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1 Introduction

The study of crime time series is an area that contains a wealth of information, but

very little knowledge and much disagreement. For example, McDowall, Loftin and

Pate (2011) note the large extent to which seasonality has been identified in crime

data, but also that many studies that came to the opposite conclusion [8]. While

some studies claim crime spikes occur in the summer, others observe them in the

winter, and others in the months in between. Beyond this, much variation has been

found in seasonality with respect to crime type. It has been believed that property

crimes peak in the winter, and violent crimes in the summer.

However, we do know that crime has a level or organization and thus predi-

catability. It is well known that criminals are ”moderately regular,” meaning they

are more successful when targeting a similar area repeatedly [4]. Such observations

have led to self-exciting burglary process models that simulate individual criminals

within a neighborhood [9, 12]. These have been based off of models that repre-

sent an ”attractiveness field” of homes that govern movement of criminals within a

neighborhood [10, 11].

Much investigation into seasonality of crime time series has gone into empirical

statistical findings or behavioral theories explaining their occurrence. Temperature-

aggression theories have been posited, arguing that crime increases with tempera-

ture. It has also been argued that seasons associated with more outdoor activity

causes a greater susceptibility of households to theft and other crimes, since the

owner is more often removed from the potential crime site.

On the other hand, less research has gone into the mathematical modeling of

crime seasonality of time series, particularly in the field of differential equations.

Current models are largely statistical, and are unable to provide significant insight

or understanding of the seasonality of crime. A simple differential equations model

would allow criminologists to develop a better understanding of the forces that cause

crime to oscillate over time, and perhaps even provide predictability power.

With these advantages in mind, the group intends to study property crime,

specifically, burglary, and develop a differential equations model that can well de-

scribe seasonal crime data. The group considered crime data from Los Angeles,

California and Houston, Texas over the periods of 2005-2013 and 2009-2013, respec-

tively. These data contained burglary rates in their respective city on a daily basis.

These data are plotted below, with LA in blue and Houston in red.
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Figure 1: Los Angeles (blue) and Houston (red) burglary rates
from ’05-’13 and ’09-’13, respectively.

The noisy data lends itself to a stochastic differential equation (SDE) model,

a differential equation where one of the terms includes white noise. A well-known

example of an SDE is Geometric Brownian Motion, which leads to the Black-Scholes

partial differential equation for options pricing,

dP

P
= µ dt+ σ dW (1)

where P is represents the price of the option as a function of time, and µ repre-

sents the drift of the price, or the rate at which it is expected to increase or decrease.

The σ parameter is a scaling factor that determines the magnitude of the white noise

dW that is included in the model.

Before producing our own SDE model, however, we first need to extract the

seasonal part of our crime data in order to simplify our analysis.
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Figure 2: An example of Geometric Brownian Motion in Equation
(1), used in the derivation of the Black-Scholes PDE.

2 Separating long term trends, seasonal trends, and

noise

In order to better view the seasonality of the data, we extract the long term trend

from the data by using Singular Spectrum Analysis (SSA) on each time series, a

nonparametric method to obtain a low-rank approximation of our data. Given a

time series vector X of length N and components x1, x2, . . . , xN , we choose a window

length L = 365 corresponding the to the number of days in a year and suggesting

yearly seasonality. Letting K = N − L+ 1, we now produce a trajectory matrix of

lagged vectors of length L,

X =



x1 x2 x3 · · · xK

x2 x3 x4 · · · xK+1

x3 x4 x5 · · · xK+2

...
...

...
. . .

...

xL xL+1 xL+2 · · · xN


. (2)

We then perform a standard singular value decomposition (SVD) on the trajec-

tory matrix, decomposing it as

X = X1 + . . .+ XL. (3)
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Figure 3: Logarithm of singular spectrum for the Los Angeles data
set.

Next, we reconstruct each elementary matrix XI into a time series of length N ,

where the kth term is the average of the antidiagonal i + j = k + 1, where XIij

is the element of XI in the ith row and jth column. We result in L elementary

reconstructed series, x̃(1), . . . , x̃(L), corresponding to L singular values λ1, . . . , λL.

The Los Angeles data results in the singular values plotted in Figure 3.

