recall the model equation from Section 6.1,
he + (B hgzz)z = 0. (2.1)

We consider similarity solutions of the form

_ T — zp(t)
Solutions of this type arise in the numerical simulations both in the region
around a singularity (the pinch region) and in other nonsingular parts of
the solution. Typically, the scaling (2.2) represents the dominant behavior
around a singularity; there are corrections to scaling which are of smaller
order in ¢t. — ¢.
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In order for a similarity solution to describe the region around a singu-
|arity, the solution must satisfy the following conditions:

(a) T(t) — 0 as t — ¢, the singular time.

(b) H(n) is well behaved at large values of 7, in order to match H to the
outer solution or boundary conditions.

(c) H(m) > 0.

There are not always solutions which satisfy all of these conditions simul-
taneously. In particular, Theorem 1.1 indicates that solutions which satisfy
(a) through (c) for finite ¢, and z, € (—1,1) do not exist when n > 3.5.
In this section, we analyze the types of similarity solutions of equation
(2,1) and determine the values of n for which solutions satisfying the above
conditions exist.

Moreover, in our simulations, for certain boundary conditions and values
of n, we observe finite time singularities which do not have the simple

time=0.0 scaling form (2.2). By determining when a self-similar singularity is not
time=10.0 : o s . "
fime=1.7E3 possible for a system that allows for finite time singularities, we hope to
:;2:;%1353 gain some insight into the development of such complex singularities. We
time=1.0E50 address this issue in Section 6.4.
a log-linear Similarity solutions are useful for describing more than just the region
aditions are around a finite time singularity. We observe self-similar solutions, typi-
ty. cally with compact support, in other parts of the solution. Another goal of
this section is to analyze the existence of these “soliton” solutions. These
solutions play an important role in some of the singularity mechanisms
-dependent described in Section 6.3.
functional
veloped in .. T .
numerical 6.2.1 Derivation of Similarity Solutions
Substituting the form (2.2) into the basic equation (2.1) gives
Tt z:P n—4q/ yn
We classify self-similar solutions by assuming that, to leading order, 7 and
zp have power law behavior in t. —t and then choosing relative sizes of 7,
(2.1) Tp, and 7749, We emphasize that by “similarity solution” we refer merely

to solutions which exhibit scaling. In some cases this scaling will yield an
exact solution to (2.1). However, in most instances, the scaling gives an
approximate solution that only solves (2.1) to leading order in a small
(2.2) variable (usually 7 or a power of 7). We classify these different types of

similarity solutions by the relative sizes of the time-dependent coefficients
in equation (2.3).

the region

ar parts of Equation

it behavior 154

of smaller One possibility is that all the terms in (2.3) are of the same order of mag-

nitude when 7 is of order unity. In that case, z, ={a1'q, so that z, can be
|
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absorbed into a redefinition of the variable 7.2 The similarity equation j

with 7 given by T
t n—4
It 9
- T (25)

'The minus sign appears because 7 necessarily decreases in time. There arg
two unknown parameters in this equation, ¢ which defines the scaling of the
solution, and a, which determines the location of the self-similar solutioy
in z. There are two cases: If 4¢ > n, then 7 — 0 in finite time, as t —
with the power law

4
T~ (te — )@=/ (2.6)
In the other case, 4¢ < n, 7 — 0 in infinite time

£
T ~ tn:l?, (2.7)

Henceforth, the similarity equation (2.4) is called the g equation. So far,
we have not found a situation in which the q equation describes the region
around the minimum of h. However, solutions to the § = 0 equation do
arise in the central region [—z., .| for singularities of type (iii) of Table
1. Note that solutions to the g equation are exact self-similar solutions to
(2.1).

Velocity Equation

Another possibility is that the motion or velocity of the singular point z,(t)
dominates the first term in (2.3), that is,

dzy(t)

. (2.8)

|’Tq_1’1'¢| < ‘
Then assume the £,(t) term balances the third or “current” term in (2.3)
so that
dIP(t) = a,’_n—:iq,
dt
where a is an undetermined constant of order unity. These assumptions
lead to an approximate solution to (2.3) with the self-similar form (2.2),
where H satisfies

(2.9)

aH + b= H"H,,,,. (2.10)
Here b is a constant of integration of order unity. Since the velocity of the

minimum point, £, dominates the time derivative of the pinch region, we
call equation (2.10) the velocity equation. Notice that this solution has

If ¢ = 0, then z, satisfies &. = ™.
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two undefined “critical indices”: We know neither the value of q nor the
time dependence of 7. In general, matching conditions fixes these indices. In
Gection 6.3, we show that the velocity equation is relevant for understanding
case (v) of Table 1, touchdown on the boundary.

Current Equation

A third possibility is that the time derivative h; [the first two terms in
(2.3)] is negligible, so that

I:pr' << Tn—3q,

7] <« T34, [Tl - (2.11)
In this case, H obeys
(H"Hppy)n = 0. (2.12)
If the constant of integration, denoted by A, is positive, we have
H"H,,, = A (2.13)

This equation expresses the fact that the current is independent of posi-
tion near the singularity. Note that again the similarity solution does not fix
either g, or the time dependence of 7. In Section 6.3, we show that this sim-
ilarity equation applies near the singularity in several different situations,
including cases (ii) and (iii) of Table 1.

Parabolic Equation

We can also consider a case where the time dependences obey (2.11) but
the constant of integration in (2.13) is zero. Then, H obeys

Hpypy = 0. (2.14)

We call this the parabolic equation, for, in general, H is a quadratic function
of 7. In Section 6.3 we show that this solution is applicable in the central
and outer regions of case (iii), and in the pinch region of case (i).

Table 2 summarizes similarity solutions we observe in the simulations.
Here zg is the position in [0,1] where the singularity occurs. Since our
simulations are symmetric about 0, we see an identical singularity at —xy.
Section 6.3 contains detailed analysis of the connections between the sim-
ulations and the similarity solutions.

