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Introduction

In his 1937 paper [86], Ernst Witt introduced a group structure – and even a
ring structure – on the set of isometry classes of anisotropic quadratic forms,
over an arbitrary field k. This object is now called the Witt group W(k) of k.
Since then, Witt’s construction has been generalized from fields to rings with
involution, to schemes, and to various types of categories with duality. For the
sake of efficacy, we review these constructions in a non-chronological order.
Indeed, in Section 1.1, we start with the now “classical framework” in its most
general form, namely over exact categories with duality. This folklore material
is a basically straightforward generalization of Knebusch’s scheme case [41],
where the exact category was the one of vector bundles. Nevertheless, this
level of generality is hard to find in the literature, like e.g. the “classical
sublagrangian reduction” of Subsection 1.1.5. In Section 1.2, we specialize this
classical material to the even more classical examples listed above : schemes,
rings, fields. We include some motivations for the use of Witt groups.

This chapter focusses on the theory of Witt groups in parallel to Quillen’s
K-theory and is not intended as a survey on quadratic forms. In particular,
the immense theory of quadratic forms over fields is only alluded to in Subsec-
tion 1.2.4; see preferably the historical surveys of Pfister [66] and Scharlau [72].
Similarly, we do not enter the arithmetic garden of quadratic forms : lattices,
codes, sphere packings and so on. In fact, even Witt-group-like objects have
proliferated to such an extent that everything could not be included here.
However, in the intermediate Section 1.3, we provide a very short guide to
various sources for the connections between Witt groups and other theories.

The second part of this chapter, starting in Section 1.4, is dedicated to
the Witt groups of triangulated categories with duality, and to the recent
developments of this theory. In Section 1.5, we survey the applications of
triangular Witt groups to the above described classical framework.
? Author supported by the Swiss National Science Foundation, grant 620-066065.
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1.1 Usual Witt Groups : General Theory

1.1.1 Duality and Symmetric Spaces

Definition 1.1.1. A category with duality is a triple (C, ∗, $) made of a cat-
egory C and an involutive endo-functor ∗ : Cop −→ C with given isomorphism

$ : IdC
'−→ ∗ ◦ ∗

and subject to the condition below. Write as usual M∗ := ∗(M) for the dual
of an object M ∈ C and similarly for morphisms. Then M 7→M∗ is a functor
and $M : M ∼→ (M∗)∗ is a natural isomorphism such that :

($M)∗ ◦$M∗ = idM∗ for any object M ∈ C.
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Definition 1.1.2. A symmetric space in (C, ∗, $) – or simply in C – consists
of a pair (P,ϕ) where P is an object of C and where ϕ : P ∼→ P ∗ is a symmetric
isomorphism, called the symmetric form of the space (P,ϕ). The symmetry
of ϕ reads ϕ∗ ◦$P = ϕ, i.e. ϕ∗ = ϕ when P is identified with P ∗∗ via $P :

P
ϕ //

$P ∼=��

P ∗

P ∗∗
ϕ∗

// P ∗

Note that the notion of “symmetry” depends on the chosen identification$
of objects of C with their double dual. This allows us to treat skew-symmetric
forms as symmetric forms in (C, ∗,−$). Nevertheless, when clear from the
context, we drop $ from the notations and identify P ∗∗ with P .
Remark 1.1.3. We shall focus here on “non-degenerate” or “unimodular”
forms, that is, we almost always assume that ϕ is an isomorphism. In good
cases, one can consider the non-unimodular forms as being unimodular in a
different category (of morphisms). See Bayer-Fluckiger –Fainsilber [16].

Definition 1.1.4. Two symmetric spaces (P,ϕ) and (Q,ψ) are called iso-
metric if there exists an isometry h : (P,ϕ) ∼→ (Q,ψ), that is an isomorphism
h : P ∼→ Q in the category C respecting the symmetric forms, i.e. h∗ψ h = ϕ.

Definition 1.1.5. A morphism of categories with duality

(C, ∗C , $C) −→ (D, ∗D, $D)

consists of a pair (F, η) where F : C → D is a functor and η : F◦∗C '−→ ∗D◦F is
an isomorphism respecting$, i.e. for any objectM of C, the following diagram
commutes :

F (M)
F ($CM ) //

$DF (M)

��

F (M∗∗)

ηM∗

��
F (M)∗∗

(ηM )∗
// F (M∗)∗

where (−)∗ is (−)∗
C

or (−)∗
D

depending on the context, in the obvious way.

Definition 1.1.6. An additive category with duality is a category with du-
ality (A, ∗, $) where A is additive and where ∗ is an additive functor,
i.e. (A⊕B)∗ = A∗ ⊕B∗ via the natural morphism.

