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Abstract—Hyperspectral imaging has emerged as a promising
tool in the identification of objects and the state of objects, by
their chemical and material composition. Hyperspectral imaging
acquires spectral information at each pixel location across a
wide range of the light spectrum. This enhanced spectrum
information also comes with additional noise including spectral
mixing, blurring and acquisition distortions. The analysis and
processing of this high dimensional data requires efficient spe-
cialized techniques. We discuss a new novel graph based method
for dimension reduction, image segmentation and classification
based on the Ginzburg-Landau functional from classical PDE
minimization. It aims to efficiently preserve as much spectral
and structural information as possible. We show results from a
field test of a wide field of view imaging spectrometer (WFIS)
high performance hyperspectral imager designed for atmospheric
chemistry and aerosols measurement from aircrafts and satellites.

I. INTRODUCTION

The hyperspectral data is obtained by a Wide Field-of-
view Imaging Spectrometer (WFIS) [1], from Hamilton Sund-
strand1, a aerospace systems company. The imager is a high-
performance pushbroom hyperspectral imager designed for
atmospheric chemistry and aerosols measurement from an
aircraft or satellite. Unlike the conventional hyperspectral
dataset, WFIS produces images with high spatial resolution
and a large number of wave bands. The spatial resolution
is 350 × 1024, and the image cube contains 2048 bands.
Three sample bands (image slices) are shown in Figure 1.
In this paper, we apply two types of classification methods on
this dataset; one is spectral clustering and the other is semi-
supervised image segmentation.

To segment the image at a pixel-by-pixel level, we represent
each pixel as a 2048-dimensional feature vector. This takes
into account the complete observed spectrum and allows for
measurements of differences across multiple bands. From the
data, we construct a weighted graph whose vertices are the
image pixels and edges are defined by the similarity between
any two pixels. The similarity weight is computed based on a
distance metric. Euclidean L2 distance is commonly used in
image processing for grayscale and 3 dimensional color im-
ages. As for higher dimensional images such as hyperspectral,
the spectral angle (SA) [2] is often more appropriate.

1http://www.hamiltonsundstrand.com

Fig. 1. Three sample image slices of the hyperspectral image, slices 10, 900
and 1800.

The rest of the paper is organized as follows. In Section
II-A, we discuss in details about the construction of the
weighted graph with the choice of L2 or SA as the distance
metric. Based on the graph representation of the data, we apply
two segmentation methods. Section II-B is devoted to unsu-
pervised segmentation, or clustering, using spectral clustering.
The second method in Section II-C is a semi-supervised binary
classification using a diffuse interface model. Followed bt the
conclusion is given in Section III.

II. IMAGE SEGMENTATION/CLASSIFICATION

A. Graph Representation of the Data

We represent each data point (each pixel of the hyperspectral
image) as a vertex in a graph, which lies in a high dimensional
space (each of length 2048). The edge weights are defined to
be the similarity between two points, i.e., a similarity weight



Fig. 2. Top: the original image (only one spectral band shown) with two
groups of pixels: tree and sky. From left to right: the first three eigenvectors
of the weight W by using L2 (the second row) or using SA (the last row).

matrix W ∈ Rn×n is computed as follows,

Wi,j = exp{−d(xi, xj)2

2σ2
} . (1)

The Gaussian kernel is a natural choice that describes the
diffusion of heat or information through the data set (from
pixel to pixel across the image). We consider two choices for
the distance metric d(xi, xj). One is the standard Euclidean
L2 distance,

d(xi, xj) = ‖xi − xj‖2. (2)

The other is the spectral angle, defined as

d(xi, xj) = arccos
〈xi, xj〉
‖xi‖‖xj‖

. (3)

Spectral embedding uses the eigenvectors of the adjacency
matrix, the normalized weight matrix. Figure 2 and Figure 3
show the eigenvectors of the weight matrix W constructed
by L2 and then SA on two subimages from the raw data.
Figure 2 shows the image with two groups of pixels, sky
and tree (the group of tree pixels also has a hieratical group
structure made up of subgroups), while Figure 3 is with
three groups of pixels, tree, building, and sky points (each
made up of their own hieratical group structure). Using either
L2 or SA, the eigenvectors naturally represent differences in
pixel group structures in the data. For the sky-tree image,
the third eigenvector using L2 starts to select the structures
within the tree, while the one by SA appears to choose the
boundaries between two groups. In this sense, SA is better at
distinguishing features of the same class than L2.

B. Spectral Clustering

Spectral clustering is a popular and powerful modern clus-
tering algorithm. It projects the data onto eigenvectors of

Fig. 3. Top: the original image (only one spectral band shown) with three
groups of pixels: sky, building and tree. From left to right: the first three
eigenvectors of the weight W by using L2 (the second row) or using SA (the
last row).

a weighted graph, defined from local similarity, to enhance
natural separation in the data. For a complete analysis and
discussion of the theory behind spectral clustering see [3] by
von Luxburg and [4] by Ng, Jordan, and Weiss.

Given a set of data X = x1, x2, . . . , xn, we want to
cluster into k groups, where k is a priori. The algorithm goes
as follows,

1) Construct a weight matrix W ∈ Rn×n from Section
II-A. Normalize each row of W to have unit length.

