The following is sometimes called Nakayama’s lemma. I prefer to call it gerneralized Cayley-Hamilton.

Theorem 1. Let R be a commutative ring and I an ideal. Let M be a finitely generates R-module and f an endormorphism of M. If $f(M) \subseteq IM$ then there exists an n and $a_i \in I$ such that

$$f^n + a_{n-1}f^{n-1} + \cdots + a_1f + a_0 = 0 \text{ in } \text{End}(M)$$

Question 1. The following are all called Nakayama’s lemma. Prove all of them. Let R be a commutative ring and M a finitely generated R-module.

1. Let I be an ideal of R such that $IM = M$. Then there exists an $x \in R$ such that $x = 1$ in R/I and $xM = 0$. An equivalent formulation to this which is easier to remember is that if $IM = M$ then there exists an element $i \in I$ such that $im = m$ for all $m \in M$.

2. Let I be an ideal contained in $\text{Rad}(R)$. Then $IM = M$ implies that $M = 0$.

3. Let N be submodule of M and $I \subseteq \text{Rad}(R)$. Then if $M = IM + N$ then $M = N$.

4. Suppose that R is a local ring with maximal ideal m and residue field $F = R/m$. Suppose we have elements x_i of M such that their images in M/mM form an F-basis. Then the x_i generate M.

Question 2. Suppose R is an integral domain which isn’t a field and let $F = R_{(0)}$. Show that F cannot be a finitely generated R-module.

Question 3. Let M be a finitely generated R-module for commutative ring R. Show that every surjective endomorphism is an isomorphism.

Question 4. Let S be a multiplicative set of ring R. Show that the functor $S^{-1} : \text{mod}(R) \to \text{mod}(S^{-1}R)$ is exact. That is, maps short exact sequences to short exact sequences.

Definition 1. We call a property P of R-modules local if a module M has property P if and only if M_q has property P for all prime ideals q.

Question 5. Show the following are local properties:

1. A module being trivial.
2. A R-homomorphism being injective.
3. A module being torsion free.

Question 6. Prove the following version of Nakayama’s Lemma: