Question 1. Let \(v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \), for the following basis’ \(B \), write down the \(B \)-coordinate vector of \(v \).

(a) \(B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \)

(b) \(B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \)

Question 2. Let \(T : \mathbb{R}^3 \to \mathbb{R}^3 \) be the linear transformation given by

\[
T(\vec{x}) = \begin{pmatrix} e_1 \cdot \vec{x} \\ e_2 \cdot \vec{x} \\ e_3 \cdot \vec{x} \end{pmatrix}
\]

where \(e_i \) are the standard basis vectors. For the following basis’ \(B \), determine the \(B \)-matrix of \(T \).

(a) The standard basis \(B = (e_1, e_2, e_3) \)

(b) The basis \(B = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \)

Question 3. Is there a basis \(B \) such that the \(B \)-matrix of \(T(\vec{x}) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \vec{x} \) is upper triangular?

Question 4. (Discussion) Determine whether the following statements are true or false.

(a) There exists a \(2 \times 2 \) matrix \(A \) such that \(\ker(A) = \text{im}(A) \).

(b) If the image of an \(n \times n \)-matrix \(A \) is all of \(\mathbb{R}^n \), then \(A \) is invertible.

(c) If a subspace \(V \) contains none of the the standard basis vectors \(e_1, \ldots, e_n \), then \(V = \{0\} \).

(d) The matrix \(I_n \) is similar to \(2I_n \).

(e) If the matrix \(A \) is similar to \(B \), then the matrix \(A + 7I_n \) is similar to \(B + 7I_n \).

(f) If \(A^2 = 0 \) for a \(10 \times 10 \)-matrix \(A \), then we must have that \(\text{rank} \leq 5 \).

(g) There exists a \(2 \times 2 \)-matrix \(A \) such that \(A^2 \neq 0 \) but \(A^3 = 0 \).