Week 7

Burnside’s Lemma

Given a G-set X, we have
\[\left| X/G \right| = \frac{1}{\left| G \right|} \sum_{g \in G} \left| X^g \right| . \]

Useful corollary: Given a transitive G-set X with at least 2 elements, then exists an element \(g \in G \) such that \(X^g = \emptyset \).

Proof: Suppose we had \(\left| X^g \right| \geq 1 \) for all \(g \in G \). Then
\[\frac{1}{\left| G \right|} \sum_{g \in G} \left| X^g \right| \geq \frac{1}{\left| G \right|} \left(\sum_{g \in G} \left| X^g \right| \right) \]
\[\geq \frac{1}{\left| G \right|} \left(\left| X \right| \left(2 + \left| G \right| \right) \right) \]
\[> 1 = \left| X/G \right| \] as transitive.

Hence we have a contradiction.

Question 1. Let \(G \) be a finite group and \(H < G \) a proper subgroup. Show that \(\cup_{g \in G} gHg^{-1} \neq G \). Bonus question: What happens when \(G \) is infinite?
Let Δ be the set of all subgroups of G conjugate to H. Then Δ is a transitive G-set and suppose $Ug \leq gHg^{-1} = G$. Then for all $g \in G$, there exists $h \in G$ such that $g = hHh^{-1}$. Then we have $g = hHh^{-1} = hHh^{-1}$ and so $|\Delta| \geq 1$ for all $g \in G$. This contradicts the above corollary.

When G is infinite, this is not true. Take $T \leq \text{GL}_n(\mathbb{C})$ subgroup of upper triangular matrices. The Jordan-normal form implies that T's conjugates cover $\text{GL}_n(\mathbb{C})$.

Question 2. Show that for a finite group G and proper subgroup H, there exists a conjugacy class of G that does not intersect H.

Let $g \in G \setminus \bigcup \gamma \leq gHg^{-1}$. This exists by the previous problem. Suppose there exists a $h \in G$ such that $h \in H \implies g = hHh^{-1}$. But this cannot be true. Hence $C_g \cap H = \emptyset$.

Use of Burnside in counting.

Suppose we want to count the number of ways
Suppose we want to count the number of ways we can colour the edges of a square with two colours up to rotation.

\[\begin{array}{c c c c}
 & & \text{are considered the same} \\
\end{array} \]

Let \(\mathcal{X} \) be the set of all configurations of colourings and \(\sigma \in S_4 \) acts on this set by \(90^\circ \) clockwise rotation. Hence we want to count the number of orbits \(|\mathcal{X}/S_4| \), so we can use Burnside for this, and instead count the number of configurations that are fixed by elements of \(S_4 \).

<table>
<thead>
<tr>
<th>element of (S_4)</th>
<th>number fixed</th>
<th>squares left fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e)</td>
<td>16</td>
<td>all</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>2</td>
<td>all edges same colour.</td>
</tr>
<tr>
<td>(\sigma^2)</td>
<td>9</td>
<td>opposite edges same colour</td>
</tr>
<tr>
<td>(\sigma^3)</td>
<td>2</td>
<td>all edges same colour</td>
</tr>
</tbody>
</table>

\[|\mathcal{X}/G| = \frac{1}{4} (16 + 2 + 9 + 2) = \frac{29}{4} = 6. \]

\(\) (colourings up to rotation).
Question 3. (Useful results for counting) Let G be a group and X a G-set. For $x, y \in G$, show that

(a) if x and y are conjugate then $|X^x| = |X^y|$.
(b) if x and y generate the same subgroup then $|X^x| = |X^y|$.

(a) If $a \in X^y$ and $x = hyh^{-1}$. Then $ha \in X^x$ since $x \cdot ha = hyh^{-1} \cdot ha = ha$. Hence we get a map $f_h : X^y \to X^x$ by $a \mapsto ha$ which has an inverse by h^{-1}! Therefore a bijection and so $|X^x| = |X^y|$.

(b) If $a \in X^y$, then as $y = x^n$ for some n, so $a \in X^y \Rightarrow X^x \leq X^y$ and by symmetry we get equality.

Question 4. Use Burnside’s lemma to answer the following counting problem. Let n be an even number and suppose we have n indistinguishable balls and put them into 3 indistinguishable jars. How many ways can we do this?

$$\Sigma = \{ (a, b, c) \in \mathbb{Z}^3 \geq 0 \mid ab + bc = n^2 \}$$
and we have

$S_3 \cong \Sigma$ given by $(12) \cdot (a, b, c) = (b, a, c)$
and $(123) \cdot (a, b, c) = (c, a, b)$.

We want to count Σ / S_3 and so by previous question we want to figure out fixed points for a representative for each conjugacy class.
A representative for each conjugacy class

<table>
<thead>
<tr>
<th>Element in conjugacy</th>
<th># fixed</th>
<th>what gets fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e)</td>
<td>(\binom{n+2}{2})</td>
<td>all of them</td>
</tr>
<tr>
<td>(12)</td>
<td>(\frac{n}{2}+1)</td>
<td>((a,a,b)) for (a = 0, \ldots, \frac{n}{2})</td>
</tr>
<tr>
<td>(123)</td>
<td>0</td>
<td>since (n) even, can't have one of form ((a,a,a)).</td>
</tr>
</tbody>
</table>

Hence Burnside gives us:

\[
\left| \frac{X}{S^3} \right| = \frac{1}{6} \left(\binom{n+2}{2} + 3 \left(\frac{n}{2}+1 \right) \right).
\]

Question 5.

(a) Let \(X \) be a finite \(G \)-set with \(|G| = p^n \) for some prime \(p \) and \(p \) does not divide \(|X| \). Show there exists an element \(x \in X \) such that \(gx = x \) for all \(g \in G \).

(b) Let \(V \) be a \(d \)-dimensional vector space over \(\mathbb{Z}_p \) and let \(G \subset GL_d(\mathbb{Z}_p) \) be a group such that \(|G| = p^n \). Show that there exists a nonzero vector \(v \in V \) such that \(g \cdot v = v \) for all \(g \in G \).

Note, you don't need Burnside to do these questions.

(a) Suppose no such element \(x \in X \) exists. Then the size of every orbit is divisible by \(p \) (all orbits are nontrivial and orbit-stabilizer implies that there order divides \(p^n \)).

Since \(|X| = \Sigma |\Theta_i| \) where \(\Theta_i \) are the orbits, we have \(|X| \equiv 0 \mod p \), but this is a contradiction.

(b) Take \(x = V \setminus \{e\} \). Then \(|X| = p^d - 1 \equiv -1 \mod p \).
(b). Take $\overline{X} = V \setminus \{0\}$. Then $|\overline{X}| = p^{d-1} \equiv -1 \mod p$. Hence apply the previous part.

Question 6. Prove the Frattini argument: Let G be a finite group and $H \triangleleft G$. Suppose P is a Sylow p-subgroup of H. Then $G = HN_G(P)$.

Since $H \triangleleft G$, we have $G \triangleleft \text{Syl}_p(H)$ transitivity. But by Sylow Theorems, $H \triangleleft \text{Syl}_p(H)$ also acts transitively. In particular, for all $g \in G$, there exists $h \in H$ such that $h^g P g^{-h} = P$

$\Rightarrow h^g \in N_G(P) \Rightarrow g \in HN_G(P) \Rightarrow G = HN_G(P)$