The series corresponding to the largest λi is considered to be the long-term trend

of our time series, as it is several orders of magnitude larger than the remaining

singular values, as is the time series it corresponds to. To produce the seasonal

component of our data, we sum element-wise all elementary reconstructed series

with a period of approximately 365 days. The modes corresponding to the six

largest singular values for the Los Angeles data are also plotted in Figure 4. As

a result, we can single out the seasonality and noise components of the data, by

subtracting the trend from the original data and adding back the mean of the trend,

resulting in the figure below.

It is now easier to view and model the seasonality of the data. We observe

distinct yearly upward spikes in the LA data, and downward spikes in the Houston

data. This strongly suggests a seasonality in burglary in the two areas of interest.

However, one peculiarity in the LA data is the lack of a distinct spike near the

beginning of 2008, while a spike is observed in all other years in the data set. While

this may be attributed to environmental factors such as the 2008 recession, the group
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Figure 4: Modes corresponding to the six largest singular values of
the LA Angeles data set. Mode 1 represents the long-term trend of
the data, whereas the sum of Modes 2 and 5 provide the seasonal
component of our data, with each having periods of approximately
365 days.

seeks to discover whether this can be explained by a simple differential equations

model.

We may also compare seasonality in different types of crime data. We are able

to use the same type of spectrum analysis to observe yearly periodicity in Houston

Aggravated Assault data, as seen in Figure 6. On the other hand, Figure 7 reveals a

semi-annual periodicity in Houston robbery data, and we are unable to find period-

icity in Houston murder data, possibly due to daily murder counts being relatively

very low.

In terms of the long term trends of each crime type, we see a general decrease
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Figure 5: Smoothed LA
and Houston data with
trend extracted

from 2009-2013 in the Houston data. However, Auto Theft, Roberry, and Theft each

show a distinct increase in the second half of the data set for the mode corresponding

to their largest singular value. Each turning point occurs around the 730 day mark,

during the summer of 2011. At the same time, we note that the Burglary and Rape

data feature a short increase around 730 days, before they continue to fall. The

table below provides the decrease of the long-term trend for each type of crime, as

a percentage of the initial rate.

Crime Type Agg Auto Burg Murd Rape Robb Theft

Percentage 19.75 5.73 15.69 29.18 21.66 18.15 10.74

Figure 7: Percentage decreases of Houston crime

types relative to their rate on June 1, 2009.

We find that Murder is decreasing at the greatest rate in Houston, relative to

its prevalence, and Auto Theft is decreasing at the slowest rate. However, all crime

types are decreasing over time.
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Figure 6: Modes corresponding to the six largest singular values
of the Houston Aggravated Assault data set.

3 Modeling seasonal crime

In general, a two-dimensional Stochastic Differential Equation (SDE) can be written

in the form

dXt = f(Xt, Yt) dt+ g(Xt, Yt)ξ(t), X0 = X(0) (4)

dYt = f̃(Xt, Yt) dt+ g̃(Xt, Yt)ξ̃(t), Y0 = Y (0) (5)

where ξ(t) and ξ̃(t) represent ”white-noise” terms, which in our case will be equiv-

alent to the Brownian motion term, dW . An SDE can be thought of as a type of

differential equation with ”randomness” built in. For example, one of the most im-

portant applications of SDEs is in economics, where geometric Brownian motion, an
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Figure 8: Modes corresponding to the six largest singular values
of the Houston Robbery data set.

SDE, motivates the derivation of the Block-Scholes option pricing partial differential

equation.

An SDE follows Itô’s Chain Rule, rather than the standard chain rule. Given a

function u(X(t), t), its differential becomes

du =
∂u

∂t
dt+ 〈∇f, dXt〉+

1

2
〈Hess(f)dXt, dXt〉 (6)

where

dXt =

[
dXt

dYt

]
.

To qualitatively justify the use of SDEs to model the crime data, an SDE was

simulated that has stable oscillations about the unit circle,
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dXt = [r(1− r)Xt − Yt] dt+ σ1 dWt

dYt = [r(1− r)Yt −Xt] dt+ σ2 dVt
(7)

where r =
√
Xt

2 + Yt
2 and σ1 and σ2 are parameters that scale the independent,

identically distributed white noise terms, dWt and dVt. The plots below compare the

qualitative nature of this SDE to a set of aggravated assault data from our Houston

dataset.

Figure 9: Houston aggravated assault data, smoothed (top) and
SDE (2) (bottom).

