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Abstract. We relate endotrivial representations of a finite group in charac-

teristic p to equivariant line bundles on the simplicial complex of non-trivial
p-subgroups, by means of weak homomorphisms.

Dedicated to Serge Bouc on the occasion of his 60th birthday

1. Introduction

Let G be a finite group, p a prime dividing the order of G and k a field of
characteristic p. For the whole paper, we fix a Sylow p-subgroup P of G.

Consider the endotrivial kG-modules M , i.e. those finite dimensional k-linear
representations M of G which are ⊗-invertible in the stable category kG – stab =
kG – mod / kG – proj; this means that the kG-module Endk(M) is isomorphic to
the trivial module k plus projective summands. The stable isomorphism classes
of these endotrivial modules form an abelian group, Tk(G), under tensor product.
This important invariant has been fully described for p-groups in celebrated work
of Carlson and Thévenaz [CT04, CT05]. Therefore, for general finite groups G, the
focus has moved towards studying the relative version:

Tk(G,P ) := Ker
(
Tk(G)→ Tk(P )

)
.

We connect this piece of modular representation theory to the equivariant topol-
ogy of the Brown complex Sp(G) of p-subgroups, see [Bro75]. This G-space Sp(G)
is the simplicial complex associated to the poset of nontrivial p-subgroups of G, on
which G acts by conjugation. The study of Sp(G) is a major topic in group theory,
centered around Quillen’s conjecture [Qui78], which predicts that if Sp(G) is con-
tractible then it is G-contractible, i.e. G admits a non-trivial normal p-subgroup.
Here, we focus on the Picard group PicG(Sp(G)) of G-equivariant complex line
bundles on Sp(G); see Segal [Seg68].

Our main result, Theorem 4.1, relates those two theories as follows (see Cor. 4.13):

1.1. Theorem. Suppose k algebraically closed. Then there exists an isomorphism

Tk(G,P ) ' Torsp′ PicG(Sp(G))

where Torsp′ PicG(Sp(G)) is the prime-to-p torsion subgroup of PicG(Sp(G)).

Date: July 30, 2016.

2010 Mathematics Subject Classification. 20C20,55N91.
Key words and phrases. Endotrivial module, equivariant line bundle, Brown Quillen complex

of p-subgroups, weak homomorphism.
Supported by NSF grant DMS-1303073 and Research Award of the Humboldt Foundation.

1



2 PAUL BALMER

The left-hand abelian group Tk(G,P ) is always finite; see Remark 4.12. About
the right-hand side, it is true for general finite G-CW-complex X that the group
PicG(X) can be interpreted as an equivariant cohomology group, namely H2

G(X,Z);
in particular it is a finitely generated abelien group; see Remark 2.7. Some readers
will consider Theorem 1.1 as the topological answer to the modular-representation-
theoretic problem of computing Tk(G,P ).

Since its origin in [Bro75, Qui78], the space Sp(G) is related to the p-local study
of G. Closer to our specific subject, Knörr and Robinson in [KR89] and Thévenaz
in [Thé93] already exhibited interesting relations between modular representation
theory and equivariant K-theory of Sp(G). The connection we propose here does
not only relate invariants of both worlds but appears at a slightly deeper level,
in that it connects actual objects. Indeed, in Construction 3.1, we build complex
line bundles over Sp(G) from endotrivial representations of G. This construction
then yields the isomorphism of Theorem 1.1. It would actually be interesting to
see whether similar constructions exist for other classes of modular representations
of G, beyond endotrivial ones.

The attentive reader will appreciate that modular representations of G live in
positive characteristic whereas complex line bundles on the space Sp(G) are rather
“characteristic zero” objects. This cross-characteristic connection is made possible
thanks to the use of torsion elements and roots of unity. More precisely, we use in
a crucial way the re-interpretation [Bal13] of the group Tk(G,P ) in terms of weak
P -homomorphisms. Let us remind the reader.

1.2. Definition. Let K be a field – which will be either k or C in the sequel. A
function u : G−→K∗ = K−{0} is a (K-valued) weak P -homomorphism if

(WH 1) u(g) = 1 when g ∈ P .

(WH 2) u(g) = 1 if P ∩ P g = 1.

(WH 3) u(g2 g1) = u(g2)u(g1) if P ∩ P g1 ∩ P g2g1 6= 1.

The name comes from (WH 3) which is a weakening of the usual homomorphism
condition. We denote by AK(G,P ) the group of all weak P -homomorphisms from G
to K∗, equipped with pointwise multiplication: (uv)(g) = u(g) v(g).

The main result of [Bal13] is the existence of an explicit isomorphism

(1.3) Ak(G,P ) ' Tk(G,P ) .