TABLE 2. Similarity solutions seen in simulations.

location of | time observed for pinch region | center region
singularity equation equation

To =10 finite 0<n<1 parabolic same

0<zo<1| finite | 0.75<n <12 | current not self-similar
0 <zo <1 | infinite | 0.75 Sn <2 current q equation, ¢ =0
0<zo<1 | infinite | 2<n < o0 current parabolic
boundary | finite n22 velocity not self-similar
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6.2.2 Qualitative Properties of the Similarity Solutions

First we investigate the properties of solutions relevant in the neighborhoog
of a singularity. These solutions must satisfy conditions (a)—(c) listed at the
beginning of this section. In particular, we need to determine the values of
n for which the current equation and the velocity equation admit solutiong
which satisfy conditions (b) and (c) above. To satisfy (b), the solutiop
must be well behaved as n — +oo. To satisfy (c), it is necessary that the

solution never crosses H = 0. We call the solution which satisfies both of

these properties a global solution.

First we consider the current equation (2.13). As we will see in Section
6.3, this is the correct equation to describe both finite and infinite time
singularities of types (ii) and (iii). We give a heuristic discussion of the types
of solutions that are allowed. Reference [5] contains rigorous arguments,
There are three ways in which a solution H to the current equation can
behave as || — oo. The behaviors are

(LY H = Apn|+BppP"+...,
(Q H = AP +Bpp*2+...,
(S) H = A,

where A is positive and B and subsequent coefficients in the expansion
depend on the sign of 1. For the last behavior (S), A must satisfy the
condition

A"“;%-l- (n_jf'i - 1) (;% - 2) = sgn(n). (2.15)

In order for solution (L) to be valid as |n| — oo we need > <« || for
large |n|, or n > 2. Likewise for solution (Q) to work at large |7|, we need
n > 1/2. For solution (S) to work, A is positive; hence, (2.15) applies for
0<n<1l/2orn>2ifn>0andn<0orl/2<n<2ifn<0.

Il A similar analysis holds for the compactly supported solutions. Here it
is necessary to determine which solutions are possible close to the location,
70, a zero of H; for simplicity we assume that 7p = 0. Again there are three
possible behaviors: (L), (Q), and (S), with small 7 expansions identical to
the large |n| expansions displayed above. Hence, for (L) to work at small
[n|, we need |n] » |n|3~™ or n < 2. Solution (Q) works if n < 1/2, and (S)
is possible for the values of n that guarantee the positivity of A.

In Table 3 we summarize the possible behaviors of the current equation.
The first two rows summarize the possible behaviors as H — 0 or H — 0.
The boldface symbols L, Q, and S denote solutions to the ODE that are

22 parametrically stable. The last four rows summarize the possible forms of
the solution. Here, a global solution is a solution that never hits zero. A
soliton is a solution for which H(n) = 0 at two values of 7. Other solutions
satisfy H(n) = 0 at one value of  and can be continued to a positive
solution either as n — +o00 (zero on left) or as  — —oo (zero on right).
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A similar analysis holds for the velocity equation (2.10). Tables 4 through
¢ summarize the results of the three possible cases b =0, b < 0, and b > 0.
In Table 5, we present the possible behaviors for the velocity equation
with b > 0. In Table 6, we present the possible behavior of the velocity
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equation with b < 0.
TABLE 3. Current equation (2.13) behavior.
0<n<1/2 1/2<n<2[2<n
possible zeros S(n>0),LQ[S(n<0)L | S(n>0)
possible infinities | S (n > 0) S(n<0),Q | S(n>0),LQ
soliton possible possible not possible
global not possible possible possible
zero only on left possible possible” - | possible
zero only on right | not possible possible not possible

TABLE 4. Velocity equation (2.10) with b = 0.

0<n<3/2 3/<n<3 [3<n
possible zeros SHm>0,LQ[S(n<0),L [S(n>0)
possible infinities | S (n > 0) Sn<0),Q|S(n>0),LQ
soliton possible possible not possible
global not possible possible possible
zero only on left possible possible possible
zero only on right | not possible possible not possible

6.3 Simulation Results Compared with
Similarity Solutions

6.3.1 Numerical Method

Our numerical scheme is an adaptation of a code described previously in
(11]. Thus, some of the language here comes, with permission of the au-
thors, from this source. The simulations use a conventional finite-difference
method. The code is an implicit, two-level scheme based on central dif-
ferences. We also use a dynamically adaptive mesh composed of a fixed
macrogrid and adaptive microgrid for higher resolution of singularities. In
certain instances, we use a multilevel microgrid for extremely fine resolution
of singularities. The finite-difference scheme is essentially identical to the
scheme used in [8, 11, 28|. They compared their results to simulation results
obtained from a finite element method and found excellent agreement. The
new features in the code are the incorporation of “current” boundary con-
ditions (1.13), and a dynamically adaptive multilevel mesh for resolution
of moving singularities.
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We consider solutions to (1.11) that are symmetric about z = 0. Given
an initial condition satisfying h(x,0) = h(—z,0), the solution retains this
symmetry. Thus, we can solve the equation on the interval [0, 1], discretized
by the N mesh points,
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0=z <z;3<---<zny=1

At each computational time, the arrays h; and p;, i € [1,..., N], ap-
proximate h(z,t) and —h;;(z,t), and v;, j € [1,..., N — 1] approximates
hezz(Z:t). The h; and p; values exist at the point z;, and v; is the computed
third derivative at the center of the interval, (z; + z;,)/2. The following
picture depicts these associations:

z; v Titl
hq hita i
Ps Di+1 ’
We use the notation ‘
Az = Tig1 — T, 1
Tirrz = 3(Tiv1 +2), 3
Az; = Zi12 - Tioy)2, ;
3.1
hiv12 = %(hi+1 + h;), (3.1)
Ohiy1/2 = (hig1—hi)/A%iya)3,

62h; (Ohiy1/2 — Ohsi_1/3)/ Az;.

