Q1.

I'm going to look at right ideals instead as I don't want to deal with row vectors. The idea is that every right ideal of $M_n(R)$ is of the form $[P \ldots P]$ where $P \in R^n$ is a right submodule (take R^n to be column vectors).

Now, suppose $I \leq M_n(R)$ is a right ideal. By acting on the right by diagonal matrices, we see that each column is a submodule of R^n. By acting via permut. matrices, we see that the columns must be the same submodule.

Hence, let $C(I)$ be the submodule given by a column. Let $S(P) = [P \ldots P]$ for some $P \in R^n$ submodule. It is clear we have $CS = \text{id}_{C(I)} \forall \text{column}$ and $SC = \text{id}_{C(I)} + P \cdot (e)$. Hence these are inverses.

The left ideal situation is the same except we take row instead.

The two sided ideals must then be the same two sided ideal of R in each entry.
Assume \(I \) is nonzero. Any \(\mathbb{Z} \)-submodule of \(\mathbb{Z}^n \) is free of rank \(k \leq n \). In particular, they are in the form \(\mathbb{Z}v_1 + \cdots + \mathbb{Z}v_k \), where \(v_i \in \mathbb{Z}^n \) (column vectors).

From the previous question, we then conclude that any left ideal \(I \subseteq M_n(\mathbb{Z}) \) is of the form

\[
I = \sum_{i=1}^{k} (\mathbb{Z}v_1 \mathbb{Z}v_i \cdots \mathbb{Z}v_k)^T
\]

Let \(v_{ij} \) be the \(j \)th component of \(v_i \).

Then \(I \mathbb{Z}^n = \sum_{i=1}^{k} (\mathbb{Z}v_1 \cdots \mathbb{Z}v_i)^T \mathbb{Z}^n \)

\[
= \sum_{i=1}^{k} \left(\begin{array}{c}
\mathbb{Z} \gcd_j(v_{ij}) \\
\mathbb{Z} \gcd_j(v_{ij}) \\
\vdots \\
\mathbb{Z} \gcd_j(v_{ij}) \\
\end{array} \right)
\]

\[
= \left(\begin{array}{c}
\mathbb{Z} \gcd_j(v_{ij}) \\
\mathbb{Z} \gcd_j(v_{ij}) \\
\vdots \\
\mathbb{Z} \gcd_j(v_{ij}) \\
\end{array} \right)
\]

\[
= \gcd_{ij}(v_{ij}) \mathbb{Z}^n.
\]

Since \(I \) is nonzero, \(\gcd_{ij}(v_{ij}) \neq 0 \) and so

\[
\mathbb{Z}^n / \gcd_{ij}(v_{ij}) \mathbb{Z}^n \cong \mathbb{Z} / \gcd_{ij}(v_{ij}) \mathbb{Z} \] is finite.
Q3

We show α is finitely generated for \mathbb{N}.

Since $a b = A$, there exist $a, b \in \mathbb{N}$ with $\sum_{i=1}^{n} a_i b_i = 1$.

Then for all $a \in \mathbb{N}$, we have:

$$a = a(\sum_{i=1}^{n} a_i b_i) = \sum_{i=1}^{n} a_i b_i a_i$$

and $a \cdot \alpha = \alpha$, for all i. Hence $\sum_{i=1}^{n} a_i b_i$ gives a generating set for α.

To show α is projective, we show it is a direct summand of A^n. Since \mathcal{S} is a simple module,

$$0 \rightarrow \ker f \rightarrow A^n \xrightarrow{f} \alpha \rightarrow 0$$

define a A-hom $g: \alpha \rightarrow A^n$ by $g(a) = \sum_{i=1}^{n} a_i b_i e_i$.

where e_i is the idempotent that corresponds to the ith factor of A^n.

We then have $f g(a) = \sum_{i=1}^{n} a_i b_i a_i = a$, and so the sequence splits and we are done.
Q4

Let x_1, \ldots, x_n be a minimal set of generators for M.