This result has already found interesting applications, for instance the computa-
tion of Tk(G,P ) for new classes of groups by Carlson-Mazza-Nakano [CMN14] and
Carlson-Thévenaz [CT15]. Here, we will use the complex version AC(G,P ) to build
a homomorphism

L : AC(G,P )→ PicG(Sp(G))

which will yield the isomorphism of Theorem 1.1 when suitably restricted to torsion.
Injectivity of L on torsion relies in an essential way on a result of Symonds [Sym98],
namely the contractibility of the orbit space Sp(G)/G.

As often in such matters, it is difficult to predict which way traffic will go on
the new bridge opened by Theorem 1.1. Computations of Tk(G,P ) have already
been performed for many classes of finite groups and it seems quite possible that
these examples will produce new equivariant line bundles for people interested in
the G-homotopy type of Sp(G). Conversely, Theorem 1.1 might prove useful to
modular representation theorists in endotrivial need. Only future work will tell.
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Finally, we emphasize that the G-space Sp(G) can of course be replaced by any
G-homotopically equivalent G-space, like Quillen’s version [Qui78] via elementary
abelian p-subgroups, Bouc’s variant [Bou84], or Robinson’s, see Webb [Web87].

2. The Brown complex and roots of functions

In this preparatory section, we gather some background and notation.

2.1. Notation. For an integer m ≥ 1 and a field K (which will be k or C), we denote
by µm(K) =

{
ζ ∈ K

∣∣ ζm = 1
}

the group of mth roots of unity in K.

2.2. Notation. The Brown complex Sp(G) is (the geometric realization of) the sim-
plical complex with one non-degenerate n-simplex [Q0 < Q1 < · · · < Qn] for
each sequence of n proper inclusions of nontrivial p-subgroups, with the usual face-
operations “dropping Qi”. For n = 0, we thus have a point [Q] in Sp(G) for each
non-trivial p-subgroup Q ≤ G. The space Sp(G) admits an obvious right G-action
given by conjugation on the p-subgroups, that is Q · g := Qg = g−1Qg. This
G-action on Sp(G) is compatible with the cell structure.

Since we have fixed a Sylow p-subgroup P ≤ G, we can consider the subcomplex

Y := Sp(P ) ⊆ Sp(G)

on those subgroups contained in P , i.e. we keep in Y those n-cells [Q0 < · · · < Qn]
of Sp(G) corresponding to non-trivial subgroups of P . This closed subspace Y
of Sp(G) is contractible, for instance towards the point [P ]. But more than that,
Y is an N -subspace of Sp(G) for N = NG(P ) the normalizer of P . As such, Y is
even N -contractible. See [TW91] if necessary. A fortiori, Y is P -contractible. The
translates Y g = Sp(P g) of the closed subspace Y cover the space Sp(G):

Sp(G) = ∪g∈G Sp(P g) = ∪g∈G Y g.

We shall perform several “G-equivariant constructions” over Sp(G) by first perform-
ing a basic construction over Y and then showing that the translates of this basic
construction on Y g1 and on Y g2 agree on the intersection Y g1 ∩ Y g2 for all g1, g2.

2.3. Remark. We will be tacitly using the following fact. For g1, . . . , gn ∈ G (typi-
cally with n ≤ 3), we have P g1 ∩ · · · ∩P gn 6= 1 if and only if Y g1 ∩ · · · ∩ Y gn is not
empty. Clearly a nontrivial P g1 ∩ · · · ∩ P gn gives a point in Y g1 ∩ · · · ∩ Y gn. Con-
versely, as G acts simplicially on Sp(G), a non-empty intersection Y g1 ∩ · · · ∩ Y gn
must contain some 0-simplex [Q], i.e. some nontrivial p-subgroup Q ≤ P gi for all i.

We shall also often use the following standard notation:

2.4. Notation. When λ : L1 → L2 is a map of complex line bundles on a space X
and ε : X → C∗ is a continuous function, we denote by λ · ε the map λ composed
with the automorphism (of L1 or L2) which scales by ε(x) the fiber over x.

2.5. Remark. A G-equivariant complex line bundle L over a (right) G-space X
consists of a complex line bundle π : L → X such that L is also equipped with
a G-action making π equivariant and such that the action of every g ∈ G on
fibers Lx → Lxg is C-linear. More generally, see [Seg68] for G-equivariant vector

bundles. We denote by PicG(X) the group of G-equivariant isomorphism classes

of such L, equipped with tensor product. The contravariant functor PicG(−) is
invariant under G-homotopy. In particular, if X is G-equivariantly contractible,
the map Homgps(G,C

∗) ∼= PicG(∗)−→PicG(X) is an isomorphism.
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In the case of X = Sp(G), restriction to the P -subspace Y = Sp(P ) yields a group

homomorphism from PicG(Sp(G)) to the one-dimensional complex representations

of P , that we shall simply denote by ResGP

(2.6) ResGP : PicG(Sp(G))→ PicP (Sp(P )) ∼= Homgps(P,C
∗).