For simplicity we describe the difference scheme in space first and later
indicate the time step process. We replace the equation in (1.11) by:

(hi)e + (h?+1/2”i - h?.l/zvi—’l)/Azi = 0, (3.2)
vi +Opiv1i2 = 0, (3.3)
pi+68h = 0. (3.4)

We impose the “pressure” boundary conditions by setting Ay = 1 and
PN = —p and using the symmetry at z = 0. We impose the “current”
boundary conditions by setting vy = ¢, which actually fixes h;;, half of a
mesh point away from the boundary instead of on the boundary. This can
potentially lead to numerical errors when the solution touches down on the
boundary. We cut down the error by dynamically refining the mesh on the ‘
boundary as the singularity progresses. This adjustment is both effective ‘-
and computationally inexpensive.
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The time discretization of the above set of differential-algebraic relationg i
uses a simple two-level scheme. In advancing from time t to time ¢ + g j
we replace the time derivative terms by difference quotients involving the .
solution at the old time level (time ¢) and the as yet unknown solutig; -
at the new time level (time ¢t + dt). We evaluate the other terms using 5
weighted average of the solution at the two time levels; a typical weight ig
6 = 0.55 on the advanced time level and 1 — 8 = 0.45 on the old time leve]

At each time level, the fully discrete system is a set of nonlinear equations
which we solve using Newton’s method. If one chooses an appropriate order
for the computational unknowns, the Jacobi matrix has all of its nonzerg
entries very close to the diagonal. Thus, the solution of the linear equations
in Newton’s method is not a prohibitive expense.

We dynamically choose the time steps to control several aspects of the
simulation. If the result of the time step violates any of a list of constraints,
it rejects the step and tries again with a smaller step size. To avoid using
unnecessarily small time step sizes, if we easily meet all the constraints
for several steps, we increase the step size by about 20% on the next step.
The first constraint comes from local time truncation. Another constraint
rejects a step for which the minimum of h decreases by more than 10%. We
also assure that the correction on the first iteration of Newton’s method is
a very small fraction of the change over the step, where the initial guess
at the change was the change over the previous step, corrected for any
difference in dt’s. This last constraint allows us to solve the equation using
only one Newton iteration per time step.

We use highly graded spatial grids that are very fine near the singular
points and less fine in other parts of the region. At any given time, the
mesh has locally constant Az;’s that increase or decrease by a factor of 2
at any point where they change. (In fact, all the Az values are negative
powers of 2.) The location of the fine grid moves as the solution evolves
based on a set of rules that we vary depending on the particular simulation.
For example, when we wish to resolve a finite time singularity occurring
at a point z,(t) that moves with some speed (for instance, n close to 1
with current boundary conditions), we choose the degree of resolution to
dynamically depend on the minimum of h and the location of the resolution
to depend on the location of z,(t). When either this location moves with
respect to a higher-level mesh or when the minimum goes beyond a certain
threshold, we adapt the mesh. Regardless of the particular remeshing rule,
in locations where we add mesh points, we compute h at these points
by cubic spline interpolation. We compute h;., by linear interpolation
between nearest neighbors. When we remove mesh points, we merely keep
the values of h and h,, fixed at the remaining points. After the remeshing
takes place, we decrease the time step by a factor of 20 for a single step
and then resume with the former step size.

We consider a two-parameter family of “initial” conditions for both sets
of boundary conditions. The parameters are chosen to be experimentally
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FIGURE 3.1. Typical profile of the boundary pressure as a function of time used
in the pressure boundary conditions. We vary the value of the pressure at t = 0,
and also the rate of increase.

realizable. In the case of the “pressure” boundary conditions, we start with
a boundary pressure p = 2 — ¢, and choose the initial data to be the static
parabola corresponding to this pressure

2 —
h(z,0) = g + (—5-6—)::2.

(3.5)
From this initial state we increase the pressure to some fixed value p. We
can then consider the “initial condition” to be the state at the instant
h:z(£1) reaches its final fixed value. Figure 3.1 shows a typical graph of
the boundary pressure as a function of time. We usually set the maximum
p to be 5. The initial conditions thus have essentially two parameters: ¢ and
the rate r at which the pressure on the boundary increases. Both of these
parameters are relevant; varying either can influence the type of singularity
produced.

For the current boundary conditions, we prepare the initial state by
starting out with a static parabola at a pressure p = 2 — € and a boundary
current of zero. We then gradually increase the boundary current to its
constant final value.
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6.3.2 Infinite Time Singularities

Throughout this section and the rest of this chapter we use z,(t) to de-
note the (time-dependent) location of a minimum in h. We use zo [=
lim;_,;, z,(t)] to denote, in general, the static location of the point where
h(z,t) goes to zero, and z. denotes this location for the special case of
infinite time singularities.

For p < 2, the constant pressure (1.12) boundary condition need not
lead to a singularity. Instead, as ¢ goes to infinity, h(z,t) may approach the
parabolic solution

hoo(T) =1-24 2,2

5+ 5 (parabolic solution). (3.6)

Expression (3.6) is the lowest-energy non-negative solution. [Recall from
Section 6.1 that the “energy” for these boundary conditions is [ ¢2dz,
¢ = h(z,t) — hoo(z)]. However, for p > 2, the parabolic solution (3.6) goes
through zero. Instead, the lowest-energy function is the weak solution

B(|lz| — z.)? for |z| >z

—_ 2 c c

Woo(2) = { 0 otherwise (3.7)
with . = 1—+/2/p. This solution is not a classical solution to the equation

as there is a discontinuity in (W )zz at zc. If a finite time singularity does
not intervene, the numerical solutions converge to the lowest-energy non-
negative function in infinite time. When p < 2, h, is strictly positive, so
that as h(z,t) — hoo, there is no singularity. However, if p > 2, weo(z) =0
for ¢ € [~z¢,z.], so that as ¢ — oo the solution must go to zero on this
interval. In this particular case, we must also have a singularity in hz,,
since (Woo )z has a jump discontinuity at +z..

