Week 8 Notes

Question 1. The involute of a circle has parameterisation given by

\[r(\theta) = (R(\cos(\theta) + \theta \sin(\theta)), R(\sin(\theta) - \theta \cos(\theta))) \]

Find the arclength parameterisation.

\[r'(\theta) = \left(-R\sin(\theta) + R\cos(\theta) + R\theta \cos(\theta), R\cos(\theta) - R\cos(\theta) + R\sin(\theta)\right) \]

\[= R\theta \left(\cos(\theta), \sin(\theta)\right) \]

Hence

\[s(\theta) = \int_0^\theta \| r'(u) \| \, du \]

\[= \int_0^\theta R \, du \]

\[= R \left[u \right]_0^\theta \]

\[= \frac{R \theta^2}{2} \]

Hence, \(\theta(s) = \sqrt{\frac{2s}{R}} \) and the arclength parameterisation is given by

\[r_1(s) = r\left(\sqrt{\frac{2s}{R}}\right) \].

Question 2. Show that the curvature at an inflection point of a plane curve \(y = f(x) \) is zero.

An inflection point is when \(f''(x) = 0 \). Hence using the formula for curvature of a plane curve:

\[\kappa(x) = \frac{|f''(x)|}{\left(f'(x)\right)^2} \]

\[k(x) = \frac{|f''(x)|}{(1 + (f'(x))^2)^{3/2}} \]

we get \(k(x) = 0 \).

Question 3. Given a frenet frame \((T, N, B) \) with arclength parameterisation.

(a) Show \(\frac{d\vec{B}}{ds} = \vec{T} \times \frac{d\vec{N}}{ds} \) and conclude that \(\frac{d\vec{B}}{ds} \) is orthogonal to \(\vec{T} \).

(b) Show that \(\frac{d\vec{B}}{ds} \) is orthogonal to \(\vec{B} \). Hint: Differentiate \(\vec{B} \cdot \vec{B} = 1 \).

(c) Show that \(\frac{d\vec{B}}{ds} \) is a multiple of \(\vec{N} \).

a) By definition, \(\vec{B} = \vec{T} \times \vec{N} \), and so using product rule for cross product:

\[
\frac{d\vec{B}}{ds} = \frac{d\vec{T}}{ds} \times \vec{N} + \vec{T} \times \frac{d\vec{N}}{ds}
\]

Since \(\frac{d\vec{T}}{ds} \parallel \vec{N} \), \(\frac{d\vec{T}}{ds} \times \vec{N} = 0 \).

Hence \(\frac{d\vec{B}}{ds} = \vec{T} \times \frac{d\vec{N}}{ds} \).

Since cross product output orthogonal vector, we get \(\frac{d\vec{B}}{ds} \perp \vec{T} \).

b) \(\vec{B} \cdot \vec{B} = 1 \), differentiate via product rule gives

\[
\frac{d\vec{B}}{ds} \cdot \vec{B} + \vec{B} \cdot \frac{d\vec{B}}{ds} = 0 \implies 2 \vec{B} \cdot \frac{d\vec{B}}{ds} = 0.
\]

Hence \(\frac{d\vec{B}}{ds} \perp \vec{B} \).

c) Since \(\frac{d\vec{B}}{ds} \perp \vec{B} \) and \(\frac{d\vec{B}}{ds} \perp \vec{T} \), \(\vec{T}, \vec{N}, \vec{B} \) form an othornormal system, \(\frac{d\vec{B}}{ds} \) must be parallel to \(\vec{N} \). is a multiple.
Question 4. A particle has orbit given by

\[\mathbf{r}(t) = (\ln(t), t, t^2/2) \] for \(t \geq 0. \)

Find the equation for the osculating plane to this particle at \(t = 1 \)

we need to find a normal vector to the plane spanned by \(\mathbf{T}, \mathbf{N} \).
We can find this via \(\mathbf{r}' \times \mathbf{r}'' \) since \(\mathbf{r}'' \) is in the osculating plane.

\[\mathbf{r}'(t) = \left(\frac{1}{t}, 1, t \right) \]
\[\mathbf{r}''(t) = \left(-\frac{1}{t^2}, 0, 1 \right) \]
\[\mathbf{r}'(1) \times \mathbf{r}''(1) = \left(1, 1, 1 \right) \times \left(-1, 0, 1 \right) = \left(1, -2, 1 \right) \]

Hence the osculating plane is given by \((\mathbf{r}'(1) = \left(1, 1, 1 \right)) \)

\[1(x-1) - 2(y-1) + 1(z-1) = 0 \]
\[x - 2y + z = 0 \]

Question 5. Show that for a vector function \(\mathbf{r}(t) \), both \(\mathbf{r}'(t) \) and \(\mathbf{r}'' \) lie in the osculating plane. Hint: differentiate \(\mathbf{r}'(t) = \mathbf{v}(t) \mathbf{T}(t) \).

\[\mathbf{r}'(t) = \mathbf{v}(t) \mathbf{T}(t), \text{ hence } \mathbf{r}'(1) \text{ in osculating plane.} \]

\[\mathbf{r}''(t) = \mathbf{v}'(t) \mathbf{T}(t) + \mathbf{v}(t) \mathbf{T}'(t) \]
\[= \mathbf{v}'(t) \mathbf{T}(t) + \mathbf{v}(t) \mathbf{K}(t) \mathbf{N}(t) \]

Hence \(\mathbf{r}''(1) \) in osculating plane.
Question 6. Find the domain for the following functions

(a) \(f(x, y) = \frac{1}{\sqrt{x^2 + y^2} - 1} \)

(b) \(f(x, y) = \frac{y \sin(x)}{1 + y} \)

(c) \(f(x, y) = -\frac{1}{\sin(xy)} \)

(a) As long as the denominator is nonzero.

\[\sqrt{x^2 + y^2} = 1 \] not included.

\(x^2 + y^2 = 1. \)

\[D = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \neq 1 \} \]

(b) Similarly, \(y \neq -1. \)

(c) Similarly, \(\sin(xy) \neq 0 \)

\(xy \neq n\pi, \forall n \in \mathbb{Z}. \)

\[D = \{ (x, y) \in \mathbb{R}^2 \mid xy \neq n\pi, \forall n \in \mathbb{Z} \}. \]