2) Find the top m largest eigenvectors of
W , v1, v2, · · · , vm, and form the matrix
V = [v1|v2|...|vm] ∈ Rn×m (We use the Nystrom
method to approximates the eigenvectors of W from a
small sub-sampled weight matrix. ).

3) Each row of V as a point in Rm, called the spectral
coordinate, which are clustered into k clusters using k-
means or other clustering methods.

4) Assign the original point xi to cluster j if and only if
row i of the matrix V was assigned to cluster j.

Figure 4 shows the results for spectral clustering using k-
means. For the sky-tree example (the top row of Figure 4), the
two clusters are mapped into two colors, black and white (the
order has no meaning). No matter which distance is used to
construct the weight, the two clusters are identified correctly
here. Similarly on the bottom row of Figure 4, the three
clusters found are mapped to three colors values, black, gray
and white (again the order is arbitrary). In this example, SA
gives more plausible clustering results than L2.

Spectral clustering is an unsupervised method which can be
extended to semi-supervised by adding partially labeled data.
An advanced extension in this direction using the Ginzburg-
Landau functional from classical PDE minimization, is the
diffuse interface model.



Fig. 4. Results of spectral clustering using 100 eigenvectors of the weight
computed by L2 (middle column) or SA (right column). The first column
shows the original data. SA gives more plausible clustering results than L2.

C. Diffuse Interface Model

The weighted graph is also used in the semi-supervised
classification (SSC). Given the labels on a set of the vertices on
a graph, the goal of SSC is to label the entire set of data points.
Bertozzi and Flenner [5] formulate a binary segmentation
based on the Ginzburg-Landau functional on the graph with a
fidelity term. In particular, the following energy functional is
minimized,

û = min
u

ε 〈u, Lu〉+ 1
2ε

∑
x∈X

(u2(x)−1)2+
∑
x∈X

λ(x)(f(x)−u(x))2 .

(4)
The first term is a graph Laplacian, which is obtained by
normalizing the matrix D − W to be symmetric, i.e.,

L = Id − D−1/2WD−1/2 (5)

with D be the degree matrix. If we normalize each row of the
weight W to sum up to one, then D is an identity matrix. The
graph Laplacian L is an analogue to the standard Laplacian
4 for a function. The second term in (4) is a double well
potential, which forces u to go to one of two classes, with
value either one or negative one. The last term is a fidelity
term for semi-supervised classification, where λ(x) is set
to 1 for the pixels with known labels and zero elsewhere.
The Ginzburg-Landau fucntional minimizes a weighted graph
cut between two regions. Thus the minimizer of (4), û,
approximately takes value one on a set of vertices and negative
one on another with a smooth transition between them. The
class labels are then determined by thresholding û.

With the hand labeled image, the function u is initialized
to one for one of the classes and negative one for the other.
See the first column of Figure 5 for examples. In particular,
the initial value of u is one on the rectangular region, and
negative one on the rest. The graph Laplacian is constructed
using (5) with the choice of metric, either L2 (2) or SA (3).
Then the optimal solution u of (4) is obtained by a convex
splitting scheme. Please refer to [5] for more details. In the
experiments we set the parameters as follows: ε = 1, c = 100
and 400 iterations. For an image of size 100 × 100, we used
a hand labeled 10x10 sub-image, the computational time in

Matlab for the weight matrix is 80 seconds, and computing the
GL-min is about 60 seconds. The results are given in Figure 5.
In the sky-tree example (the first row of Figure 5), the method
is able to evolve the rectangle region with known label, “tree”,
to identify the entire tree region in the image. The weight using
either L2 or SA can produce reasonable labels, while SA gives
more plausible segments than using L2. The second and the
third rows of Figure 5 deal with the same image, but with the
different known regions: which are tree for the second row,
and building for the third row. Again the choice of SA for
similarity outperforms L2 here.

Fig. 5. Results of Ginzburg-Landau minimization of using L2 (middle
column) or SA (right column) to construct the weight W . The first column
shows the original images with training patches, indicated by white rectangles.

III. CONCLUSION

This paper discusses graph-based classification methods on
hyperspectral data. The difficulty of this new dataset obtained
by WFIS is its huge dimensionality. We apply two classi-
fication methods on several 100 × 100 subimages, spectral
clustering, a unsupervised multilabel classification method and
the other uses Ginzburg-Landau minimization to achieve semi-
supervised binary segmentation. Both methods are based a
fully connected graph representation of the data, in which the
weight is computed by using either L2 or spectral angle as the
distance metric. Experiments show that SA always give better
results than L2.

One future direction is to deal with the data of its original
size. It takes about 3GB to store the data of size 350×1024×
2048, which causes a huge burden on the storage. A simple
solution is to divide the entire data into thirty 100×100×2048
sub-blocks and combine them together. Another alternative is
to construct a very sparse weight matrix W . In this regard, it
is helpful to investigate on computing eigenvector of a sparse
matrix, such as [6]. Another possibilty is to use the Nystrom
extension as recently applied in [7]. Also L2 is a better choice
to compute the weight, as it can produce a sparse weight by



using a relatively small σ in (1). SA, on the other hand, is
bounded by 0 and 1, so the weight is either full or zero matrix.
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