We have initial conditions which lead to such infinite time singularities
for all n 2 0.75. These initial conditions typically have (r,e) = (100,1)
(see the previous section for a discussion of the two-parameter family of
initial conditions), although there is some variation as a function of n. For
n < 0.75, we have not found an initial conditions which leads to such a
solution. In all cases, a finite time singularity intervenes. We conjecture
that infinite time singularities exist for n > 0.5, although such solutions
become much harder to find as n — 0.5.

The infinite time singularities have the following generic structure: At
large times, h(z,t) develops two minima near r = *z.. As t — oo,
h(xzc,t) — 0 and hzpr (o, t) — 0o. We call the region near +z. the
“pinch region.” The “central region” [—z.,z.] contains a local maximum
in h at £ = 0. The height at the center (and in the entire central region)
approaches zero as t — oco. The rate of decrease of the central region is
slower than that in the pinch region. Finally, the outer region comprises
[z¢, 1] and [—z., —1]. Here, the solution approaches the static parabolas

£(lz] — zc)*.

[ I o N B o I ¢ R o i awn i o
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We now present self-similar solutions which accurately describe the ap-
prOaCh to zero in the central region and the pinch region. Constantin et al.
8] carried out this analysis in great detail for the case n = 1: we extend
their results to general n. In the central region, h approaches a similarity
solution of the form h(z,t) = ho(t)C(z), where C(+z.) = 0. There are two
pog,s,ible solutions of this type. The first possibility is that A is a solution
to the g equation of Section 6.2. The only g equation that can describe the
central region has ¢ = 0, for when g # 0, the solutions do not have fixed
support. The g = 0 solution satisfies

A
ho(t) = Zt=1/m
0( ) n

with
AC = (Cnszz)z (3.8)

and

C(xz.) =0.
In the language of Section 6.2, C' must be a soliton solution. As shown
there, this type of solution only exists for n < 2. An alternative in the
central region is the parabolic solution

72
h(z,t) = ho(t) (1 :cg) . (3.9)
This type of solution potentially applies to all values of n. However, it will
turn out that it is only possible to match this central region solution onto
the pinch region for n > 2. Note that the time dependence hg(t) is not fixed
in this case but is determined by the matching. In both cases, ho(t) goes
to zero as t goes to infinity. The solution thus asymptotically approaches
the weak solution w(z) in the central region.

Before proceeding to the pinch region, we check that the numerical
solutions agree with the central region solutions. In Figure 3.2 we plot
h(z,t)/h(0,t) versus z for n = 0.9. We show data for five different times.
The above theory predicts that the data should collapse onto a single curve.
The solid line in the figure is a solution to equation (3.8) with the initial
conditions C(0) = 1, Cy(0) = 0, Cpy(0) = —2.95, and A = 8.40. The agree-
ment is excellent. In Figure 3.3 we show a similar plot for n = 3. Again the
data collapse and agree with the parabola (3.9).

Now we consider the solution in the pinch region. We focus on the pinch
region near +z.. (The same analysis holds near —z..) Here, we argue that
h approaches a similarity solution

h(z,t) = hmin (), 1= =

where H obeys the current equation. The solution matches onto the central
region as 7 — —oo and onto the outer region as 7 — oo. The match onto

(3.10)
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time=1

time=2

time=5

time=30
time=100

— similarity solution

XO0ox+

FIGURE 3.2. Rescaled profiles for the central region for n = 0.9. Each different
symbol represents a numerical solution for a different time. The solid line is a
solution to the similarity equation (3.8), computed using the conditions C(0) =1,
Cyn(0) =0 ,Cypn(0) = —2.95, Cyyy(0) = 0, and A = 8.40.

the outer region requires H(n) ~ An? at large 7. The results of Section
6.2 imply this behavior is possible for n > 1/2 (see Table 3). Furthermore,
since hy, on the boundary is time independent, we need

hmin ~ Ez- (3.]])

In Figure 3.4, we analyze the behavior in the pinch region by plotting
h(z,t)/hmin(t) against (z — Z.)/hmin(t)}/? for n = 0.9 for five different

times. The similarity solution predicts that the data for different times -

should collapse onto a single curve. Indeed, the data collapse quite well. The ‘j

solid line is a solution to the current equation with the initial conditions
H(0) =1, Hy(0) =0, Hy,(0) = 3.05, and A = 1.5.
Next, we turn to the calculation of the time-dependent coefficient £(t)
[or, alternatively, hmin(t)]. The current J from the central region, given by
f ¢

o \ ’:-{“"“ c PR, - i e
Hoe > J= & J, h(z, t)dz,

P

' fixes the time dependence of £(t). On the other hand, the pinch region

solution implies that
J~ Ezn—l /

v e s
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— Ssimilarity solution

FIGURE 3.3. Rescaled profiles for the central region for n = 3.0. Each different
symbol represents a numerical solution for a different time. The solid line is a
solution to the similarity equation (3.9).

Combining these two results yields
ho(t)™ ~ t€2"1, (3.12)
Thus, ho(t) determines £(t). For 1/2 < n < 2, (3.8) gives
ho ~t~Y/" (1/2<n<2).

