Vector-Valued Functions.

A function of the form \(\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k} \)

Think of \(t \) as time, \(\mathbf{r}(t) \) as a moving position vector that traces out some path in \(\mathbb{R}^3 \), i.e., vector-valued functions are really parameterisations of some space curve.

Example: \(\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle \) - \(\infty < t < \infty \).

The first two components are just the parameterisation of the circle and \(z \) is fixed at 1. Hence the curve traced by \(\mathbf{r}(t) \) is a circle at height 1. The path followed by \(\mathbf{r}(t) \) is that of \(t \to \infty \) if start at the point \((1,0,1)\) and \(t \to -\infty \) if you wind counterclockwise.

Group Questions:

Given two paths \(\mathbf{r}_1(t), \mathbf{r}_2(t) \). We say they intersect if there is a point \(P \) lying on both curves. We say that \(\mathbf{r}_1(t), \mathbf{r}_2(t) \) collide if \(\mathbf{r}_1(t_0) = \mathbf{r}_2(t_0) \) for some \(t_0 \).

Is it true that:
1) if \(\mathbf{r}_1(t), \mathbf{r}_2(t) \) intersect, then they collide?
2) if \(\mathbf{r}_1(t), \mathbf{r}_2(t) \) collide, then they intersect?
3) intersection depends only on the curves traced by \(\mathbf{r}_1, \mathbf{r}_2 \). While collision depends only on underlying parameterisations?

Given \(\mathbf{r}_1(t) = \langle t^2 + 3, t + 1, 6t^{-1} \rangle \)

\(\mathbf{r}_2(t) = \langle 4t, 2t^2 - 2, t^2 - 7 \rangle \)

Determine if these collide or intersect?

Answer:
1) false 2) true 3) true.

They collide if \(r_1(t) = r_2(t) \) has a solution.

Components \Rightarrow
\[
\begin{align*}
t^2 + 3 &= 9t \quad \cdot (1) \\
t + 1 &= 2t - 2 \quad \cdot (2) \\
6t^2 - 1 &= t^2 - 2 \quad \cdot (3)
\end{align*}
\]

So (2): $t + 1 = 2t - 2 \Rightarrow t = 3$, plug into (1): $12 = 12$.

Plug into (3): $2 = 2$.

Hence $t = 3$ is a solution and the two curves collide. Since they collide, they also intersect.

Parameterising intersection of surfaces.

Example (From textbook)

How do we parameterise the intersection of the two surfaces:
\[
x^2 - y^2 = z - 1 \quad \text{and} \quad x^2 + y^2 = 4.
\]

First way: try and write two of the variables in terms of the last one and make this the parameterising variable.

In this example, we write \(y \) and \(z \) in terms of just \(x \).

\[
x^2 + y^2 = 4 \Rightarrow y = \pm \sqrt{4 - x^2}
\]

So \(x^2 - y^2 = z - 1 \Rightarrow z = 1 + x^2 - y^2 \)
\[
= 1 + x^2 - (4 - x^2) \\
= 2x^2 - 3.
\]

Hence, let \(x = t \). We then parameterise the intersection by the two paths:
\[
r_1(t) = (t, \sqrt{4 - t^2}, 2t^2 - 3), \quad r_2(t) = (t, -\sqrt{4 - t^2}, 2t^2 - 3).
\]

Second method: use a known parameterisation.
Second method: use a known parameterisation

The equation \(x^2 + y^2 = 4 \) can be parameterised by \(x = 2 \cos t, \ y = 2 \sin t \).

Hence, subbing these into the second equation gives
\[
2 = 4 \sin^2 t - 4 \cos^2 t.
\]

Hence we can parameterise the intersection as
\[
r(t) = (2 \cos t, 2 \sin t, 1 + 4 \sin^2 t - 4 \cos^2 t) \]

Questions

Parameterise the intersection of the two cylinders: \(x^2 + y^2 = 1 \)
and \(x^2 + z^2 = 1 \).

Answer:
\(x^2 + y^2 = 1 \) can be parameterised by \(x = \cos t, \ y = \sin t \) and then by
the second equation \(z^2 = 1 - x^2 \Rightarrow z = \sqrt{1 - x^2} \). Hence we get
the two paths
\[
z = \pm \sqrt{1 - \cos^2 t} = \pm \sqrt{\sin^2 (t)} = \pm \sin (t).
\]
Hence we get the two paths:
\[
r_1(t) = (\cos t, \sin t, \pm \sin (t)) \quad r_2(t) = (\cos t, \sin (t), - \pm \sin (t)) \]

Question:
The intersection of the surfaces:
\[
z = x^2 - y^2 \quad z = x^2 + xy - 1.
\]

Answer: we have on the intersection \(x^2 - y^2 = x^2 + xy - 1 \)
\[
1 = y^2 + xy \quad \Rightarrow \quad \frac{1}{y} = x + \frac{1}{y} \Rightarrow x = \frac{1}{y} - y.
\]
Then \(z = (\frac{1}{y} - y)^2 - y \)
\[
= \frac{1}{y^2} - 2 + y^2 - y^2 = \frac{1}{y^2} - 2 \quad \Rightarrow \quad z = \frac{1}{y^2} - 2.
\]
Hence let $y = \xi$ and then the parameterisation is

$$r(t) = \left(\frac{1}{\xi} - \xi t, \xi t, \frac{1}{\xi^2} - 2 \right)$$