2.7. Remark (Totaro). For a compact Lie group G acting on a manifold M , there is

an isomorphism PicG(M) ' H2
G(M,Z) = H2(M×GEG,Z), where EG→ BG is the

universal G-principal bundle on the classifying space BG; see [GGK02, Thm. C.47],
where the similar result for a finite group acting on a finite CW-complex is attrib-
uted to [HY76]. Alternatively, one can see the latter by reducing to the case of
manifolds, since every finite G-CW-complex is G-homotopy equivalent to a (non-
compact) G-manifold. Then the group H2(X ×G EG,Z) can be approached via a
Serre spectral sequence for the fibration X → X ×G EG → BG. In particular,
using that G is finite, the spectral sequence collapses rationally to an isomorphism
H2(X×GEG,Q) ' H0(BG,H2(X,Q)) showing that PicG(X)⊗Q ' (Pic(X)⊗Q)G.

2.8. Notation. For a subspace Y of a G-space X, like our Y = Sp(P ) ⊆ Sp(G) = X,

every element g ∈ G yields a homeomorphism ·g : Y
∼→ Y g. We can transport

things from Y to Y g via this homeomorphism, and we use g∗(−) to denote this idea.
For instance, if f : Y → C is a function, then g∗f : Y g → C is g∗f(x) := f(xg−1).

Another situation will be that of G-equivariant line bundles L
π→ X and L′

π′→ X
and a morphism λ : L|Y → L′|Y

of bundles over Y , in which case the morphism

g∗λ : L|Y g → L′|Y g
is defined by the commutativity of the following top face:

(2.9)

L|Y
λ

""
π

��

·g
'

// L|Y g
=: g∗(λ)
##

π
��

L′|Y
·g
'

//

π′��

L′|Y g

π′��
Y

·g
'

// Y g .

As we use right actions (that is (·g2g1) = (·g1)◦(·g2)) we have (g2g1)∗ = (g1)∗◦(g2)∗.

Let us now say a word of roots of complex functions.

2.10. Remark. Throughout the paper, C is given the trivial G-action. Hence a G-
map f : X → C from a (right) G-space X to C is simply a continuous function
such that f(xg) = f(x) for all x ∈ X and all g ∈ G, that is essentially a continuous
function f̄ : X/G→ C on the orbit space.

2.11. Proposition. Let m ≥ 1 be an integer, X a G-space and f : X → C∗ a
G-map. Suppose that f is G-homotopic to the constant map 1. Then f admits an
mth root in ContG(X,C∗), i.e. a G-map f1/m : X → C∗ such that (f1/m)m = f .

Proof. By assumption, the induced map f̄ : X/G → C∗ is homotopic to 1. Then
it suffices to observe that f̄ has an mth root by a standard determination-of-the-
logarithm argument. (Let X̄ = X/G and let H : X̄ × [0, 1] → C∗ be a homotopy
between H(x, 0) = f̄(x) and H(x, 1) = 1. Lifting each t 7→ H(x, t)/|H(x, t)| ∈ S1

along the fibration R�S1, we find a map θ : X̄ × [0, 1] → R such that H(x, t) =
|H(x, t)| · eiθ(x,t) and θ(x, 1) = 0. One can then define the mth root of f̄ via
f̄1/m(x) = |f̄(x)|1/m · eiθ(x,0)/m for all x ∈ X̄.) �
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2.12. Corollary. If X/G is contractible (e.g. if X is G-contractible) then for every
integer m ≥ 1, every G-map f : X → C∗ admits an mth root f1/m ∈ ContG(X,C∗).

Proof. As such a map f factors via X�X/G, the contractibility of X/G implies
that f is G-homotopically trivial and we conclude by Proposition 2.11. �

2.13. Corollary. For every integer m ≥ 1, every G-map f : Sp(G) → C∗ on the

Brown complex admits an mth root f1/m ∈ ContG(Sp(G),C∗).

Proof. The orbit space Sp(G)/G is contractible by Symonds [Sym98]. �

3. Constructing line bundles from weak homomorphisms

We now want to associate a G-equivariant complex line bundle Lu on Sp(G) to
each complex-valued weak homomorphism u ∈ AC(G,P ) as in Definition 1.2. In
essence, this is a very standard gluing procedure, familiar to every geometer. We
spell out some details for the sake of clarity and to see where the “weak homomor-
phism” conditions (WH 1-3) show up.