For the parabolic solution, the time dependence is fixed by the matching:
Near z., the edge of the central region, h(z,t) = ho(t)(z. — z). This means
that the solution in the pinch region must have the asymptotic behavior
H(n) ~ An as n — —oo. From Table 3 of Section 6.2 this asymptotic
behavior is only possible for n > 2. The match also requires the time
dependences agree, so that

ho(t) ~£(t)  (n>2). (3.13)

Combining these results, we find that ho(t) and Amin(t) have the time

dependences
ho(t) ~ ™7™, hunn(t) ~ t79), (3.14)

For 1/2 < n < 2, the exponents are
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me=1.
(x=x.)/¢ S time=12
X time=45
Py time=136

— similarity solution

FIGURE 3.4. Rescaled profiles in the pinch region for n = 0.9. Each different sym-
bol represents a numerical solution for a different time. The profiles are rescaled
by hmin(t) and £(t), as explained in the text. The solid line is a solution to the
current equation (2.13), computed using the conditions H(0) = 1 ,H,(0) = 0,
H,,(0) = 3.05, and A = 1.5.
Al ,/f g)
qli/”"' 't)'f".f’ !
1 2(1+n)
==, = 7 3.15
p(n) = — q(n) n@n = 1) (3.15a)

whereas for n > 2, we have

ey

i 1 Plos

) =5y =y (3.15b)

Relations (3.11) and (3.15a)—(3.15b) compare very well with our numer-
ical data. For example, in Figure 3.5 we compare log-log plots of numerical
data against ¢ for n = 0.9 with the slopes described by (3.15a) and find
excellent agreement. In Figure 3.6 we compare log-log plots for numerical
data against ¢ for n = 3.0 with the slopes described in (3.15b), again with
excellent agreement.

We perform similar analyses for many values of n. As a summary of
these results in Figure 3.7 we show our empirically determined values of
p(n) (from least squares fit on the data) plotted against theoretical values
for a wide range of n. In Figure 3.8 we show a similar plot for g(n). No
discrepancies seem to exist.
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FIGURE 3.5. Time dependences of the minimum height, Amin, and the height
h(0,t) for n = 0.9. The solid and dashed lines are the predictions of the theory.

6.3.3 Finite Time Singularities at £xo, 0 < |zo| < 1

The analysis of the preceding section is simplified by the fact that the
singular point does not propagate. In this section we describe a finite time
singularity in which the singular point does propagate. Dupont et al. [11]
and Zhou [28] first discovered and analyzed this singularity in the case
n = 1, using initial data with (r,€) ~ (100, 1/64).

The singularity has the same overall structure as the previous infinite
time case: There is a pinch region, a central region and an outer region. As
before, we model the solution in the pinch region by a similarity solution
of the form

— z,(t
h(z,t) = hpin(t)H(n), n= i_g_(zt;_()’ (3.16)
where H obeys the current equation with current
hrnin(t)n+1

-

——

in contrast to the infinite time singularities, the central region and outer

N
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FIGURE 3.6. Time dependences of the minimum height, Amin, and the height
h(0,t) at £ = O for n = 3.0. The solid and dashed lines show the predictions of
the theory.

regions do not converge as t — t. to simple similarity solutions. Hence, the
matching of the pinch region to the rest of the solution is more complicated
than in the previous case. In this section we focus only on the leading order
behavior (3.16) in the pinch region.

‘We have numerical evidence for this finite time singularity for 0.75 < n <
1.25 with both pressure and current boundary conditions.? The outer re-
gion is roughly parabolic. This suggests the pinch region scaling

{ &

! i,
2 o lekene DT
h"liﬂ(t) ~ E(t) y -7 . J ol
g2 e tet "
{ kaf/- '_!: L &

Yooy

N ;{ﬂ*

-y

and, moreover, as 1 — 00,

o

H(n) ~ on?. (319

Table 3 of Section 6.2 states that this asymptotic behavior is only possible
for n > 1/2. To illustrate the characteristics of this type of singularity we

31t is more difficult to find initial conditions which access this solution with
the pressure boundary conditions. Here, we only find this type of singularity for
0.80 < n < 1.20.
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FIGURE 3.7. Exponent p(n) of hmin ~ t"P(™ as a function of n. The measured
exponents are compared with those of the similarity solution, equations (3.15a)
and (3.15b). Error bars, as determined by the least squares fit, are typically
40.01. There is also a significant error which depends on the rate of convergence
of the similarity solution.

show numerical results for the case n = 1.1. Figure 3.9 shows hnin(t) as a
function of ¢, — t and indicates that the singularity occurs in finite time.
To illustrate that the pinch region obeys (3.18), in Figure 3.10 we show
a plot of h,, versus z at several different times close to the singular time
for n = 1.1. Indeed, on the edges of the pinch region, h,, approaches a
constant value. Figure 3.11 shows a plot of h(z,t)/hmin(t) as a function

of (x —zp(t))/ h,l,{fﬂ for five different times, where we numerically compute
Tp(t) to satisfy h(zp(t),t) = hmin(t). The collapse of the data verifies the
self-similar behavior of the solution. The solid line is a solution to the
current equation with H(0) = 1, H,(0) = 0, H,;,(0) = 1.7, and X = 0.5.
The agreement is excellent. We see roughly the same scaling behavior for
solutions with 1.25 > n 2> 0.75.

In order to completely understand this singularity we need to determine
Rmin(t). This requires a complete match to the outer and central region.

Dupont et al. [11] accomplished this for the n = 1 case. The corrections
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FIGURE 3.8. Exponent g(n) of h(0) ~ t~9™ as a function of n. The measured
exponents are compared with those of the similarity solution, equations (3.15a)
and (3.15b).

involve logarithmic terms and predict that for n =1,
J(t) ~ (tc — t)/|In(t. —t)|. (3.19)

This agrees quite well with the n = 1 numerical data. However, we do not
know how to extend the result (3.19) beyond the special case n = 1. So
far, we do not find completely convincing results from either the numerics
or the analytics.

6.3.4 FEdge Singularities

For large values of n, finite time singularities do not occur in the interior
of the spatial domain.* However, one can force a finite time singularity
at any value of n by using the current boundary conditions (1.13) which
specify the constant rate at which [ h decreases. In this specific case, h

4This fact is forced upon us for n > 3.5 by the theorems of Section 6.1 (see,
in particular, Theorem 1.2 of Section 6.1).
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FIGURE 3.9. Time dependence of asymmetrical finite time singularities for
n = 1.1. We show log(hmin) versus log(t. — t).

must go to zero in finite time, causing a singularity. For large n, the system
forms singularities at the edge of the domain (z = *1), as in the case of
Figure 1.5. In our simulations, we observe that singularities form on the
edge of the computational domain for n > 2. For n < 1.5, we never observe
such an edge singularity. Our simulations are inconclusive as to whether
the singularity forms in the interior or the edge for 1.5 < n < 2.