3.1 Lotka–Volterra

The Lotka-Volterra Model is a linear system of differential equations, widely used in

ecology to represent predator-prey interactions, and applicable in many fields. The

system of equations is provided below.
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ẋ = x(α− βy), X0 = X(0)

ẏ = −y(γ − δx), Y0 = Y (0)
(8)

Here, we consider x the prey population as a function of time, and y the predator

population. The positive constants α and γ, respectively, relate the growth rate of

the prey population and the decay rate of the predator population. The positive

parameters β and δ relate the magnitude of the effects of interaction between the

populations on each population.

The Lotka-Volterra system of equation have previously been used to model gang

interactions (Brantingham et al. 2012) and can behave well in a criminology setting

[1]. In the case of property crime, the predator population can be interpreted as

crime rates in a given area, and the prey either a measure of property susceptibility

or of property attractiveness to criminals.

The deterministic model has equilibria at (x, y) = (0, 0) and (x, y) =
(
γ
δ ,

α
β

)
.

The model permits periodic solutions about the nontrivial equilibrium, similar to

the behavior of the Los Angeles and Houston crime data. The system also has a

conserved energy,

E = α log y + γ log x− βy − δx (9)

where x, y 6= 0. This can be shown to be constant in time. Taking the time derivative

of the equation, we find

Ė =
α

y
ẏ +

γ

x
ẋ− βẏ − δẋ

= −
(
α

y
− β

)
y(γ − δx) +

(γ
x
− δ
)
x(α− βy)

= −αγ + αδx+ βγy − βδxy + αγ − βγy − αδx+ βδxy

= 0.

This energy is also a maximum at the non-trivial equilibrium, and decreases as orbits

get further from equilibrium.
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3.2 A stochastic Lotka–Volterra equation

The model we propose is a Stochastic approach to a Lotka-Volterra model, as shown

below.
dXt = Xt(α− βYt) dt+ σ1Xt dWt, X(0) = X0

dYt = −Yt(γ − δXt) dt+ σ2Yt dVt, Y (0) = Y0.
(10)

This system of equations is able to capture both, the periodic element of our

original data by means of the Lotka-Volterra aspect, as well as representing noise

found in the data by means of the Stochastic aspect of the model. The predator-

prey equations become our functions f(Xt, Yt) found in equation (4) and f̃(Xt, Yt)

found in equation (5). The parameters α, β, γ, and δ remain to have the same

significance as described in the previous section. In the second term σ1Xt and σ2Yt

are the g(Xt, Yt) and g̃(Xt, Yt) functions found in equations (4) and (5) respectively.

Here σ1 and σ2 are constants that scale the identically independent distributed noise

generated by the terms dWt and dVt which conform to a Wiener process. Driven

to have a realistic representation of the data, the white noise is multiplied by the

population, in this manner the noise will be proportional to the population; so that

greater oscillations will occur when there are high rates of crimes.

Because of the presence of Lotka-Volterra equations we naturally considered the

energy of the model. Using Itô’s Calculus (6) we found the following:

Et = E0 +

 t∫
0

σ1(δ − γXt) dWt + σ2(α− βYt) dVt

− 1

2
(σ1

2γ + σ2
2α)t (11)

The expectation of the energy, shown below, should obey the Stochastic equation

using Itô’s lemma.

E(Et) = E(E0)−
1

2
(σ1

2γ + σ2
2α)t. (12)

As time increases the second term will also increase, therefore the energy is expected

to decrease over time. Another expectation is that the orbits tend to leave equi-

librium, which would result in our data expanding outward. The data would be

expanding to orbits with smaller periods, and this heeds that there is built-in pe-

riod variation between orbits. The last expectation is the greatest one, the expected

value can be used as a means to validate a weak order of the scheme.

Simulating our model many times with the same number of timesteps as days

in the Los Angeles data, we are able to compute the simulation with the minimum
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sum of the least-squares difference between the instance values and the data itself.

Figure 3 provides the instance with the minimum score generated, plotted against

seasonal data extracted from the Los Angeles data set using SSA.

Figure 10: Simulation of Lotka–Volterra numerical scheme (ma-
genta) in Equation (5), using parameters α = 6.805, γ = 0.42888,
β = δ = 0.0385, X0 = 10.436, Y0 = 179.545. Only the values for
Yt are plotted. Plotted against SSA-extracted seasonal data from
Los Angeles (black).

