Parameterisations:

- Curves can be parameterised in more than one way. (Actually infinitely many ways)
 For instance, the circle S^1 can be parameterised by $r_1(t) = (\cos t, \sin t)$ or $r_2(t) = (\cos^3 t, \sin^3 t)$.
 Both go around the circle but do so at different speeds at different times.

- We say a parameterisation $r(t)$ is an **arc length parameterisation** if $\|r'(t)\|=1$ for all t.

- Given a parameterisation $r(t)$, the arclength γ is given by the function $\gamma(t) = \int_0^t \|r'(u)\|\,du$.

 We can then construct an arclength parameterisation by $r_1(s) = r(\gamma^{-1}(s))$.

Example: $r(t) = (\cos 4t, \sin 4t, 3t)$ we find an arclength param.

\[
\gamma(t) = \int_0^t \|r'(u)\|\,du
\]

\[
= \int_0^t \sqrt{16\sin^2 4u + 16\cos^2 4u + 9}\,du
\]

\[
= \int_0^t 5\,du = 5t \quad \Rightarrow \quad \gamma^{-1}(s) = \frac{s}{5}
\]

Hence arclength param $r_1(s) = r(\gamma^{-1}(s)) = (\cos \frac{4s}{5}, \sin \frac{4s}{5}, \frac{3}{5}s)$.

Question:
25. Let \(\mathbf{r}(t) = (3t + 1, 4t - 5, 2t) \).

(a) Evaluate the arc length integral \(s(t) = \int_0^t \| \mathbf{r}'(u) \| \, du \).

(b) Find the inverse \(g(s) \) of \(s(t) \).

(c) Verify that \(\mathbf{r}_1(s) = \mathbf{r}(g(s)) \) is an arc length parametrization.

\[
(a) \quad s(t) = \int_0^t \| (3, 4, 2) \| \, du = \int_0^t \sqrt{9 + 16 + 4} \, du = \sqrt{29} t \quad \Rightarrow \quad t = \frac{s}{\sqrt{29}}.
\]

(b) Hence \(g(s) = \frac{s}{\sqrt{29}} \).

(c) \(\mathbf{r}_1(s) = \mathbf{r}\left(\frac{s}{\sqrt{29}}\right) = \left< \frac{3}{\sqrt{29}} s + 1, \frac{4}{\sqrt{29}} s - 5, \frac{2}{\sqrt{29}} s \right> \)

and \(\mathbf{r}'_1(s) = \frac{1}{\sqrt{29}} \left< 3, 4, 2 \right> \)

\(\| \mathbf{r}'_1(s) \| = 1 \). Hence arc length param.

Curvature:

The curvature \(K(t) \) is a measurement of how much a curve bends at a point. There are a few ways to calculate it, but in practice, the easiest way is given by formula:

\[
K(t) = \frac{\| \mathbf{r}'(t) \times \mathbf{r}''(t) \|}{\| \mathbf{r}'(t) \|^{3/2}} \quad \text{when } \mathbf{r}(t) \text{ is some param.}
\]

\(\text{(or } \mathbf{a} \text{)} \)

Example: \(\mathbf{r}(t) = (r \cos t, r \sin t, 0) \) circle of radius \(r \).

Then \(\mathbf{r}'(t) = (-r \sin t, r \cos t, 0) \).
\[r''(t) = \langle -r \cos \theta, -r \sin \theta, 0 \rangle \]

\[r'(t) \times r''(t) = \begin{vmatrix} i & j & k \\ -r \sin \theta \cos \theta & r \cos \theta & 0 \\ -r \cos \theta \sin \theta & -r \sin \theta & 0 \end{vmatrix} = \langle 0, 0, r^2 \rangle \]

so \[K(t) = \frac{\|v(t) \times r''(t)\|}{\|v'(t)\|^3} = \frac{r^2}{r^3} = \frac{1}{r} \]

Question: Given a graph \(y = f(x) \). This is a curve in the xy-plane which we can consider as the xy-plane in 3-space. What is the curvature at a graph?

Answer: We can parameterize a graph by \(x = t, y = f(t), z = 0 \).

i.e. \(r(t) = \langle t, f(t), 0 \rangle \).