3.1. Construction. Let u : G→ C∗ be a weak P -homomorphism and Y = Sp(P ) ⊆
Sp(G) as in Notation 2.2. Define Lu as the following topological space:

Lu :=
( ⊔
s∈G

Y s× C
)/
∼

where ∼ is the equivalence relation defined in (3.2) below. We use the notation
(y, a)s to indicate a point (y, a) in the space Y s × C with index s ∈ G; and we
shall write [y, a]s ∈ Lu for its class modulo ∼. (As the subsets Y s do intersect
in Sp(G), the lighter notation (y, a) would be ambiguous.) Note that the weak
P -homomorphism u does not appear so far; it is used in the equivalence relation:

(3.2) (y, a)s ∼ (z, b)t iff

 y = z
and
a · u(s t−1) = b.

Direct inspection shows that ∼ is an equivalence relation: Reflexivity uses (WH 1);
symmetry uses that u(g−1) = u(g)−1, see [Bal13, Rem. 4.2(1)]; transitivity relies
on (WH 3) and Remark 2.3. Of course, Lu is equipped with the quotient topology.

3.3. Remark. A good way to keep track of what happens is to think of the class
[y, a]s as a fictional element “a ·s ∈ C living in a fiber over y ∈ Sp(G)”, which is not
defined since we do not know how s ∈ G should act on C. Still, equality between
“a · s over y” and “b · t over z” should nonetheless mean that they live in the same
fiber, i.e. y = z, and that “a · (st−1) = b”. So we decide that the action of st−1, i.e.
the difference of the two actions over the point y = z in Y s ∩ Y t, is given via the
weak homomorphism u. This can be compared to [Bal13, Eq. (2.7)].

The space Lu admits a continuous projection to the Brown complex

πu : Lu → Sp(G)



6 PAUL BALMER

simply given by [y, a]s 7→ y and whose fibers are isomorphic to C. More precisely,
for every s ∈ G, we have a homeomorphism

(3.4) αs : 1Y s := Y s× C ' // π−1
u (Y s) ⊆ Lu

(y, a)
� // [y, a]s

(We denote trivial line bundles by 1.) These are trivializations of Lu over Y s. For
all s, t ∈ G, the transition maps α−1

t αs on the intersection

(Y s ∩ Y t)× C αs

'
// π−1
u (Y s ∩ Y t) (Y s ∩ Y t)× Cαt

'
oo

(y, a) � // [y, a]s
(3.2)
= [y, a · u(s t−1)]t

� // (y, a · u(s t−1))

is given by the (constant) linear isomorphism, multiplication by the unit u(s t−1).

In other words, Lu
πu−→Sp(G) is a complex line bundle on Sp(G). We record the

above computation in compact form : for all s, t ∈ G we have an equality

(3.5) αs = αt · u(s t−1) over Y s ∩ Y t

as isomorphisms 1Y s∩Y t
∼→ (Lu)|Y s∩Y t . Here we used Notation 2.4.

The right G-action on the space Lu is defined, in the spirit of Remark 3.3, by

[y, a]s · g := [yg, a]sg.

This action clearly makes πu : Lu → Sp(G) into a G-map. In view of the above, G
acts linearly on the fibers of πu and thus makes Lu into a G-equivariant complex line
bundle over Sp(G). We can also observe that the collection of local trivializations

αs : 1Y s
∼−→ (Lu)|Y s given in (3.4) is “G-coherent” (1) by which we mean that for

all s, g ∈ G we have

(3.6) g∗(αs) = αsg

as isomorphisms 1Y sg
∼→ (Lu)|Y sg . This fact results directly from the definitions,

see (2.9) and (3.4). Combining this with (3.5) we note for later use the formula:

(3.7) g∗(α1) = α1 · u(g) over Y ∩ Y g

as isomorphisms 1Y ∩Y g
∼→ (Lu)|Y ∩Y g , for all g ∈ G such that P ∩ P g 6= 1.

3.8. Proposition. For any two weak P -homomorphisms u, v ∈ AC(G,P ) we have
a G-equivariant isomorphism Luv ' Lu ⊗ Lv of complex line bundles over Sp(G).

