MATH 210C: HOMEWORK 3

Problem 20. Let F be a field and let K = F(T).

- (a) Show that $T \mapsto T^{-1}$ defines an automorphism of K.
- (b) Transport the valuation at zero (i.e. at T) by this automorphism.
- (c) Describe the above 'valuation at infinity' explicitly on a fraction of polynomials.
- (d) Verify directly that the explicit valuation obtained under (c) is a discrete valuation.

Problem 21. Describe the *p*-valuation on the field of *p*-adic numbers \mathbb{Q}_p .

Problem 22. Show that if p and q are distinct prime numbers, then \mathbb{Q}_p and \mathbb{Q}_q are not isomorphic.

Problem 23. Let A be a noetherian domain and \mathfrak{p} a prime ideal which is principal.

- (a) Show that p has height one, that is, there is no prime ideal strictly between
 (0) and p.
- (b) Give an example of a domain A and a prime of height one which is not principal.

Problem 24. Prove that there exists a (non-noetherian) local domain A whose maximal ideal \mathfrak{m} is principal, yet A has Krull dimension more than one.

Problem 25. Show that localization commutes with integral closure: let A be a domain and K its field of fractions. Let $S \subset A$ be a multiplicative subset. Show that $\overline{S^{-1}A} = S^{-1}\overline{A}$.

Problem 26. Give an example of a domain A of Krull dimension one that is integrally closed but not Dedekind.

Problem 27. Let R be a commutative ring and M an R-module. Let $M^{\vee} = \operatorname{Hom}_{R}(M, R)$ be its dual and $\varepsilon : M \otimes M^{\vee} \to R$ the evaluation morphism.

- (a) Show that if R is a DVR and M is a nonzero ideal, then ε is an isomorphism.
- (b) Show that the same result is true if R is a Dedekind domain.
- (c) For R noetherian and M finitely generated (or in general for M finitely presented) show that ε is an isomorphism if and only if M is locally free of rank one.

Problem 28. Let $A = \mathbb{R}[X, Y]/\langle X^2 + Y^2 - 1 \rangle = \mathbb{R}[x, y].$

- (a) Show that A is a Dedekind domain but not a PID.
- (b) Let $M = \langle 1 + x, y \rangle$. Show that the ideal M satisfies $A^2 \simeq M \oplus M$ via the homomorphism $(1,0) \mapsto (1+x,y)$ and $(0,1) \mapsto (-y,1+x)$.
- (c) Show that $M \otimes M^{\vee} \simeq A$ via the homomorphism $m_1 \otimes m_2 \mapsto \frac{m_1 m_2}{2(1+x)}$. (Show that this homomorphism is well-defined!)
- (d) What is the relationship between M and the Möbius band?

Problem 29. Let A be a Dedekind domain. Define a *fractional ideal* to be a nonzero A-submodule \mathfrak{a} of $K = \operatorname{Frac} A$ such that there exists a nonzero $c \in A$ such that $c\mathfrak{a} \subset A$.

(a) Prove that every maximal ideal \mathfrak{m} is invertible. That is, let

$$\mathfrak{m}^{-1} := \{ x \in K : x\mathfrak{m} \subset A \}.$$

Then $\mathfrak{m}^{-1}\mathfrak{m} = A$.

- (b) Prove that every non-zero ideal is invertible by a fractional ideal. Hint: suppose otherwise, and consider the (non-empty) family of non-invertible ideals. Use the fact that A is noetherian to reach a contradiction.
- (c) Conclude that the set of fractional ideals is an abelian group under multiplication.

Problem 30. Let R be a noetherian ring. Let Pic R, the Picard group of R, denote the set of isomorphism classes of invertible R-modules M as in Problem 27.

- (a) Prove that Pic R is an abelian group under \otimes .
- (b) If A is a Dedekind domain, prove that every fractional ideal is an invertible A-module, and prove that this association of fractional ideals into Pic A is a surjective group homomorphism.
- (c) Compute the kernel of the above group homomorphism.