Remark 1.1.7. The identification $ necessarily respects the additivity, i.e.
$A⊕B = $A ⊕$B. This is a general fact for natural transformations between
additive functors. Similarly, we need not consider $ in the following :

Definition 1.1.8. A morphism of additive categories with duality is simply
a morphism of categories with duality (F, η) in the sense of Def. 1.1.5, such
that the functor F is additive.
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Example 1.1.9. In an additive category with duality (A, ∗, $), one can produce
symmetric spaces (P,ϕ) as follows. Take any objectM ∈ A. Put P := M⊕M∗

and
ϕ :=

(
0 idM∗
$M 0

)
: M ⊕M∗︸ ︷︷ ︸

=P

'−→ M∗ ⊕M∗∗︸ ︷︷ ︸
=P∗

.

Note that the symmetry of ϕ uses the assumption ($M)∗ = ($M∗)−1. This
space (P,ϕ) is called the hyperbolic space (over M) and is denoted by H(M).

Definition 1.1.10. Let (A, ∗, $) be an additive category with duality. Let
(P,ϕ) and (Q,ψ) be symmetric spaces. We define the orthogonal sum of these
spaces as being the symmetric space (P,ϕ) ⊥ (Q,ψ) :=

(
P ⊕Q ,

( ϕ 0
0 ψ

))
.

Definition 1.1.11. Let (F, η) : (C, ∗C , $C) −→ (D, ∗D, $D) be a morphism
of categories with duality and let (P,ϕ) be a symmetric space in C. Then

F
(
P,ϕ

)
:=

(
F (P ) , ηP ◦ F (ϕ)

)
is a symmetric space in D, called the image by F of the space (P,ϕ).

It is clear that two isometric symmetric spaces in C have isometric images
by F . If we assume moreover that F is a morphism of additive categories with
duality, it is also clear that the image of the orthogonal sum is isometric to
the orthogonal sum of the images; similarly, the image of the hyperbolic space
H(M) over any M ∈ C is then isometric to H

(
F (M)

)
.

1.1.2 Exact Categories with Duality

Remark 1.1.12. The reader is referred to the original Quillen [68] or to the
minimal Keller [40, App. A] for the definition of an exact category. The basic
example of such a category is the one of vector bundles over a scheme. We
denote by � and by � the admissible monomorphisms and epimorphisms, re-
spectively. Note that being exact (unlike additive) is not an intrinsic property.
By a split exact category we mean an additive category where the admissible
exact sequences are exactly the split ones. The basic example of the latter is
the split exact category of finitely generated projective modules over a ring.

Definition 1.1.13. An exact category with duality is an additive category
with duality (E , ∗, $) in the sense of Def. 1.1.6, where the category E is exact
and such that the functor ∗ is exact. So, E is an exact category, M 7→ M∗

is a contravariant endofunctor on E , $M : M ∼→ M∗∗ is a natural isomor-
phism such that ($M)∗ = ($M∗)−1 and for any admissible exact sequence

A // α // B
π // // C, the following (necessarily exact) sequence is admissible :

C∗ // π
∗

// B∗
α∗ // // A∗.
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Example 1.1.14. The key example of an exact category with duality is the one
of vector bundles over a scheme with the usual duality, see Subsection 1.2.1
below. Note also that any additive category with duality can be viewed as a
(split) exact category with duality.

Definition 1.1.15. A morphism of exact categories with duality (F, η) is a
morphism of categories with duality (Def. 1.1.5) such that F is exact, i.e. F
sends admissible short exact sequences to admissible short exact sequences.
Such a functor F is necessarily additive.

1.1.3 Lagrangians and Metabolic Spaces

Definition 1.1.16. Let (E , ∗, $) be an exact category with duality (see Def.
1.1.13). Let (P,$) be a symmetric space in E . Let α : L � P be an admissible
monomorphism. The orthogonal in (P,ϕ) of the pair (L,α) is as usual

(L,α)⊥ := ker(α∗ϕ : P → L∗) .

Explicitly, consider an admissible exact sequence L // α // P
π // // M and

dualize it to get the second line below :

P

α∗ϕ

!! !!B
BB

BB
BB

BB
B

'ϕ

��
M∗ //

π∗
//

=={
{

{
{

{
P ∗

α∗
// // L∗

This describes (L,α)⊥ := ker(α∗ϕ) as the pair
(
M∗ , ϕ−1π∗ : M∗ � P

)
.

We shall write L⊥ instead of M∗ when the monomorphism α is understood.