Proof. Note that the trivializations (3.4) of Lu are performed on the closed cover
of Sp(G) given by (Y s)s∈G, which is independent of u. So, it is the same cover
for Lu, Lv and Luv. The statement then follows from the observation that the
following obvious isomorphisms over Y s (where we temporarily decorate the three
morphisms α as α(u), α(v) and α(uv) to distinguish the respective line bundles)

(Lu ⊗ Lv)|Y s
∼= (Lu)|Y s ⊗ (Lv)|Y s 1Y s ⊗ 1Y s ∼= 1Y s'

α(u)
s ⊗α

(v)
soo α(uv)

s // (Luv)|Y s

1 We do not say “G-equivariant” to avoid confusion.
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patch together into a G-equivariant isomorphism Lu ⊗ Lv
∼→ Luv on Sp(G). Veri-

fication of this patching is immediate from (3.5) and the following agreement:

1Y s∩Y t ⊗ 1Y s∩Y t ∼= 1Y s∩Y t

(·u(st−1))⊗(·v(st−1))

��
·uv(st−1)

��
1Y s∩Y t ⊗ 1Y s∩Y t ∼= 1Y s∩Y t

on the trivial bundle. Finally, the map Lu ⊗ Lv
∼→ Luv is G-equivariant because

each {α(...)
s }s∈G is a G-coherent collection of maps, as we saw in (3.6). �

3.9. Notation. As in the Introduction, we denote by L : AC(G,P )−→PicG(Sp(G))
the homomorphism u 7→ [Lu] defined by Construction 3.1 and Proposition 3.8.

This homomorphism is easily seen to be natural in the following sense:

3.10. Proposition. Let G′ ≤ G be a subgroup containing P and consider the G′-
subspace Sp(G′) ⊆ Sp(G). Then the following diagram

AC(G,P )
L //

Res

��

PicG(Sp(G))

Res

��
AC(G′, P )

L // PicG
′
(Sp(G′))

is commutative. �

3.11. Example. Let u : G → C∗ be a group homomorphism, i.e. a one-dimensional
representation. Assume that u is trivial on P . One associates to u a weak P -
homomorphism ũ ∈ AC(G,P ) by forcing (WH 2), i.e. by setting for every g ∈ G

(3.12) ũ(g) :=

{
u(g) if P ∩ P g 6= 1

1 if P ∩ P g = 1.

Then Lũ is isomorphic to the “constant” line bundle (in the sense of [Seg68]), that
is, the line bundle 1u := Sp(G) × C with action (y, a) · g = (yg, au(g)). Indeed,

inspired by Remark 3.3, one easily guesses the G-equivariant isomorphism Lũ
∼→ 1u

by sending the class [y, a]s in Lũ (see Construction 3.1) to the point (y, a · u(s))
in Sp(G)× C = 1u. Verifications are left to the reader.

The modification (3.12) of u into a weak homomorphism ũ is irrelevant for the
construction of Lũ since (3.2) only uses values ũ(g) over the subset Y ∩Y g. Indeed,
either P ∩ P g = 1 and this subset is empty, or P ∩ P g 6= 1 and ũ(g) = u(g)
anyway. Furthermore, the homomorphism u 7→ ũ is often injective, even after
(post-) composition with L. We do not use the latter but state it for peace of mind:

3.13. Proposition. Suppose that Sp(G) is connected. Let u : G → C∗ be a group
homomorphism which is trivial on P and such that the G-equivariant line bundle
1u ' L(ũ) is G-equivariantly trivial on Sp(G) (for instance if ũ = 1). Then u = 1.

Proof. A G-equivariant isomorphism 1
∼→ 1u is given by multiplication by a map

f : Sp(G)→ C∗ such that f(xg) = f(x) · u(g) for all g ∈ G and x ∈ Sp(G). Choose
an integer m ≥ 1 such that u(g)m = 1. Then fm : Sp(G) → C∗ is a G-map. By
Corollary 2.13, this fm admits an mth root in ContG(Sp(G),C∗), i.e. there exists

a G-map f̂ : Sp(G) → C∗ such that f̂m = fm. Since Sp(G) is assumed connected,
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we have f̂ = f · ρ for some constant ρ ∈ µm(C); see Notation 2.1. Then f is also a
G-map and the above relation f(xg) = f(x) ·u(g) forces u(g) = 1 for all g ∈ G. �

Assuming Sp(G) connected is a mild condition. According to [Qui78, Prop. 5.2],
if Sp(G) is disconnected then the stabilizer H ≤ G of a component is a strongly
p-embedded subgroup, and our discussion can be safely reduced from G to H.

4. The results

We now prove our main result, from which we will deduce Theorem 1.1 stated
in the Introduction. Recall from Notation 3.9 the homomorphism L : AC(G,P )→
PicG(Sp(G)), u 7→ [Lu], from the group of complex-valued weak P -homomorphisms
(Def. 1.2) to theG-equivariant Picard group (Rem. 2.5) of the Brown complex Sp(G).