Hence, \(r'(t) = \langle 1, f'(t), 0 \rangle \)

\(r''(t) = \langle 0, f''(t), 0 \rangle \)

\[r'(t) \times r''(t) = \begin{vmatrix} i & j & k \\ 1 & f'(t) & 0 \\ 0 & f''(t) & 0 \end{vmatrix} = f''(t) \]

Hence, \(K(t) = \frac{\|r'(t) \times r''(t)\|}{\|r'(t)\|^3} = \frac{|f''(t)|}{(1 + f'(t))^3/2} \)

Question: Find the curvature of the Cornu Spiral

\(x(t) = \int_0^t \sin \frac{u^2}{2} \, du \)
\(y(t) = \int_0^t \cos \left(\frac{u^2}{2} \right) \, du \)

Answer: \(r(t) = \langle \int_0^t \sin \frac{u^2}{2} \, du, \int_0^t \cos \frac{u^2}{2} \, du, 0 \rangle \)
\[r'(t) = \left< \sin \frac{t^2}{2}, \cos \frac{t^2}{2}, 0 \right> \]
\[r''(t) = \left< \frac{t^2}{2}, -t \sin \frac{t^2}{2}, 0 \right> \]

\[r'(t) \times r''(t) = \begin{vmatrix} i & j & k \\ \sin \frac{t^2}{2} & \cos \frac{t^2}{2} & 0 \\ t \cos \frac{t^2}{2} & -t \sin \frac{t^2}{2} & 0 \end{vmatrix} = -t \]

Hence, \[k(t) = \frac{|r'(t) \times r''(t)|}{|r'(t)|^3} = |t| \]

Given a parametric curve \(r(t) \), we have:

- unit tangent vector \(T(t) = \frac{r'(t)}{|r'(t)|} \)
- unit normal vector \(N(t) = \frac{T'(t)}{|T'(t)|} \)
- the binormal vector \(B(t) = T(t) \times N(t) \)

These form a right-handed system \(\{T, N, B\} \).

Question: Find \(T, N, B \) for \(r(t) = \langle t^2, et \rangle \) at \((0,0,0) \)

Answer: \[r'(t) = \langle 1, 1, et \rangle \]
\[|r'(t)| = \sqrt{2 + e^{2t}} \]
Answer: \(r'(t) = \langle 1, 1, e^t \rangle \). \(\|r'(t)\| = \sqrt{2 + e^{2t}} \)

Hence, \(T(t) = \frac{1}{\sqrt{2 + e^{2t}}} \langle 1, 1, e^t \rangle \).

\(T'(t) = \frac{1}{\sqrt{2 + e^{2t}}} \langle 1, 1, e^t \rangle + \frac{1}{\sqrt{2 + e^{2t}}} \langle 0, 0, e^t \rangle \)

\(T'(0) = \frac{1}{3 \sqrt{3}} \langle 1, 1, 1 \rangle + \frac{1}{\sqrt{3}} \langle 0, 0, 1 \rangle \)

\(= \frac{1}{3 \sqrt{3}} \left(-\langle 1, 1, 1 \rangle + \langle 0, 0, 3 \rangle \right) \)

\(= \frac{1}{3 \sqrt{3}} \langle -1, -1, 2 \rangle \).

\(\|T'(0)\| = \frac{\sqrt{9 + 2}}{3 \sqrt{3}} = \frac{\sqrt{11}}{3} \)

Hence, \(N(0) = \frac{T'(0)}{\|T'(0)\|} = \frac{1}{\sqrt{6}} \langle -1, -1, 2 \rangle \).

\(\text{and} \quad B(0) = T(0) \times N(0) = \left(\frac{1}{\sqrt{3}} \langle 1, 1, 1 \rangle \right) \times \left(\frac{1}{\sqrt{6}} \langle -1, -1, 2 \rangle \right) \)

\(= \frac{1}{3 \sqrt{2}} \langle 1, 1, 1 \rangle \times \langle -1, -1, 2 \rangle. \)

\(\langle 1, 1, 1 \rangle \times \langle -1, -1, 2 \rangle = \left| \begin{array}{ccc}
1 & 1 & k \\
1 & 1 & 1 \\
1 & 1 & 2
\end{array} \right| = \langle 3, -3, 0 \rangle. \)

Hence, \(B(0) = \frac{1}{3 \sqrt{2}} \langle 3, -3, 0 \rangle \).

Hence, \(\{\bar{T}, N, B\} \text{ at } t = 0 \) is \(\left\{ \frac{1}{\sqrt{3}} \langle 1, 1, 1 \rangle, \frac{1}{\sqrt{6}} \langle -1, -1, 2 \rangle, \frac{1}{\sqrt{2}} \langle 3, -3, 0 \rangle \right\} \).
Question:

56. (a) What does it mean for a space curve to have a constant unit tangent vector T?
(b) What does it mean for a space curve to have a constant normal vector N?
(c) What does it mean for a space curve to have a constant binormal vector B?

(a) If T is constant, it must be moving in a line.

(b) Since $||T|| = 1 \Rightarrow T'$ is perpendicular to T. Moreover, N is always pointing towards the centre of the oscillating circle so it follows that T must also be parallel, since if this changes, it must do so in the plane perpendicular to N but then the oscillating circle would be in this plane.

(c) The curve must stay in the plane perpendicular to B and the bending of the curve must be on the same side as the director always.