The n > 2 edge singularities have a characteristic form. The minima of
h, at tzp(t), progress to the boundary. For simplicity, we again consider
the side close to the z = 1 boundary. Near the boundary but far from z,(t),

!

h(z,t) is a parabola:
_ @—z,®) 2 2y(1)
h(z, t) = (].TI:TW for 0< 1—_&;; ~ 1. (3-20) ﬂ

The current in the pinch [near z,(t)] is quite small, and in fact goes to
zero as ¢ — t.. Hence, the current at the boundary, which is fixed by the
boundary condition, controls the flow out of the region [zp, 1]. For ¢ < t.,

s
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FIGURE 3.10. Plot of hz: versus r in the region around the singularity near the
singular time for n = 1.1.

the constant current boundary condition fixes the time derivative of z, as

ey Je=10~-8[ e~ 127 @

4
e z
3N g t) P { = ?
- e “/.. tipees T 3.,';‘t) C noi
” "'{“P‘*"ﬁgi‘ - Ct b (ag’ing equation (3.20).Since J(1,t) ~ ¥ we find z,(t) ~ 1 — c(t. — t).
In the pinch region, h is described by a similarity solution

S[TARNILAONIEERN

h(z,t) = £ H(), n= f—‘-s—(’ft-)-‘-‘l (3.2

Here, s is an as yet undetermined parameter. Since the time derivative of
£° is small compared with the change in k(z,t) due to the propagation of

the singular point, H obeys the velocity equation of Section 6.2 and hence
satisfies
aH +b= H"H,y,. (3.23)
Also £ satisfies
g3 o 5%“—) ~ constant (3.24)

so that s = 3/n. In order for H to fit onto the quadratic form (3.20),
we need both H(n) ~ 7% as n — oo, and that £*~2 be proportional to

-2 . -
(1 — z,(t))~*. We thus find the time dependence et e vy
E(t) ~ (tc — )™ K U T (3.25)

(-4
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FIGURE 3.11. Rescaled profiles for the pinch region for n = 1.1. Each symbol
represents a numerical solution at a different time. The solid line is a solution
to the current equation, with H(0) = 1, H,(0) = 0, and H,,(0) = 1.70. The
parameter A = 0.5.

The matching to the outer region breaks down for n < 3/2, since equa-
tion (3.23) does not admit the asymptotic behavior H ~ An? in this
regime. This similarity solution can only describe singularity formation
on the boundary for n > 3/2.

In order to complete the solution we must match to the central region.
Recall in the case of infinite time singularities, the flux or current of fluid
leaving the central region determines time dependences in the pinch re-
gion. Here the time dependence (3.25) follows from only the match to the
boundary conditions. However, it is still true that the flux of fluid from
the central region affects the solution. The neglect of this flux is only valid
near the boundary, where the total flux is of order one [much larger than
the flux from the central region, which is O(§*)].

We verify that near the boundary, the similarity solution (3.23)—(3.24)
holds. To check this we look at the specific case n = 7.5. We study the
solution near z*(t), the maximum of h;,,. The maximum z* occurs to the
right of z,, the minimum of h. As t — t., hyz-(z*(t),t) diverges. Figure
3.12 shows the relation between h,..(z*(t),t) and £(t). Figure 3.13 shows
the dependence of z*(t) on t. — t. Figure 3.14 shows the dependence of
hzzz(z*(t),t) on t. — t. The solid line in each case shows the prediction of
the similarity solution. The agreement is excellent. We also need to check
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FIGURE 3.12. Dependence of hz--(z",t) on £ in for touchdown on the boundary,
n = 7.5. The solid line represents the prediction of the theory.

that the functional form around the minimum is described by a solution to
equation (3.23). It is not possible to fit the data with a single solution to
the velocity equation. Upon rescaling, equation (3.23) becomes

sgn(b) + sgn(a)H
c i
where sgn(a) denotes the sign of a. For simplicity we take n = 0 to
correspond to z*. The sign of a is necessarily positive since from above
sgn(a) = sgn(zp). The fact that z* # z, in the simulations means that
sgn(b) = —sgn(a). It follows from this that (H,n,), = 0 both at the max-
imum of H,,, and the minimum of H. Although (Hpnn)sm < O at the
maximum of Hy.y, (Hypp)yn > 0 at the minimum of H, indicating that
the similarity solution veers from the data at the minimum of H. This dis-
agreement is a natural consequence of neglecting of the flux from the central
region. As emphasized above we do not expect the similarity solution to
hold for z < z,. ‘

However, a solution of (3.26) fits the data up to the minimum of A.
This solution satisfies the conditions H,,,(0) = 1 (an arbitrary choice)
and also H(n) — 1 as n — —oo. These two boundary conditions completely

Hpgn = (3.26)
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FIGURE 3.13. Dependence of z*(t) on t. — t for touchdown on the boundary,
n = 7.5. The solid line gives the prediction of the theory.

determine the solution, for there are two exponentially growing solutions of
the linearized (3.26) as 7 — —oo. The solution satisfying these conditions
for n = 7.5 has H(0) = 7.5/6.5, Hy(0) = 0.3542, and H,,(0) = 0.7077. In
Figure 3.15 we compare this solution with results of a numerical simulation.
In the upper half of the figure we show h(z, t)/hzzz(z*(t))~2/55 versus (z—
£*(t))/hzzz(x*(t))~7-3/195 for four different times. In the lower half of the
figure we show hgzz(Z,t)/hzzz(2*(t)) versus (z — z*)/hege (z*(t)) ~7-5/195.
The solid lines are the solutions described above. Indeed, the agreement
between the similarity solution and the data is excellent up to the minimum
of h, where the numerical data clearly deviate from the similarity solution.
Beyond this point, the numerical data do not even collapse. Furthermore,
there is an interesting dynamic structure in this region (not visible in Figure
3.15) that we defer until Section 6.4.