4.1. Theorem. The homomorphism L : AC(G,P ) → PicG(Sp(G)) is injective on
torsion subgroups (denoted Tors) and its image is the kernel of restriction to one-
dimensional representations of P , see (2.6). In other words, the following sequence

(4.2) 0 // TorsAC(G,P )
L // Tors PicG(Sp(G))

ResGP // Homgps(P,C
∗)

is exact. Consequently, for every integer m ≥ 1 prime to p, our L restricts to an
isomorphism on the m-torsion subgroups ( 2)

L : TorsmAC(G,P )
∼→ Torsm PicG(Sp(G)).

Proof. The proof will occupy the next couple of pages. First note that by naturality
of L (Prop. 3.10 applied to G′ = P ), the following square commutes:

AC(G,P )
L //

Res

��

PicG(Sp(G))

Res

��
0 = AC(P, P )

L // PicP (Sp(P )) ∼= Homgps(P,C
∗) .

This proves that ResGP ◦L is trivial (even outside torsion).
We now prove injectivity of L on the torsion of AC(G,P ). Let u ∈ AC(G,P ) be

an element of m-torsion for some m ≥ 1, meaning that u(g)m = 1 for all g ∈ G.

Suppose that we have a G-equivariant trivialization ψ : 1Sp(G)
∼→ Lu of the line

bundle L(u) = Lu (see Constr. 3.1). Comparing the restriction ψ|Y to the trivial-

ization α1 : 1Y
∼→ (Lu)|Y given in (3.4), we find a P -map δ : Y → C∗ with

ψ|Y = α1 · δ

as isomorphisms 1Y
∼→ (Lu)|Y . Combining the G-equivariance of ψ with the

relation g∗(α1) = α1 · u(g) on Y ∩ Y g from (3.7), we see that for every g ∈ G such
that P ∩ P g 6= 1, we have for every y ∈ Y ∩ Y g

(4.3) u(g) =
δ(y)

g∗δ(y)
=

δ(y)

δ(yg−1)
.

As the left-hand side belongs to µm(C), we deduce that δm and g∗(δ
m) agree on

the intersection Y ∩ Y g. Consequently the family of functions (g∗(δ
m))g∈G patch

together into a G-map f : Sp(G) → C∗ by setting f(x) = δ(xg−1)m whenever x ∈

2 By “m-torsion” we mean exactly the annihilator of m itself, not of powers of m.
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Y g. By Corollary 2.13, f admits an mth root, i.e. there exists a G-map f1/m :
Sp(G)→ C∗ such that (f1/m)m = f . On Y , the two roots f1/m and δ of the same
map f must differ by an mth root ρ ∈ µm(C) which must be constant since Y is
connected, say δ = ρ · f1/m. But then for every g ∈ G such that P ∩ P g 6= 1 and
for any y ∈ Y ∩ Y g 6= ∅ (for which yg−1 ∈ Y too), relation (4.3) becomes

u(g) =
δ(y)

δ(yg−1)
=

ρ · f1/m(y)

ρ · f1/m(yg−1)
= 1

by G-equivariance of f1/m. In the other case where P ∩ P g = 1, we have u(g) = 1
by (WH 2). In short, u = 1 is trivial. This proof uses the contractibility of Sp(G)/G,
since Corollary 2.13 relies on Symonds [Sym98].

We now prove exactness of (4.2) in the middle via another construction.

4.4. Construction. Let L be a G-equivariant complex line bundle on Sp(G), which

is torsion and such that ResGP (L) = 1, i.e. L restricts to the trivial P -bundle
on Sp(P ). Choose for some m ≥ 1 a G-equivariant isomorphism

ω : 1Sp(G)
∼−→L⊗m

over Sp(G) and choose a P -equivariant isomorphism over Y = Sp(P )

β : 1Y
∼−→ L|Y

between the trivial bundle 1Y = Y × C and the restriction of L to Y . The P -
equivariance of β means that, for every h ∈ P , we have

(4.5) h∗(β) = β

as isomorphisms 1Y
∼→ L|Y . There is a choice in the isomorphism β, and we can

replace β by β · δ for any P -map δ : Y → C∗. We shall use this flexibility shortly.
Observe that β⊗m yields another trivialization of L⊗m on Y , that we can com-

pare to the initial ω, restricted to Y . It follows that we have ω|Y = β⊗m ·ε for some
P -map ε : Y → C∗. Since the space Y is P -contractible, Corollary 2.12 produces
an mth-root of ε, say ε1/m ∈ ContP (Y,C∗) with (ε1/m)m = ε. Using this unit to

replace β by β ·ε1/m, we can and shall assume that β : 1Y
∼→ L|Y moreover satisfies

(4.6) β⊗m = ω|Y .