Note that we were able to reproduce a ”missed period” near the end of the third

year, as we observed in the Los Angeles data. Later we will discuss the ability of

our SDE model to consistently produce such a pattern, which would indicate the

possibility of a non-environmental explanation for the missed period.

Similarly, we were able to use a least-squares scoring method to compare our

model to the raw data, with the long term trend (found by SSA) subtracted. Figure

4 on the next page gives plots of the minimum-scoring runs for both the Los Angeles

and Houston data sets. Again, we are able to reproduce the desired period skip in

the Los Angeles plot.
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Figure 11: Minimum least squares scoring trials of SDE model for
both raw LA and raw Houston data, each with their long term
trend removed. Both data sets were smoothed using a moving
window average for viewing purposes. Raw data is plotted in
blue, the SDE in red.
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4 Numerics for the model

4.1 Numerical scheme

In order to numerically simulate Equation (10), we use a semi-implicit method,

which can be derived by setting

Xt+1 ≈ Xt + (αXt ∆t− βXt+1Yt ∆t+ σ1Xt ∆Wt)

Yt+1 ≈ Yt + (γXtYt ∆t− δYt+1 ∆t+ σ2Yt ∆Vt)
(13)

where ∆t is the timestep and ∆Wt,∆Vt ∼
√

∆t · N(0, 1). Solving for Xt+1, Yt+1

results in the scheme

Xt+1 =
1 + α∆t+ σ1∆Wt

1 + βYt∆t
Xt

Yt+1 =
1 + γXt∆t+ σ2∆Vt

1 + δ∆t
Yt

(14)

Experimentally, this numerical scheme has first-order weak convergence, but has the

advantage of being able to be run very quickly in mathematical software.

Now let’s compare the semi-implicit method with the traditional Euler-Maruyama

method
Xt+1 ≈ Xt + (αXt ∆t− βXtYt ∆t+ σ1Xt ∆Wt)

Yt+1 ≈ Yt + (γXtYt ∆t− δYt ∆t+ σ2Yt ∆Vt)
(15)

which calculates Xt+1, Yt+1 directly from Xt and Yt. If we drop off the random

noise part in the system, then Equation (14) becomes

Xt+1 =
1 + α∆t

1 + βYt∆t
Xt

Yt+1 =
1 + γXt∆t

1 + δ∆t
Yt

(16)

and Equation (15) becomes

Xt+1 ≈ Xt + (αXt ∆t− βXtYt ∆t)

Yt+1 ≈ Yt + (γXtYt ∆t− δYt ∆t)
(17)
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It can be easily observed from the above equations that the semi-implicit method

guarantees the positivity of Xt+1, Yt+1 when Xt, Yt and other parameters are posi-

tive. In contrast, the Euler-Maruyama method doesn’t have this advantage.

If we consider the random noise part and calculate Xt+1, Yt+1 as in Equation

(14) and Equation (15), we can derive from Equation (14) that the probability that

Xt+1 ≥ 0 given Xt, Yt ≥ 0

P (Xt+1 ≥ 0 |Xt, Yt ≥ 0) (18)

is equal to

P
(

1 + α∆t+ σ1
√

∆tN(0, 1) ≥ 0
)

(19)

which is

P

(
N(0, 1) ≥ −1− α∆t

σ1
√

∆t

)
(20)

If we use Euler-Maruyama method as our numerical method we will get

P

(
N(0, 1) ≥ βYt∆t− 1− α∆t

σ1
√

∆t

)
(21)

for the probability that Xt+1 ≥ 0 given Xt, Yt ≥ 0 which can be derived from

Equation (15). Observing the two equations above one can see that the semi-implicit

method provides a higher possibility for each step to be positive than the traditional

Euler-Maruyama method when given the previous step is positive. In another words,

the semi-implicit method is more stable and thus allows one to take larger step sizes.

