Week 1 Notes
Monday, April 2, 2018 8:35 PM

General Information:

Name: Ben

Office hours: 4-6pm Thu MS 3957

Webpage where I'll upload discussion stuff:
www.math.ucla.edu/~ben.szczesny/

MATH 31B - S18/coursehome.html

Email (Use Plaza for general q's)
ben.szczesny@math.ucla.edu

Crash Course on Inverse Functions.
(for Tuesday)

- A function \(f: D \rightarrow R \) is a rule that takes something from domain \(D \) to range \(R \)

- A function is one-to-one (or injective) if you can't get the same output from two different inputs, i.e. \(f(x) = x^2 \)
two different inputs, i.e. \(f(x) = x^2 \) is not one-to-one.

a) \(f(-2) = (-2)^2 = 4 = f(2) \)

An inverse function is the function you get by doing the opposite rule: i.e., \(f(x) = x^3 \), the opposite is taking cube roots.

\[f^{-1}(x) = x^{1/3} \] is the inverse function.

A function has an inverse iff it is one-to-one on its domain \(D \). This is what the first question is about.

Example:

Does the function \(f(x) = x^2 + 4x \) have an inverse? One way to show a function is one-to-one is to show it's strictly increasing/decreasing. We can do this by looking at its derivative (probably the most common...
(a) Differentiation for most functions

way to do this)
\[f'(x) = 27x^2 + 4 > 0 \text{ for all } x. \]
Hence \(f \) is strictly increasing and so is one-to-one and has an inverse.

Example

Find the inverse function of \(f(x) = 3x - 9 \).
We do so by solving \(y = f(x) \) for \(y \).

\[y = 3x - 9 \]
\[y + 9 = 3x \]
\[\Rightarrow \quad \frac{y + 9}{3} = x \]

We then interchange \(x, y \) to get inverse:
\[f^{-1}(x) = \frac{x + 9}{3}. \]

Example:

For functions not one-to-one we can...
restrict the domain so the function is one-to-one on the new smaller domain and then get an inverse for the new function, i.e. \(f(x) = x^2 \) not one-to-one on \(\mathbb{R} \), but it \(\text{is} \) when domain is \([0, \infty) \) and its inverse is then \(f^{-1}(x) = \sqrt{x} \).

If we instead restricted the domain to \((-\infty, 0) \), the inverse would be \(f^{-1}(x) = -\sqrt{x} \).

Log Rules

Definition of \(\log_b a \): The number that you raise \(b \) by to get \(a \).

\[b^{\log_b a} = a \]

- \(\log_b(xy) = \log_b(x) + \log_b(y) \)
- \(\log_b(x/y) = \log_b(x) - \log_b(y) \)
- \(\log_b(x^n) = n \log_b(x) \)
\[\log_b(x^n) = n \log_b(x) \]
\[\log_b 1 = 0 \quad \log_b b = 1 \]

Derivatives of \(e^x/\ln x \)

\[\frac{d}{dx} e^x = e^x \]
\[\frac{d}{dx} \ln(x) = \frac{1}{x} \]

when \(\ln x = \log_e(x) \)

\(e \) is a super special number, Ingeniel

\[\frac{d}{dx} (b^x) \neq b^x \quad , \quad \frac{d}{dx} \log_b(x) \neq \frac{1}{x} \]

Remember the chain rule!

\[\frac{d}{dx} g(f(x)) = g'(f(x))f'(x) \]

Example

Derivative of \(f(x) = e^{2x^2} \), \(g(x) = \ln(2x) \)

For first one we use chain rule:
for first one we use chain rule:

\[f(x) = e^{g(x)} \]
\[f'(x) = e^{g(x)} \cdot g'(x) \]

so in our case

\[f'(x) = 4x e^{2x^2} \]

In second case, chain rule give in general

\[g(x) = \ln(h(x)) \]
\[g'(x) = \frac{h'(x)}{h(x)} \]

so in our case

\[g'(x) = \frac{2}{2x} = \frac{1}{x} \]