1. (a) Find a change of coordinates map \(G \) that takes the unit square \([0, 1] \times [0, 1]\) to the parallelogram with vertices \((0, 0), (2, 1), (1, 2), (3, 3)\).

(b) Find the Jacobian of \(G \).

(c) Find a change of coordinates map \(G' \) that takes the unit square \([0, 1] \times [0, 1]\) to the parallelogram with vertices \((2, 1), (4, 2), (3, 3), (5, 4)\).

(d) Find the Jacobian of \(G' \) and give a geometric explanation for the similarity between the Jacobian of \(G \) and that of \(G' \).

2. Consider the region \(D \) defined by \(1 \leq x^2 - y^2 \leq 4 \) and \(0 \leq y \leq \frac{3x}{5} \). In this problem you’ll set up an integral to compute \(\int \int_D e^{x^2-y^2} \, dA \).

Consider the change of coordinates \(G(u, v) = \left(\frac{v}{2} + \frac{u}{2v}, \frac{v}{2} - \frac{u}{2v} \right) \). Recall from class that the inverse of this coordinate change is given by \(G^{-1}(x, y) = (x^2 - y^2, x + y) \).

(a) Find a region \(R \) of the \(uv \)-plane so that \(G : R \rightarrow D \) is a change of coordinates map (so \(G \) is onto and one-to-one on the interior of \(R \)). \textbf{Hint:} Start by finding 4 curves in the \(uv \)-plane that map to the 4 curves forming the boundary of \(D \).

(b) Give an iterated integral in \(uv \)-coordinates to compute \(\int \int_D e^{x^2-y^2} \, dA \) (No need to compute the actual integral, but it is an integral you can compute).

3. Consider the region of the part of the first quadrant \(D \) defined by \(1 \leq x^2 + y^2 \leq 4 \) and \(1/10 \leq xy \leq 1/2 \) and \(y \geq x \). There is a change of coordinates \(G \) that takes the rectangle \([1, 4] \times [1/10, 1/2]\) in the \(uv \)-plane to \(D \), and the inverse of this change of coordinates is given by \(G^{-1}(x, y) = (x^2 + y^2, xy) \).
(a) What is the absolute value of the Jacobian of G^{-1}? (It should be a function of x and y). Pay attention to signs!

(b) Compute $\int \int_D y^2 - x^2 \, dA$

(c) Bonus problem: Note that the system of inequalities $1 \leq x^2 + y^2 \leq 4$ and $1/10 \leq xy \leq 1/2$ defines four different regions of the plane. Each of these regions can be described by a change of coordinates G that takes the rectangle $[1, 4] \times [1/10, 1/2]$ in the uv-plane to the region where again inverse of this change of coordinates is given by $G^{-1}(x, y) = (x^2 + y^2, xy)$, but for each of these regions G itself has a different formula. Find all 4 formula for G and say which of these four regions goes with which formula.