4.2 Extracting system parameters

It is always a crucial step for any model to get a close estimation of the parameters

in order to reproduce the data we attempt to simulate. In our case, the stochastic

Lotka-Volterra model requires six parameters α, β, γ, δ, σ1, σ2 as well as initial

data x0, x0. (10)

The common approach of parameter fitting for stochastic model is using the

maximum-likelihood function. However this method does not yield a satisfatory

result for our model, due to both the number of parameters and the noisiness in

our data. In order to efficiently maximize the likelihood function, we need either a

better method to locate global maximum or an extremly accurate initial guess. To

avoid this issue, we took a different approach.
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We perform the least square fitting on our data against the second variable y in

the solution of the ordinary Lotka-Volterra equations and extract the most suitable

values for parameters α, β, γ, δ and intial data x0, y0. For simplicity we make the

assumption that impact of interaction on the predator and the prey is quantitatively

equivalent, hence β = δ in Equation (8). After renaming the parameters such that
α
δ = α̂, γ

δ = γ̂ we adopt the following form of Lotka-Volterra equations.

ẋ = δx(α̂− y), x0 = x(0)

ẏ = −δy(γ̂ − x), y0 = y(0)
(22)

To conduct the fitting we use a Matlab function called lsqcurvefit which is

written to find coefficients x that solve the problem

min
x
‖F (x, xdata)− ydata‖22 (23)

In our model F is the solution to Equation (22) produced by ode45, the fourth

order Runge-Kutta method. Here, x represents the set of parameters [δ, α̂, γ̂, x0, y0],

xdata is the vector [0.01, 0.02, · · · , 29.45] representing our time window of 2945 days

and ydata is our time series.

Obtaining an accurrate initial guess is essential for a reasonable parameter fitting

and very beneficial to improve computational efficiency. The major goal when we

are getting this initial guess is to ensure that the solution has period of around 365

days. Assuming the solution is within certain proximity of the equilibrium we can

use the formula below to estimate the period.

T =
2π

δ
√
α̂γ̂
≈ 365 (24)

Based on the properties of Equation (22), (γ̂, α̂) is the non-trivial equilibrium of

the system. While γ̂ can be arbitrarily determined, we take α̂ to be the mean of

our data. With values of α̂ and γ̂, as well as the above formula, we can determine

a desired value of δ. Furthermore, the values of x0 and y0 are taken to be some

point nearby the equilibrium. To get the best fitting possible, we start with the

initial guess and keep iterating the method lsqcurvefit until the return values

stay approximately constant. As an example of our results, we get the parameters

of LA Burglary to be δ = 0.0395, α̂ = 176.5514, γ̂ = 11.1315, x0 = 10.4410 and

y0 = 179.5454.
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We can use the parameter approximation from the ordinary Lotka-Volterra

model as our initial guess to get estimation of σ1 and σ2 in the SDE model through

maximum-likelihood function.

5 Missed periods

Since the span of the data was 8 years it is reasonable to expect 8 peaks for a crime

with annual seasonality. However, one may note in the Los Angeles burglary data

that there are only 7 peaks, namely a missed peak near the end of 2007 and the

beginning of 2008. This is intriguing because it disrupts the seasonal trend of the

data. Rather than rationalizing this anomaly as an effect of the financial crisis of

2008 in the United States or some other global environmental cause, we are curious

to know if the model could capture a missed period without any additional input.

To determine the number of peaks in a simulation, we first need to define the

notion of a peak, since noisy data has many local maxima and we seek only those

that occur at the largest value of an approximately yearly oscillation. Our definition

of a peak was a point that surpassed a threshold, often 180 units in this case, and

must also be 10 units above nearby data points.

We also set a threshold, minpeakdistance, for the distance between peaks. If

two peaks are so far away from each other that they exceed this threshold, a period is

considered missing. This threshold takes value between 450 and 500 in most cases,

because 450 is the length of a year with an extra season and any peaks happen

in a different season is potentially missing a period. Meanwhile, we would like to

remove those cases that move towards orbits with much lower energy levels. Such

simulations will have a much larger amplitude of oscillation as well as a longer

period, thereby no longer resemble our data. We can filter out those cases with a

threshold on the standard deviation of the peaks’ heights, which is set as 5 through

our observation.

Tables 1 and 2 illustrate our results with this method, under various sets of

parameters. It is evident that the percentage of simulations with missing period

varies little with respect to different σ1 values, while it falls from around 55% at

σ2 = 0.01 to 5% at σ2 = 0.03. Moreover, this percentage varies between 17.0% and

22.5% when minpeakdistance takes value between 450 and 550.

