Week 3 Notes.

Reminder:
Sylow theorems (Application of group actions)

Sylow 1: Given a group G and a prime divisor p of $|G|$. There exists a sylow p-subgroup of G.

Sylow 2: For each prime p, the sylow p-subgroup of G are conjugate to each other.

Sylow 3: If $|G| = p^nm$ where p prime, $n \geq 0$ and $p \nmid m$. Let n_p be the number of sylow p-subgroup of G.

Then
1) $n_p | m$
2) $n_p \equiv 1 \pmod{p}$
3) $n_p = |G : N_G(P)|$ when $P \in \text{Syl}_p(G)$

It’s useful to realize that all of these can be proven via group actions:

- $S1$: Via a p-subgroup P on set G / H via left mult.
- $S2$: P-sylow subgroup P on set G / P via left mult.
- $S3$: P-sylow subgroup P on set G / H via left mult.

<table>
<thead>
<tr>
<th>Table: Theorem</th>
<th>Group</th>
<th>Set</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S1$</td>
<td>p-subgp</td>
<td>G / H</td>
<td>left mult.</td>
</tr>
<tr>
<td>$S2$</td>
<td>$P \in \text{Syl}_p(G)$</td>
<td>G / P</td>
<td>left mult.</td>
</tr>
<tr>
<td>$S3(1)$</td>
<td>G</td>
<td>$\text{Syl}_p(G)$</td>
<td>conjugation</td>
</tr>
<tr>
<td>$S3(2)$</td>
<td>$P \in \text{Syl}_p(G)$</td>
<td>$\text{Syl}_p(G)$</td>
<td>conjugation</td>
</tr>
<tr>
<td>$S3(3)$</td>
<td>G</td>
<td>$\text{Syl}_p(G)$</td>
<td>conjugation</td>
</tr>
</tbody>
</table>
Question 1

We have the factorization $18 = 2 \cdot 3^2$.

From Sylow 3 we have that $n_3 \equiv 1 \mod 3$ and $n_3 | 2$. Hence $n_3 = 1$ and so there exists a normal subgroup of order 9.

Question 2

We observe that we may assume

Note $P \leq N_G(P)$. Hence we have $N_G(P)/P$ a well defined quotient group. Now $H_P/P \leq N_G(P)/P$ and by the second isomorphism theorem we have $|H_P/P| = [H/HNP]$.

Hence it follows by Lagrange's theorem that $|H/HNP| | N_G(P)/P |$ and $|H/HNP| \leq |H|$. As $p \nmid |N_G(P)/P|$ and H is p-group. It follows that H/HNP is trivial and so $H \leq P$.

Alternatively, if you are willing to accept that every p-subgroup is contained in a Sylow p-subgroup Q, then Sylow 2 implies there exists $g \in G$
Then there exists a Sylow p-subgroup Q of $N_G(P)$ that must have the same order as P. By Sylow 2, there exist $g \in N_G(P)$ such that $gPg^{-1} = Q$, but as normalizer $P = Q$.

Lemma: Let H be a p-subgroup of finite group G such that H isn't a Sylow p-subgroup. Then there exists $P \in \text{Syl}_p(G)$ such that $H \leq P$.

Proof: First observe that since $hgh^{-1}gH = gH \subseteq g^{-1}hgeH$, it follows that $N_G(H) = \bigcup_{g \in G} gHg^{-1} = (G/H)^H$. The union of all cosets fixed by H by left multiplication. Hence we have that since $|G/H| |N_G(H)/H| \equiv |(G/H)^H| \equiv |G/H| \bmod p$.

Since G not Sylow, $|G/H|$ is divisible by p and so $|N_G(H)/H| \equiv 0 \bmod p$. Hence, by Cauchy's theorem and lattice theorem, there exists p-subgroup $H' \leq G$ such that $H \leq H'$.
Question 3

Suppose \(Q \in \textrm{Syl}_p(G) \) is such that \(p \mid Q = q \) for all \(p \in P \). Then \(P \leq N_G(Q) \) and by the previous \(Q \) we have \(P \leq Q \). Hence \(P = Q \).

Question 4

The action gives us a group homomorphism \(\phi : G \to \text{Sym}(\text{Syl}_p(G)) \cong S_{np} \). Since \(G \) is simple, this mapping must be injective and so by Lagrange's theorem \(|G| / np \).

Question 5

Consider the left action of \(G \) on the left cosets of a proper subgroup \(H \). Let \(n = [G:H] \).
Since \(G \) is simple, we have an injective homomorphism \(G \to S_n \). We want to show \(10 \mid n \).

Now, since \(G \) has an element of order 23, \(S_n \) must contain a cycle of order 23. Since an order of a permutation is equal to the least common multiple of cycle lengths, and \(23 \cdot 3 = 7 \cdot 10 \), we see that \(n \) must be at least \(23 \cdot 3 \cdot 7 = 10 \).
Question 6

We first check that $N_G(P)$ acts on X^p.

Let $y \in X^p$, i.e., $gy = y$ for all $g \in P$. We want to show that $g'y \in X^p$ for $g' \in N_G(P)$.

Now, $g''g'g'y = y$ since $g''g' \in P$ for $g' \in N_G(P)$, $g \in P$.

Hence $gg'y = g'y$ and so $g'y \in X^p$.

Now, suppose $y \in X^p$. We already have $x \in X^p$ since $P \leq G_x$. It is sufficient to show that there exists $g \in N_G(P)$ such that $gx = y$.

Since $G \triangleright X$ is transitive, there exists $g \in G$ such that $gx = y$. Then we have $Gy = gGxg^{-1}$.

and so $g^{-1}Pg \leq G_x$ since $P \leq Gy. (y \in X^p)$.

Hence by Sylow 2, there exists $h \in G_x$ such that $h^{-1}g^{-1}Pgh = P \Rightarrow ghe \in N_G(P)$ and we have

$ghx = gx = y$. \hfill \square$