Then, for each g ∈ G, consider as before the translate Y g = Sp(P g) ⊆ Sp(G)

and transport β into an isomorphism g∗(β) : 1Y g
∼→ L|Y g ; see (2.9). If the iso-

morphisms β and g∗(β) were to agree on the intersection of their domains of defi-
nition Y ∩Y g for all g ∈ G, the collection of isomorphisms (g∗(β))g∈G would patch

together into a global isomorphism 1Sp(G)
∼→ L, automatically G-equivariant by

construction. Since this cannot happen for nontrivial L, there is an obstruction,
and this happens to be a weak P -homomorphism. Indeed, for every g ∈ G such
that P ∩ P g 6= 1, define what is a priori a function uL(g) ∈ Cont(Y ∩ Y g,C∗) by

(4.7) g∗(β) = β · uL(g) over Y ∩ Y g
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i.e. by the commutativity of the following diagram of line bundles on Y ∩ Y g:

(4.8)

1Y ∩Y g

(g∗(β))|Y ∩Y g
'

//

·uL(g):= '
��

(L|Y g )|Y ∩Y g = L|Y ∩Y g

1Y ∩Y g

β|Y ∩Y g
'

// (L|Y )|Y ∩Y g = L|Y ∩Y g .

There is no choice at this step. By convention, we set

(4.9) uL(g) = 1 if P ∩ P g = 1.

In the case P ∩ P g 6= 1, we are going to prove that uL(g) : Y ∩ Y g → C∗ is a
constant function. Taking (4.8) to the mth tensor power, replacing both instances
of β⊗m by ω thanks to (4.6) and using that ω is G-equivariant, we deduce that
(uL(g))m = 1 on Y ∩ Y g. Since this space is non-empty and connected (even
contractible), this implies that the function uL(g) is actually constant, with value
equal to some complex mth root of unity uL(g) ∈ µm(C). In other words, the
function

uL : G→ µm(C) , g 7→ uL(g)

is a candidate to be a complex-valued weak P -homomorphism. It satisfies (WH 1)
by P -equivariance of β, see (4.5) and (4.8) for g = h ∈ P ; and uL satisfies (WH 2)
by definition (4.9). To verify the last property (WH 3), consider g1, g2 ∈ G such
that P ∩ P g1 ∩ P g2g1 6= 1, i.e. such that the subset Z := Y ∩ Y g1 ∩ Y g2g1 is non-
empty. Then juxtaposing the defining diagram (4.8) for uL(g1) and the one for
uL(g2) transported by (g1)∗, both suitably restricted to this triple intersection Z,
we obtain the following commutative diagram over Z:

(4.10)

1Z

(g1∗g2∗(β))|Z

'
//

g1∗(·uL(g2))=·uL(g2) '
��

L|Z

1Z

(g1∗β)|Z

'
//

·uL(g1) '
��

L|Z

1Z

β|Z

'
// L|Z .

We used at the top left that g1∗(−) is C-linear. Using now that g1∗g2∗ = (g2g1)∗,
the left-hand vertical composite satisfies the commutativity expected of uL(g2g1),
i.e. fits in place of uL(g2g1) in (4.8) for g = g2g1, after restriction of the latter to Z.
This is where we use that Z 6= ∅ to deduce that uL(g2g1) = uL(g2) · uL(g1).

It is interesting to see the parallel of these arguments with those of [Bal13],
where the non-emptiness of Z is replaced by the non-vanishing of a suitable stable
category. Both properties are equivalent, namely they both are avatars of the fact
that the Sylow P and its conjugates P g1 and P g2g1 intersect non-trivially.

At this stage, we have associated a weak P -homomorphism uL ∈ TorsmAC(G,P )
to an m-torsion G-equivariant line bundle L on Sp(G) and choices of isomorphisms

ω : 1Sp(G)
∼→ L⊗m and β : 1Y

∼→ L|Y satisfying (4.6). We now claim that

L(uL) ' L. For this, recall the line bundle LuL
of Construction 3.1, which de-

scribes L(uL). It comes with an isomorphism α1 : 1Y
∼→ (LuL

)|Y satisfying

g∗(α1) = α1 · uL(g) over Y ∩ Y g
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by (3.7). Comparing this formula to the similar one for β in (4.7), we see that the
following isomorphism ϕ := β ◦ α−1

1 over Y

ϕ : (LuL
)|Y '

α−1
1 // 1Y '

β // L|Y

satisfies g∗(ϕ) = ϕ on Y ∩Y g for all g ∈ G. Therefore, the (g∗ϕ)g∈G patch together
into a morphism ϕ : LuL

→ L which is G-equivariant and an isomorphism by
construction. This finishes the proof of the exactness of the sequence (4.2).

