Problem 1 Use geometric reasoning to find \(\int_S \mathbf{F} \cdot d\mathbf{S} \) where \(\mathbf{F} \) and \(S \) are the following:

(a) \(\mathbf{F} = \langle 1, 0, 0 \rangle \) and \(S \) is the union of two squares \(S_1 \) and \(S_2 \) given by:
\[S_1 : x = 0, 0 \leq y \leq 1, 0 \leq z \leq 1 \quad \text{and} \quad S_2 : z = 0, 0 \leq x \leq 1, 0 \leq y \leq 1 \]
where \(S_1 \) is oriented in the positive \(x \) direction and \(S_2 \) in the positive \(y \) direction.

(b) \(\mathbf{F} = \langle 1, 1, 0 \rangle \) and \(S \) is the square given by:
\[S : x = 0, 0 \leq y \leq 1, 0 \leq z \leq 1 \]

(c) \(\mathbf{F} = \langle 1, 0, 0 \rangle \) and \(S \) is the cylinder given by \(x^2 + y^2 = 1 \) from \(z = 0 \) to \(z = 1 \) oriented outwards.

(d) \(\mathbf{F} = \langle x, y, 0 \rangle \) and \(S \) is the cylinder given by \(x^2 + y^2 = 4 \) and \(1 \leq z \leq 3 \) oriented outwards.

Problem 2 Compute \(\int_S \mathbf{F} \cdot d\mathbf{S} \) where \(\mathbf{F} = \langle xyz, xyz, xyz \rangle \) and \(S \) is the five faces of the cube \(0 \leq x \leq 1, 0 \leq y \leq 1, 0 \leq z \leq 1 \) missing \(z = 0 \) that is oriented outwards. \(\text{Hint: It is enough to just calculate one of the faces and multiply the result by 3. Why?} \)

Problem 3 Use green’s theorem to calculate \(\int_C \left(x^2y \, dx + (y - 3) \, dy \right) \) where \(C \) is the perimeter of the rectangle with vertices \((1, 1), (4, 1), (4, 5) \) and \((1, 5) \) oriented counterclockwise.

Problem 4 Compute \(\int_{\partial D} \left(\sin x - \frac{y^3}{3} \right) \, dx + \left(\sin y + \frac{x^3}{3} \right) \, dy \) where \(D \) is the annulus given in polar coordinates by \(0 \leq \theta \leq 2\pi, 1 \leq r \leq 2 \).

Problem 5 Consider the vector field \(\mathbf{F} = \langle y, 2x \rangle \). Suppose we have two paths \(\gamma_1 \) and \(\gamma_2 \) that both start and end at the same point. How do the two line integrals of \(\mathbf{F} \) differ along the two paths?