Worksheet 1

(1) Consider the plane \(\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1 \).

Where does this plane intersect the \(x \)-, \(y \)-, and \(z \)-axes? Call the intersection points \(P \), \(Q \), and \(R \), in that order. Find the vectors \(v = \overrightarrow{PQ} \) and \(w = \overrightarrow{PR} \) and the cross-product \(v \times w \). Is \(v \times w \) a normal vector for the plane? Does that make sense in this situation?

Intersect at \((2,0,0), (0,3,0), (0,0,4)\).

\[\begin{align*}
P &= Q & R \\
\vec{v} &= (2,3,0) & \vec{w} &= (-2,0,4) \\
\end{align*} \]

Yes it's normal as \(\vec{v}, \vec{w} \) tangent to the plane by construction (and not parallel).

(2) Find all values of \(b \) such that the vectors \((4, -2, 7)\) and \((b^2, b, 0)\) are orthogonal.

\[\langle 4, -2, 7 \rangle \cdot \langle b^2, b, 0 \rangle = 0 \iff \text{ orthogonal.} \]

\[4b^2 - 2b = 0 \]

\[2b (2b - 1) = 0 \]

So \(b = 0, \frac{1}{2} \).

If \(b = 0 \), I guess this is still technically orthogonal.

(3) Parametrize the curve of intersection of the surfaces \(z = x^2 \) and \(x^2 + y^2 = 1 \). (It’s the outline of a Pringle!)

\[\mathbf{r}(t) = \left(\cos t, \sin t, \cos^2 t \right) \]
(4) Find the unit vector at \(P = (0, 0, 1) \) pointing in the direction along which the function
\[f(x, y, z) = xz + e^{-x^2+y} \]
increases most rapidly.

\[\nabla f = (z - 2x e^{-x^2+y}, e^{-x^2+y}, x) \]

Hence \(\nabla f(0, 0, 1) = \langle 1, 1, 0 \rangle \).

(5) Is there a function \(f \) such that \(\nabla f = (y^2, x) \)?

\[f = \int y^2 \, dx = y^2x + C(y) \]
\[f_y = 2xy + C'(y) = x. \] This is impossible.

Alternatively, if such an \(f \) existed, as
\[\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} \Rightarrow 2y = 1 \text{ which is correct.} \]

(6) Identify the following surfaces in 3D (sketch them, don’t worry if you can’t remember their names):

1) \(z = x^2 + y^2 \)
2) \(z^2 = x^2 + y^2 \)
3) \(\frac{x^2}{4} + \frac{y^2}{9} = 1 \)
4) \(z = y^2 \)
5) \(x^2 + y^2 + z^2 = 16 \)
6) \(y = 9 - x^2 - z^2 \)

1) paraboloid 3) elliptic cylinder 5) sphere
2) cone 4) parabola sheet 6) paraboloid.