It is immediate that L restricts to an isomorphism on prime-to-p torsion since
Homgps(P,C

∗) is pr-torsion, where |P | = pr, hence every L ∈ Torsm PicG(Sp(G))

with m prime to p maps to zero under ResGP .
This finishes the proof of Theorem 4.1. �

4.11. Remark. Construction 4.4 describes the inverse of L on prime-to-p torsion.

Let us now connect these results over C to positive characteristic objects. We
recall some well-known facts, to facilitate cognition.

4.12. Remark. The group Tk(G,P ) is always finite. (Indeed, every endotrivial mod-
ule in Tk(G,P ) is a direct summand of k(G/P ) – an explicit projector depending
on u ∈ Ak(G,P ) is given in [Bal13]. By Krull-Schmidt it follows that Tk(G,P ) has
at most dimk(k(G/P )) = [G : P ] elements.) Also, the order of Tk(G,P ) is prime
to p; see [Bal13, Cor. 5.3]. For an algebraic closure k̄ of k, one can easily identify
the image of Tk(G,P ) ↪→ Tk̄(G,P ); see [Bal13, Cor. 5.5].

In fact, the group Tk(G,P ) “stabilizes” once k contains all roots of unity by
which we mean it contains all mth roots of unity for all integers m ≥ 1 prime to p.
Here, “stabilization” means that Tk(G,P )→ Tk′(G,P ) is an isomorphism for every
further extension k→ k′; see [Bal13, Cor. 5.5]. This condition is of course fulfilled
if the field k = k̄ is algebraically closed, or simply if k contains F̄p, the algebraic
closure of the prime field. Our Theorem 1.1 is another way of seeing why Tk(G,P )
stabilizes once k contains all roots of unity, by giving it a topological interpretation:

4.13. Corollary. The prime-to-p torsion Torsp′ PicG(Sp(G)) is a finite subgroup

of PicG(Sp(G)). For any field k of characteristic p which contains all roots of unity
(see Remark 4.12), we have an isomorphism as announced in Theorem 1.1

Tk(G,P ) ' Torsp′ PicG(Sp(G))

where Torsp′ denotes the prime-to-p torsion subgroup.

Proof. Let k contain all roots of unity (or just the [G :P ]th-roots) and let e be the
exponent of Tk(G,P ). Let m ≥ 1 be an integer, prime to p and divisible by e.

By (1.3), the integer e is also the exponent of Ak(G,P ) ' Tk(G,P ) hence um = 1
for all u ∈ Ak(G,P ). Thus every u : G → k∗ in Ak(G,P ) takes values in µm(k).
In other words, we can identify the group of k-valued weak P -homomorphisms
Ak(G,P ) with the set of functions u : G→ µm(k) satisfying (WH 1-3).

Consider now inside the group AC(G,P ) of complex-valued weak P -homomor-
phisms, the subgroup TorsmAC(G,P ) of elements of order dividing m. Again, this
is just the subset of those functions u : G→ µm(C) satisfying (WH 1-3).

Choose now an isomorphism µm(k) ' Z/m ' µm(C). This uses that k contains
all mth roots of unity. Combining the above we obtain an isomorphism

(4.14) Ak(G,P ) ' TorsmAC(G,P ).
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Since the left-hand side is independent of such m (prime to p and divisible by e),
we get Torsp′ AC(G,P ) = TorseAC(G,P ). Using now Theorem 4.1, it follows that

Torsp′ PicG(Sp(G)) = Torse PicG(Sp(G)) ' TorseAC(G,P ) via L. The latter is
itself isomorphic to Ak(G,P ) ' Tk(G,P ) by a last instance of (4.14) and (1.3). �

4.15. Remark. The isomorphism of Corollary 4.13 is essentially induced by the
canonical homomorphism L : AC(G,P ) → PicG(Sp(G)) of Section 3, up to the
choice of an identification between eth roots of unity in k and eth roots of unity in C,
for e the exponent of Tk(G,P ). Another choice of an isomorphism µe(k) ' µe(C)
simply changes the isomorphism (4.14) by multiplication with some integer prime
to e, a rather harmless operation which is of course invertible.

Combining the above with Example 3.11, we obtain:

4.16. Corollary. The following properties of G and p are equivalent:

(i) For k = F̄p the group Tk(G,P ) consists only of one-dimensional representa-
tions G→ k∗.

(i’) For every field k containing all roots of unity, the group Tk(G,P ) consists
only of one-dimensional representations G→ k∗.

(ii) Every G-equivariant complex line bundle on Sp(G) which is torsion of order

prime to p is constant, i.e. Torsp′ PicG(∗)→ Torsp′ PicG(Sp(G)) is onto. �
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[Thé93] Jacques Thévenaz. Equivariant K-theory and Alperin’s conjecture. J. Pure Appl. Alge-

bra, 85(2):185–202, 1993.
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