Triple Integrals

Reminders:

• A simple region consists of points \((x, y, z)\) between two surfaces \(z = z_1(x, y)\), \(z = z_2(x, y)\), where \(z_1(x, y) \leq z \leq z_2(x, y)\), lying over domain \(D\) in \(xy\)-plane. So \(W\) is defined by \((x, y) \in D\) \(z_1(x, y) \leq z \leq z_2(x, y)\).

In other words, all lines parallel to \(z\)-axis that intersect \(W\) do so unbroken.

• Triple integrals over \(W\) equal to iterated integral

\[
\iiint_W f(x, y, z) \, dV = \iint_D \int_{z_1}^{z_2} f(x, y, z) \, dz \, dA.
\]

• Nothing special about \(z\) above, works for \(x, y\) too.

Example: evaluate \(\iiint_W e^z \, dV\) where \(W: x + y + z = 1\), \(x \geq 0, y \geq 0, z \geq 0\).

Now \(x + y + z = 1\) is the plane through \((1, 0, 0), (0, 1, 0)\), and \((0, 0, 1)\). Hence it follows that \(W\) is the wedge.

Now, I want \(z\) to be the inner integral. So I think for each fixed \((x, y)\), what is the possible range of \(z\)-values in this region?

Well, it's below the plane \(z = 1\) given by
D range of z-values in this region? Well, it's below the plane (given by $z \leq 1-x-y$) and above xy-plane ($z \geq 0$).

Hence we get, $0 \leq z \leq 1-x-y$.

So $\iiint_W e^z \, dV = \int_0^1 \int_0^{1-x} \int_0^{1-x-y} e^z \, dz \, dy \, dx$ where D is the "shadow" of W onto the xy-plane, which we figure out to be given by $0 \leq x \leq 1$, $0 \leq y \leq 1-x$.

Hence,

$$\iiint_W e^z \, dV = \int_0^1 \int_0^{1-x} \int_0^{1-x-y} e^z \, dz \, dy \, dx$$

$$= \int_0^1 \int_0^{1-x} (e^{1-x-y} - 1) \, dy \, dx$$

$$= \int_0^1 \left[-e^{1-x-y} - y \right]_0^{1-x} \, dx$$

$$= \int_0^1 -1 + e^{1-x} - 1 + x \, dx$$

$$= -e^{1-x} + \frac{x^2}{2} - 2x \bigg|_0^1$$

$$= -1 + e + \frac{1}{2} - 2 = e - \frac{5}{2}.$$

Questions

Find $\iiint_W z \, dV$ where W is the shape:

![Diagram of a region in 3D space](attachment:image.png)
Answer: The top surface is given by \(z = \frac{1}{4} y \) (think of corresponding line in \(yz \)-plane). Hence if \(0 \leq z \leq \frac{1}{4} y \). The shadow of \(W \) on the \(xy \)-plane is the box \([0, 3] \times [0, 4]\). Hence

\[
\iiint_W \, dV = \int_0^3 \int_0^4 \int_0^{\frac{1}{4} y} z \, dz \, dy \, dx
\]

\[
= \int_0^3 \int_0^4 \left[\frac{1}{2} z^2 \right]_0^{\frac{1}{4} y} dy \, dx
\]

\[
= \int_0^3 \int_0^4 \frac{1}{32} y^2 dy \, dx
\]

\[
= \int_0^3 \left[\frac{1}{32} \frac{y^3}{3} \right]_0^4 dx
\]

\[
= \int_0^3 \frac{2}{3} \, dx = 2.
\]

Question

Find volume of the solid in octant \(x > 0, y > 0, z > 0 \) bounded by \(x + y + z = 1 \) and \(x + y + 2z = 1 \)
Answer

Draw the region: this is the slice between the two planes $x+y+z=1$, $x+y+2z=1$.

Let W be this solid. For each fixed (x,y), the z-values are below the point $z = x+y+2z = 1$ which gives $z = 1-x-y$, i.e. $z \leq 1-x-y$.

And they are above points (x,y) such that $z = \frac{1}{2} (1-x-y)$ i.e. $z \geq \frac{1}{2} (1-x-y)$, hence it follows

$$V = \iiint_W \, dV = \int_0^1 \int_0^{1-x} \int_{\frac{1}{2} (1-x-y)}^{1-x-y} \, dz \, dy \, dx$$

$$= \int_0^1 \int_0^{1-x} \frac{1}{2} (1-x-y) \, dy \, dx$$

$$= \frac{1}{2} \int_0^1 \int_0^{1-x} \left(y - xy - \frac{y^2}{2} \right) \, dy \, dx$$
\[\frac{1}{2} \int_0^1 \left(-x - x(1-x) - \frac{(1-x)^2}{2} \right) \, dx \]

\[= \frac{1}{2} \int_0^1 \left(-2x + x^2 - \frac{1}{2} - 2x + x^2 \right) \, dx \]

\[= \frac{1}{2} \int_0^1 \left(-x + x^2 \right) \, dx = \frac{1}{4} \int_0^1 (1-x)^2 \, dx \]

\[= -\frac{1}{12} (1-x)^3 \bigg|_0^1 = \frac{1}{12} \]

Question: Let \(W \) be the region bounded by \(z = 1 - y^2 \), \(y = x^2 \) and plane \(z = 0 \). Write volume of \(W \) as triple integral in the order \(dz \, dy \, dx \), \(dx \, dz \, dy \) and \(dy \, dz \, dx \).