The similarity solution seems to agree with the numerics for a wide range
of n. As an indication, in Figure 3.16 we show the scaling exponent g(n) of
hzzz(z*,t) ~ €9 as a function of n. In Figure 3.17 we show the scaling
exponent p(n) of hzz(z*,t) ~ (tc — t)P™. The points represent the result
of least squares fits to the data. The error in the points depends on how
close the simulation is to t., the singular time. In each case, the solid line
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represents the prediction of the similarity solution

6(1 —n) 3

pln) = —  aln)=—-3. (3.27)
The agreement is quite reasonable. However, we caution that Figures 3.16
and 3.17 do not indicate that the similarity solution describes the data
down to n = 1.5. Without a match to the central region we cannot accu-
rately predict the range of n over which the solution is valid. Recall that
in the previous sections the crucial factor in determining when a similarity
solution breaks down is the matching to the other regions. In Section 6.4
we present some interesting features of the matching region, illustrating its
nontrivial nature.

6.3.5 Finite Time Singularities at xq = 0

All of the finite time singularity mechanisms so far considered have pinch
regions which are asymmetric under reflection about z,(¢). We also observe
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in the text. Notice that the scaling breaks down to the right of the minimum.
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solution.

finite time singularities with symmetric pinch regions for n < 1.5 We also
have numerical evidence for these singularities up to n ~ 1.4, although at
present we have little theory for n > 1.

For small n (n < 0.5) and either “current” or “pressure” boundary con-
ditions with p > 2, every initial condition we attempt gives a singularity of
this type. For n > (.5, some initial conditions converge to the other singu-
larities discussed above. Typically, this singularity corresponds to choosing
€ ~ 1/64 and r very small. For each value of n and ¢ there is a critical rate
r. below which solutions generically converge to this type of singularity.
For n = 1 and € = 1/128, the critical r. is about 30. The critical rate r,
changes as a function of n.

We construct a similarity solution for these solutions with n < 1 as
follows: To lowest order, the solution solves the parabolic equation

h(z,t) =~ (t. — t) + Bx® = Hy(z, t). (3.28)

5We note that it is easy to find infinite time singularities with symmetric pinch
points; these occur generically when p = 2.

4
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. L (2
Writing h = Hp + g, g must satisfy ; I A
((HO + g)ngzzz)z =1 w (329)
so that z
(3.30)

Gzzz = (g+Ho)"'

We formally expand equation (3.30) in powers of g. If n < 1, the successive
terms in the expansion decrease for small |z| and |t — ¢|.
The first-order correction to Hy satisfies
T
Gzzz = E,,; (3.31)
In Figure 3.18 we show the dependence of the minimum height, Anin
on £, the characteristic width, for n = 0.75. In Figure 3.19 we show the
dependence of hmin on t. — t for n = 0.75. In both cases, the solid lines
represents the prediction of the similarity solution. The agreement is excel-
lent. We also check that the the correction to Hy, which satisfies equation
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FIGURE 3.20. Rescaled hzz. versus z profiles near the singularity for n = 0.75.
Each symbol represents a numerical solution at a different time. The solid line
is the first-order correction to the parabolic solution, as determined by equation
(3.31).

(3.31), is present in the data. We can isolate the correction by examining
hzzz. For n > 0.5, hyz; has a maximum at

Tt = (-B(t—2°n__t—1))1/2. (3.32)

In Figure 3.20 we plot hzzz/hzzz(z*) versus z/(hzzo(x*))~2 for seven dif-
ferent times at n = 0.75. The data collapse quite well. The solid line rep-
resents a solution (3.31) with B = 69.2 In Figure 3.21 we show a similar
plot for n = 0.25. Here we plot hzz.(z,t)/h%23 versus z/h33, for seven
different times. Again the data collapse; the agreement with the similarity
solution B = 2.5 is excellent. We repeat this analysis for many values of
n less than one, with similar agreement. As an example, in Figure 3.22 we
show the exponent of huymin ~ £9(™ as a function of n. The solid line repre-
sents the prediction of the similarity solution, and the points are the results
of simulations. In Figure 3.23 we show the exponent of hypin ~ (tc — t)"(")
as a function of n, for both theory and simulations. Again the agreement
is excellent.
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FIGURE 3.21. Rescaled h... versus x profiles near the singularity for n = 0.25.
Each symbol represents a numerical solution for a different time. The solid line
is the first-order correction to the parabolic solution, as determined by equation
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We also include in Figure 3.22 and 3.23 points for n > 1. Although it
is possible (with a slight modification) to construct a similar expansion
for 1 < n < 2, such solutions do not agree with the measured exponents.
Numerically we do not seem to observe this singularity all the way up to
n=2.

6.4 Unsolved Problems

6.4.1 Singularities and Similarity Solutions

In Section 6.3, we describe many singularities of the model equation (1.11)
which exhibit self-similar structure. We compare the characteristics of these
singularities to those of various similarity solutions that approximate the
model equation. Our analysis is in the spirit of matched asymptotics, for-
mulated for analyzing the solutions of ordinary differential equations [12].
In order for a similarity solution to describe the region around the singular-
ity (the inner region) we must be able to match the solution to boundary
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conditions (the outer region). We discover in Section 6.3 that in many in-
stances, the matching is sufficient to qualitatively predict transitions in the
model PDE. The transitions obtained via the matching principle are con-
sistent with the transitions observed in the numerical solutions. However,
matching conditions for PDEs are much more complicated than those in
traditional problems of matched asymptotics; in particular, we must in-
clude the time dependence of the solutions. We are completely successful
in only two cases: the infinite time singularities and the finite time singular-
ities at z = 0, for n < 1. These cases both have “singular” minimum points
that do not propagate. In the cases where the singular points do propagate,
that of edge singularities and finite time singularities at 0 < zo < 1, we do
not have a complete matching analysis. In both of these cases, we have a
consistent theory for the leading order behavior of the singularity but we
do not know how to match this behavior to the rest of the solution. A third
case with incomplete analysis is that of finite time singularities at z¢ = 0
for n > 1.

