Information

Discussion Questions

Question 1.
(a) What is the point of numerical integration?
(b) Describe in your own words what the Midpoint (M_N), Trapezoidal (T_N) and Simpson’s (S_N) Rules are.
(c) What are the formulas for these rules? (Can you do so without looking at your notes?)

Question 2. Consider the definite integral $\int_{2}^{5} \frac{1}{x} \, dx$. In this question we will investigate how well the Trapezoidal Rule (T_N) approximates this integral. The error bound is given by the formula

$$\text{error}(T_N) \leq \frac{K_2(b-a)^3}{12N^2}.$$

(a) Do you expect the Trapezoidal Rule to over or underestimate the definite integral? If so, why?

(b) Let $f(x) = \frac{1}{x}$, the constant K_2 is any number such that $|f''(x)| \leq K_2$ for all x in the interval we are integrating over. However we usually take it to be the the absolute value of the maximum of the second derivative, $\max_{x \in [a,b]} |f''(x)|$. Find the maximum of f'' and set K_2 to be the absolute value of this value.

(c) In the formula $b - a$ is the length of the interval we are integrating over. In this case we have $b - 1 = 5 - 2 = 3$. Use this and the previous part to find a value of N for which $\text{error}(T_N) < 10^{-6}$.

Question 3. Compute the arc length of $y = \ln(e^x + 1 - e^x - 1)$ over the interval $[1, 3]$.

Question 4. Compute the surface area of revolution about the x-axis for $y = \frac{1}{4}x^2 - \frac{1}{2}\ln(x)$ over the interval $[1, e]$.

Homework Questions

Section 8.9
12, 16, 34, 36, 38, 40

Section 9.1
2, 9, 14, 18, 21, 23, 28, 40, 42
Extra Questions

Question 5. Evaluate the following integrals

(a) \(\int \frac{dx}{x^2 + 2x + 5} \)

(b) \(\int \sin^5(x) \cos^2(x) \, dx \)

(c)* \(\int \sin^4(x) \cos^2(x) \, dx \)

(d) \(\int \sqrt{1 + \sqrt{x}} \, dx \)

(e)* \(\int \frac{1}{\sech(x)} \, dx \).

(f)** \(\int_0^{\pi/2} \frac{\sin(x)}{\cos(x) + \sin(x)} \, dx \)

Hint for (f): Remember the trig identities \(\sin(\pi/2 - x) = \cos(x) \).

Question 6. Find the surface area of the torus obtained by rotating the circle \(x^2 + (y - b)^2 = r^2 \) about the \(x \)-axis.