Answer: We first try and picture this.

\[dz \, dy \, dx \] order:

First look at possible \(z \)-values for given \((x, y)\)

We see by above \(0 \leq z \leq 1 - y^2 \)
First look at possible \(z \)-values for given \((x,y)\)
we see by above \(0 \leq z \leq 1-y^2 \)
Then possible \(y \)-value for given \(x \): \(x^2 \leq y \leq 1 \)
and finally possible \(x \)-values: \(-1 \leq x \leq 1 \)

\[V = \int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{\sqrt{1-z}} dz \, dy \, dx \]

\(dx \, dz \, dy \) order:
possible \(x \)-values (given \((y,z)\)): \(-\sqrt{y} \leq x \leq \sqrt{y} \)
possible \(z \)-values: \(0 \leq z \leq 1-y^2 \)
possible \(y \)-values: \(0 \leq y \leq 1 \)

\[\therefore V = \int_{0}^{1} \int_{\sqrt{y}}^{\sqrt{1-y}} \int_{-\sqrt{y}}^{\sqrt{y}} dx \, dz \, dy. \]

\(dy \, dz \, dx \) order:
possible \(y \)-values (given \((x,z)\)): \(x^2 \leq y \leq \sqrt{1-z} \)
shadow on \(xz \)-plane:

so we get \(-1 \leq x \leq 1, \quad 0 \leq z \leq 1-x^2 \)
Hence \[V = \int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{\sqrt{1-x^2}} dz \, dy \, dx. \]
Checking these give same volume; (not part of Q).
\[\int_{-1}^{1} \int_{x^2}^{1-x^2} dz dy dx = \int_{-1}^{1} \int_{x^2}^{1-x^2} 1 - y^2 dy dx \]
\[= \int_{-1}^{1} y - \frac{y^3}{3} \bigg|_{x^2}^{1} dx \]
\[= \int_{-1}^{1} \frac{2}{3} - x^2 + \frac{x^6}{3} dx \]
\[= 2 \left(\frac{2}{3} x - \frac{x^3}{3} + \frac{x^7}{7} \right) \bigg|_{-1}^{1} \]
\[= 2 \left(\frac{1}{3} + \frac{1}{21} \right) = 16/21 \]

\[\int_{0}^{1} \int_{0}^{\sqrt{y}} \int_{0}^{\sqrt{y}} \sqrt{y} dz dy dx \]
\[= \int_{0}^{1} \int_{0}^{\sqrt{y}} \left(2 \sqrt{y} - 2 \right) dy dx \]
\[= 2 \left(\frac{2}{3} y^{3/2} - \frac{2 y^{5/2}}{5} \right) \bigg|_{0}^{1} \]
\[= 2 \left(\frac{2}{3} - \frac{2}{5} \right) = 2 \frac{19}{15} \]
\[= 16/21 \]

\[\int_{-1}^{1} \int_{x^2}^{\sqrt{1-x^2}} dy dz dx = \int_{-1}^{1} \int_{x^2}^{\sqrt{1-x^2}} -x^2 dz dx \]
\[\int_{-1}^{1} \int_{-1}^{1} x^2 = \int_{-1}^{1} \left[-\frac{2}{3} (1-x^3) - \frac{x^2}{2} \right]_0^1 dx = \int_{-1}^{1} \left[-\frac{2}{3} x^3 - \frac{x^2}{2} + \frac{2}{3} \right] dx = 2 \int_{0}^{1} \left[\frac{1}{3} x^3 - \frac{x^2}{2} + \frac{2}{3} \right] dx = 2 \left(\frac{1}{21} - \frac{1}{3} + \frac{2}{3} \right) = 2 \left(\frac{1}{21} + \frac{1}{3} \right) = \frac{16}{21} \]

So everything checks out.

Polar Coordinates:

- The transformation
 \[(x, y) \rightarrow (\sqrt{x^2+y^2}, \tan^{-1}(\frac{y}{x})) \]
 is the mapping from rectangular to polar coordinates.
- The inverse transformation is
\((r, \theta) = (r \cos \theta, r \sin \theta)\)

Quick Question: describe what the following eq. look like.

a) \(r = 2\)
 b) \(\theta = 2\)
 c) \(r = 2 \sec \theta\)
 d) \(r = 2 \csc \theta\)

Answer:

a) circle radius 2
 b) line from origin
 c) vertical line \(x = 2\)
 d) horizontal line \(y = 2\)

Question: convert the equation \(r = 2 \sin \theta\) to an equation in rectangular coordinate.

Answer:

\[r = 2 \sin \theta \iff r^2 = 2 r \sin \theta \text{ as } r \neq 0. \]

and \[r^2 = x^2 + y^2 \]

\[r \sin \theta = y \]

Therefore equation becomes \(x^2 + y^2 = 2y\)

and completing the square \(x^2 + (y-1)^2 = 1\)

so circle radius 1 centred at \((0,1)\).