The construction of a singular solution using matched asymptotics is im-
portant because it indicates that the numerical solution reflects properties
of the PDE. Whether this solution is actually realized in practice depends
on its stability. Brenner and Bertozzi [6] proved linear stability for a two-
dimensional variant of the ¢ = —1 solution. Their analysis also shows that
the ¢ = —1 solution and the parabolic solution of Section 6.3.2 are linearly
stable to perturbations with support inside the support of the similarity
solution. Our simulations indicate that many other similarity solutions are
stable, although at present we have no proof.

In the cases where there is not a similarity solution we exercise extreme
caution when interpreting numerical results on singularity formation. We
must keep in mind that the simulations only track the solutions to a mini-
mum height, typically 10~% —10~2°. We cannot rule of the possibility that
the numerical solutions do not converge on a particular self-similar singu-
larity uniformly as A — 0; instead a completely different type of behavior
could set in at a small height beyond our resolution. When a similarity
solution exists, we know that the numerical singularity is a true singularity
of the PDE. However, in cases where there is no theory, simulations alone
do not provide ample evidence for the existence of a singularity. As an in-
dication of the subtlety of this issue, we describe a situation that arises
for n = 1.6, with initial conditions described in Section 6.3.1. The solu-
tion initially appears to be the same type of singularity as the finite time
singularities at £ = 0. However, when the minimum height reaches below
10~!5, the nature of the solution changes drastically. The minimum be-
gins to propagate toward the boundary, carrying with it an extraordinarily
complicated structure. Figure 4.1 shows height profiles of the singularity
at early times, and Figure 4.2 shows height profiles at slightly later times.
Without rigorous theory to support the data, we can never be certain that
the equation will not “fool” us in this way.
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FIGURE 4.3. Numerical solutions at the foot of the maximum of the h;.. profile
in the case of edge singularity for n = 7.5.

6.4.2 Compler Singularities

This chapter focuses on similarity solutions which are extremely prevalent
in the data. However, not all of the observed singularities are self-similar.
As an illustration of the complex behavior, we discuss two examples: The
first arises near the minimum of A in the edge singularity. As we discuss
in Section 6.3, the similarity solution does not account for the small flux
traveling across the pinch region from the central region. This flux causes
an interesting dynamic structure near the minimum of k. Figure 4.3 shows
the typical behavior we observe for higher values of n. It depicts successive
profiles of h;., versus z, to the left of the minimum for n = 7.5. (Recall
that the theory of Section 6.3 applies only to the right of the minimum.)
We see the formation of a pronounced “dip,” which has scaling structure
with different exponents than the scaling theory presented in Section 6.3.
This singularity thus has two different scaling regions. Values of n closer to
the critical value 1.5 produce solutions which have an even more complex
structure. Figure 4.4 shows the analogous profiles for n = 2.5. As in the
n = 7.5 case, a “dip” begins to form. However, as depicted in Figure 4.5,
at later times the profile has irregular oscillations with a frequency that
increases as.t — t.. We greatly resolve these oscillations to ensure that
they are not produced by the numerics.
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FIGURE 4.6. Successive time profiles of h-- versus z for n = 1.4 with pumping
boundary conditions. The gross feature of the plot is that as the singularity is
reached, the profile is mainly monotonic with a pronounced tip that was not
present for the cases .75 < n < 1.25.

Another complex singularity arises generically for current boundary con-
ditions with 1.5 > n > 1.25. In the previous section, we argue that in
the pinch region simulations with 0.75 < n < 1.25 the current equation
represents the leading order behavior for these solutions. This solution has
the feature that h.r is monotonic in z in the pinch region. In contrast,
Figure 4.6 shows successive time profiles of h;. versus x for n = 1.4. Here,
although the global picture looks somewhat monotonic, it is actually con-
siderably more complicated. To see this, in Figure 4.7 we blow up the area
around the pinch which contains a local minimum in k., in the shape of a
“tip.” Blowing up the “tip” region again in Figure 4.8 we see that this is
not a simple minimum, but in fact it posseses another tip, which, in turn,
has yet another tip upon finer resolution. We do not know whether this
type of structure persists until the singularity.

6.4.3 Mathematical Questions

A number of important mathematical questions still remain. For instance,
what is the critical value of n, above which finite time singularities are
impossible? Is it the same for all boundary conditions? The theorems of
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Section 6.1 place an upper bound on this critical value of n. However, oy,
simulations indicate that the critical value is probably lower. Another opey
problem is a rigorous proof for the existence of finite time singularities a¢
any nonzero value of n larger than zero. Our numerical simulations are
convincing evidence for the possibility of such a proof. A related problen
not addressed in this chapter is the continuation of solutions beyond the
singularity. Bernis and Friedman (3] prove the global in time existence
of non-negative weak solutions for n > 1 with the boundary conditiong
(1.14). However, uniqueness is unknown. An open problem is whether or
not additional boundary conditions (on the edge of the support of the
solution) are needed after the singularity. If such conditions are needed,
how do we pick out the physically relevant solutions? Perhaps similarity
solutions again play a role, as in the work of Keller and Miksis describing
a related but different surface tension problem [21].

Another issue not discussed in this chapter is comparison with experi-
ment. The only practically realizable systems correspond to n = 1 (Hele-
Shaw cell) and n = 3 (thin film on solid surface). There is reason to believe
that our singularity results apply to Hele-Shaw experiments with suffi-
ciently viscous fluids (see [4]). Experiments on singularities in Hele-Shaw
systems are in progress (see [16, 18]). Hopefully the results will stimulate
further theoretical developments.
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