There exists a SES of R-modules

$$0 \rightarrow N \rightarrow R^n \rightarrow M \rightarrow 0$$

Since M projective, $R^n = M \oplus N$.

Apply the functor $- \otimes_R M$, we get

$$(R/m)^n = (M/mM) \oplus (N/mN)$$

R/m is a field, and any basis of M/mM pull back to a generating set of M by Nakayama.

Hence by minimality and dimension, $N/mN = 0$.

Therefore, we conclude by Nakayama $N = 0$ and so $M = R^n$.

\[\text{\$}\]
Q5.

Thus u essentially the Artin-Tate Lemma.

Let x_1, \ldots, x_n be the generators of A as an R-algebra and y_1, \ldots, y_n the generators of A as a B-module.

Then $x_i = \sum_{j=1}^{n} b_{ij} y_j$ for some $b_{ij} \in B$

and $y_j y_k = \sum_{k=1}^{n} b_{kij} y_k$ for some $b_{kij} \in B$.

Let B_0 be the R-subalgebra of A generated by $\{b_{ij} \mid b_{ij} \in B\}$. So B_0 is a finitely generated R-algebra and by Hilbert basis, B_0 is Noetherian as a ring.

(Note: $B_0 \subseteq B \subseteq \mathbb{Z}(A)$ and so everything is commutative here)

Observe that via the relations $(*), A$ is generated as a B_0-module with generators y_i, and so by Hilbert basis, A is a Noetherian B_0-module.

Since B is a B_0-submodule of A, it is finitely generated as a B_0-submodule and as B_0 is a finitely generated R-algebra, we conclude B is a finitely generated R-algebra.
Question 6

Solution 1 (by Ben Spitz)

Let \(\{x_1, \ldots, x_m\} \) be a finite set of elements of \(B \) that generate \(B/I \) over \(A \). Since \(B \) is Noetherian, \(I \) is f.g. as a \(B \)-module. Let \(\{y_1, \ldots, y_n\} \) be generators of \(I \) as a \(B \)-module.

Then \(B = I + \sum_{i=1}^{m} A x_i \), so enough to show \(I \) f.g. over \(A \).

\[
I = \sum_{j=1}^{n} B i_j = \sum_{j=1}^{n} \left(I + \sum_{i=1}^{m} A x_i \right) i_j = \sum_{j=1}^{n} I i_j + \sum_{j=1}^{n} \sum_{i=1}^{m} A x_i i_j
\]

so enough to show each \(I i_j \) f.g. over \(A \).

we repeat this argument and it's then enough to show \(I i_j \) f.g. for all \(i, j \) to show \(I \) f.g. over \(A \).

Then enough to show \(I i_j k_i \) f.g. over \(A

etc... eventually this must be zero since \(I \) is nilpotent and so by induction we are done.
solution 2

After seeing Ben's solution, I realised the following observation is what I was missing to make my argument work:

Claim: If I have two rings $A \leq C$ s.t. C is fg as an A-module, then all fg C-modules M are also fg A-modules.

Proof: we have $C = \sum_{i=1}^{n} Aa_i$ for some a_i.

If M is f C-module with generators x_1, \ldots, x_m.

Then $M = \sum_{i=1}^{m} Cx_i = \sum_{i=1}^{m} \sum_{j=1}^{n} Aa_j x_i$. Hence $a_j x_i$ generate M as an A-module.

Now, since B noeth., I is f g and as each element nilpotent, we conclude $I^n = 0$ for some N.

we then have a filtration of A-modules:

$0 = I^N \subseteq I^{N-1} \subseteq \ldots \subseteq I^1 \subseteq I^0 = B$.

As B noeth., each I^k is f g B-module and so I^k/I^{k+1} are f g B/I-modules. By the above claim, we conclude I^k/I^{k+1} are f g A-modules. Since the filtration is of finite length with fg quotients
we conclude B is a f.g. A-module.