Clearly the model is less sensitive to changes in σ2— as columns remain within
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σ1 / σ2 0.010 0.015 0.020 0.025 0.030

0.000 56.9 36.3 21.3 11.0 5.5
0.010 56.8 37.6 20.2 11.2 5.0
0.020 59.8 35.7 19.4 10.6 5.0
0.030 55.0 34.6 18.7 8.2 4.0

Table 1: Percent Missed Periods vs. Noise Patameter Variations
out of 1000 simulations. Uses Los Angeles parameters α = 6.805,
β = 0.0385, γ = 0.042888, δ = 0.0385, X0 = 10.436, and Y0 =
179.545, with minpeakdistance = 470.

Min. Peak Distance 450 475 500 525 550

Percent Missed Peaks 22.5 21.7 19.2 16.0 17.0

Table 2: Percent Missed Periods vs. Min. Peak Distance Vari-
ations out of 1000 simulations. Uses Los Angeles parameters
α = 6.805, β = 0.0385, γ = 0.042888, δ = 0.0385, X0 = 10.436,
Y0 = 179.545, σ1 = 0, and σ2 = 0.02.

± 2 units— than to changes in σ1—as rows vary by more than 50 units. Quite

obviously it is reasonably sensitive to the minimum distance between peaks consid-

ered. Consider the case in which the minimum is 450 days, the percentage of missed

peaks is high since it automatically includes simulations that have missed peaks for

a greater distance, such as 550 days apart.

A possible issue with this method is an undercounting of smaller peaks. For

example, in a situation such as the Figure:12, the sixth and seventh peaks may

discarded by this method due to insufficient height difference from nearby data,

even though they show peak behavior. This will create a missing period between

five and eight peaks, which is a debatable result since the missed period is a fairly

qualitative event.

In order to ensure a lower bound on the number of missed peaks were found,

a second method was developed to reinforce the first one. For this method peaks

only need to be 7 units above the nearby data and 179.6 in height, thereby more

peaks are taken into consideration. Any two peaks within 44 days from each other

are attributed to noise and only the higher one is admitted. Additionally, peaks

within 103 days from each other are group into peak clusters, which is considered as

the seasonal peak as a whole. Minpeakdistance still applies the same, except now if

the first appearance of a peak is beyond this threshold a period is also considered
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Figure 12: A simulation with missing period based on second
method. Uses Los Angeles parameters α = 6.805, β = 0.0385,
γ = 0.042888, δ = 0.0385, X0 = 10.436, Y0 = 179.545, σ1 = 0,
and σ2 = 0.02.

missing. Also, if there are less than 8 peak clusters a period is missing. Finally, we

remove simulations such that the standard deviation of peak heights is greater than

8. This method gives the results in Tables 3 and 4.

The same pattern demonstrated in first method persists, and we are consistently

getting 10 to 20 percent of our simulations with a missing period. This supports

our hypothesis that missing period is an intrinsic behavior of our stochastic model.

Nevertheless, it is noticeable that the percentage is sensitive with respect to σ2 in

both methods, meaning we need either an accurate approximation on this parameter

or some improvement on our methods for better stability.

We also viewed our solutions in the phase plane. We observe that during the

missed period the solution is pushed towards the equilibrium and remains in close

proximity, as seen in figure 10. This can explain mathematically why there is a

missed period, namely the solution is lifted into a high-energy orbit by random-

ness, in which it possesses low oscillation, until it escapes to lower orbits under the
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σ1 / σ2 0.010 0.015 0.020 0.025 0.030

0.000 32.4 27.9 19.5 12.1 6.9
0.010 38.9 30.6 18.0 13.9 6.7
0.020 39.5 27.2 17.4 13.4 8.1
0.030 40.5 28.0 19.3 12.6 8.1

Table 3: Percent Missed Periods vs. Noise Patameter Variations
out of 1000 simulations. Uses Los Angeles parameters α = 6.805,
β = 0.0385, γ = 0.042888, δ = 0.0385, X0 = 10.436, and Y0 =
179.545, with minpeakdistance = 470.

Min. Peak Distance 450 460 470 480 490 500

Percent Missed Peaks 27.5 22.6 20.5 18.5 14.1 12.8

Table 4: Percent Missed Periods vs. Min. Peak Distance Vari-
ations out of 1000 simulations. Uses Los Angeles parameters
α = 6.805, β = 0.0385, γ = 0.042888, δ = 0.0385, X0 = 10.436,
Y0 = 179.545, σ1 = 0, and σ2 = 0.02.

combined effort of noise and decreasing energy of the model. Thus, we are able to de-

scribe missing periods through populations dynamics, rather than through external

causes.

6 SDE for other seasonal crime types

Beyond viewing the viability of the model over different geographic locations, it is

also of interest to view its applicability across crime types. Using the SSA method

described previously, trends may be extracted for Houston data limited to aggra-

vated assault, auto theft, burglary, murder, rape, robbery, and theft.

As a whole, we see that the long term trend for each crime type is to decrease

over time. However, around the end of the second year of the data, corresponding

to the summer of 2011, we notice that auto theft, burglary, rape, and robbery

display a distinct increase in crime rates, with only burglary and rape continuing to

decrease afterwards. Similarly, we are able to extract a yearly seasonal component

for aggravated assault, auto theft, burglary, rape, and theft in Houston.

It must be noted, however, that due to the relatively small number of rape

crimes per day, we see very small oscillations on the order of 0.1 crimes per day. As

a result, we may view the rape seasonality to be less reliable than the others. On
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Figure 13: LA Burglary Data plotted on phase plane (above) and
on x-y plane (below). Missed Period (green) remains near the
equilibrium. Uses Los Angeles parameters α = 6.805, β = 0.0385,
γ = 0.042888, δ = 0.0385, X0 = 10.436, Y0 = 179.545, σ1 = 0,
and σ2 = 0.02.

the other hand, we are unable to extract a distinct yearly seasonal component from

murder data or robbery data in Houston, using the SSA method described above.

To illustrate this, we plot the six modes of each time series corresponding to the six

largest singular values of their corresponding trajectory matrix. We find that, other

than the trend, the modes are either noise or oscillate at frequencies much greater

than once per year.

Using least squares parameter fitting on the seasonal component of both Los

Angeles and Houston aggravated assault data, we were able to apply our stochastic

Lotka-Volterra model to aggravated assault data, both from Los Angeles and Hous-

ton. Taking several runs and returning the minimum least-squares difference from

the data, we result in the following plots.

Neither aggravated assault data set has a missed period, as in the Los Angeles

burglary data, nor widely varying peaks, as in the Houston burglary data. As

a result, we are able to produce an instance that behaves very similarly to the

aggravated assault data. Both our ability to extract trend and seasonal components
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Figure 14: Long term trends for aggravated assault, auto theft,
burglary, murder, rape, robbery, and theft in Houston.

of many crime types, as well as applying our SDE model to aggravated assault data,

suggest that our model has applicability over a wide variety of crime types.

7 Conclusions

We have shown that the SSA method may be used to partition a crime time series

into long term trend, seasonal, and noise components. In terms of applications of

the technique, such partitioning may be used in the future to forecast crime trends,

by providing law enforcement agencies a better understanding of the seasonality of a

crime data set, and thus the ability to expect surges and troughs in crime frequency.
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Figure 15: Yearly seasonality for aggravated assault, auto theft,
burglary, rape, and theft in Houston.

Furthermore, rather than the manual division of modes into each of their three

respective categories, clustering techniques may be used in the future to automate

this process, in an unsupervised process. As a result, any missed periods may be

quickly detected, allowing law enforcement to adjust their actions with warnings

ahead of time. This may lead to more efficient use of resources, such as the time of

police officers.

The apparent ability of the stochastic Lotka Volterra model described in this

paper to simulate results very similar to those seen in our Los Angeles and Houston

data sets can be seen as suggestive towards a relatively novel view of crime season-

ality. Rather than attributing large seasonal fluctuations of crime rates to external

forces, such as temperature or economic variation, we now consider the possibility of
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Figure 16: Modes of Houston robbery and murder time series cor-
responding to the six largest singular values of the corresponding
trajectory matrix with window length L = 365 days. Note that
Houston Robbery Mode 2 displays troughs on a yearly basis, but
they are not nearly as distinct as in other data sets.

viewing crime rates as a population dynamics system. Future studies may consider

whether crime can be described as a predator-prey system, with crime rates rep-

resenting predation and susceptible targets per criminal representing prey. If this

can be shown, a better understanding of the parameters that lead to certain orbits

of crime may allow us to more efficiently and quickly decrease crime rates followed

parameter sensitivity analysis. For example, maintaining a system very near equi-

librium could lead to a stagnation of crime rates and much easier predictability of

crime trends.
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