MATH 210C: HOMEWORK 6

Problem 53. Exhibit an explicit $M_n(R)$, *R*-bimodule which gives an equivalence between *R*-Mod and $M_n(R)$ -Mod for any ring *R* and any $n \in \mathbb{N}$.

Problem 54. Prove that the subring of $M_n(A)$ of upper triangular matrices is never Morita equivalent to A for n > 1.

Problem 55. Let A and B be two rings and G: B-Mod $\rightarrow A$ -Mod be a left-exact product preserving functor, which (therefore) admits a left adjoint F. Show that there exists a B, A-bimodule X such that $G \cong \text{Hom}_B(X, -)$. Describe X.

Problem 56. Let A be a ring and let P be a finitely generated projective right Amodule which is a generator of A-Mod (as in Morita theory). Let $B = \text{End}_A(P)$ and view P as a B, A-bimodule. Show that there is an isomorphism of A, B-bimodules $\text{Hom}_A(P, A) \cong \text{Hom}_B(P, B).$

Problem 57. Let A be a ring, and let P be a finitely generated projective right A-module. Prove that P is a generator if and only if every simple right A-module M is quotient of P.

Problem 58. Let A be a ring, and let P be a finitely generated projective right A-module. Prove that the following are equivalent:

- (a) $\operatorname{Hom}_A(P, -)$ is faithful.
- (b) Every right A-module M is the quotient of a (possibly infinite) coproduct of copies of P.
- (c) For every right A-module M and every $m \in M$, there exist a family of homomorphisms $f_1, \ldots, f_n : P \to M$ and $x_1, \ldots, x_n \in P$ such that

$$\sum_{i=1}^{n} f_i(x_i) = m$$

(d) The evaluation map $\varepsilon \colon P^{\vee} \otimes P \to A$ is surjective (recall Problem 27). In this case P is a generator of A-Mod in the sense of Morita theory.

Problem 59. If A is a commutative ring with no nontrivial idempotents, prove that

any (nonzero) finitely generated projective module is a generator.

Problem 60. Let R be any ring, and let A be the subring of $M_2(R)$ given by upper triangular matrices. Let e be the idempotent element $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

MATH 210C: HOMEWORK 6

- (a) Prove that P = eA is a finitely generated projective right A-module.
- (b) Prove that P is a not generator.

Problem 61. Let A be a ring with a unique maximal left ideal \mathfrak{m} .

- (a) Prove that A also has a unique maximal right ideal which coincides with \mathfrak{m} .
- (b) Prove that A has a unique left ideal if and only if the set of nonunits of A forms an ideal (i.e. A is a local ring).