Definition 1.1.17. An (admissible) sublagrangian of a symmetric space
(P,ϕ) is an admissible monomorphism α : L � P such that the following
conditions are satisfied :

(a) the form ϕ vanishes on L, that is α∗ϕα = 0 : L→ L∗ ,
(b) the induced monomorphism β : L → L⊥ is admissible; in the above

notations β is the unique morphism such that (ϕ−1π∗) ◦ β = α.

Remark 1.1.18. For condition (b), consider the diagram coming from above :

L // α //

β

��

P

ϕ'

��

π // // (L⊥)∗

β∗

��
L⊥ //

π∗
// P ∗

α∗
// // L∗.

(1.1)

Since α∗ ◦ (ϕα) = 0, there exists a unique β : L → L⊥ as claimed. Observe
that β∗ makes the right square commutative by symmetry (we drop the $’s).
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This β is automatically a monomorphism since α is, and β∗ is automatically
an epimorphism. Condition (b) only requires them to be admissible. However,
in many cases, it is in fact automatic, namely when the exact category E can
be embedded into some abelian category ι : E ↪→ A in such a way that a
morphism q in E is an admissible epimorphism in E if and only if ι(q) is an
epimorphism in A. This can always be achieved if E is semi-saturated, i.e. if
any split epimorphism is admissible, in particular if E is idempotent complete
(see [79, App. A]). So, in real life, condition (b) is often dropped.

Definition 1.1.19. An (admissible) lagrangian of a symmetric space (P,ϕ)
is an admissible sublagrangian (L,α) such that L = L⊥, i.e. a sublagrangian
as in Def. 1.1.17 such that the morphism β : L � L⊥ is an isomorphism.

Note that (L,α) is a lagrangian of the space (P,ϕ) if and only if the
following is an admissible exact sequence – compare diagram (1.1) :

L // α // P
α∗ϕ // // L∗. (1.2)

Definition 1.1.20. A symmetric space (P,ϕ) is called metabolic if it possesses
an admissible lagrangian, i.e. if there exists an exact sequence as above.

Example 1.1.21. Assume that the exact sequence (1.2) is split exact. Such
a metabolic symmetric space is usually called split metabolic. A symmetric
space is split metabolic if and only if it is isometric to a space of the form

(
L⊕ L∗ ,

(
0 1
$L ξ

) )
for some object L and some symmetric morphism ξ = ξ∗. In particular, any
hyperbolic space H(L) is split metabolic with ξ = 0. If we assume further that
2 is invertible in E (see 1.4.10), then any split metabolic space is isometric to
a hyperbolic space H(L) via the automorphism h of L⊕ L∗ defined by :(

1 0
− 1

2ξ 1︸ ︷︷ ︸
h∗

)
·
(

0 1
$L ξ

)
·
(

1 − 1
2ξ

0 1︸ ︷︷ ︸
h

)
=

(
0 1
$L 0

)
·

Note that a symmetric space is split metabolic if and only if it is metabolic
for the split exact structure of the additive category E . See Ex. 1.2.5 below for
an exact sequence like (1.2) which does not split (when the category E is not
split) and Ex. 1.2.4 for a split-metabolic space which is not hyperbolic (when
2 is not invertible).
Example 1.1.22. Let (A, ∗, $) be an additive category with duality and let
(P,ϕ) be a symmetric space. Then the sequence

P //
α:=

(
1
1

)
// P ⊕ P

(
−ϕ ϕ

)
// // P ∗



1 Witt Groups 7

is split exact and the second morphism is equal to α∗ ◦
( ϕ 0

0 −ϕ
)
. This proves

that the symmetric space (P,ϕ)⊥(P,−ϕ) is split metabolic in (A, ∗, $) and
hence in any exact category.
Remark 1.1.23. It is easy to prove that the only symmetric space structure
on the zero object is metabolic, that any symmetric space isometric to a
metabolic one is also metabolic, that the orthogonal sum of metabolic spaces
is again metabolic and that the image (see Def. 1.1.11) of a metabolic space
by a morphism of exact categories with duality is again metabolic. For the
latter, the image of a lagrangian is a lagrangian of the image.

1.1.4 The Witt Group of an Exact Category with Duality

We only consider additive categories which are essentially small, i.e. whose
class of isomorphism classes of objects is a set.

Definition 1.1.24. Let (A, ∗, $) be an additive category with duality (1.1.6).
Denote by MW(A, ∗, $) the set of isometry classes of symmetric spaces in A.

The orthogonal sum gives a structure of abelian monoid on MW(A, ∗, $).

Definition 1.1.25. Let (E , ∗, $) be an exact category with duality (1.1.13).
Let NW(E , ∗, $) be the subset of MW(E , ∗, $) of the classes of metabolic
spaces. This defines a submonoid of MW(E , ∗, $) by Rem. 1.1.23.

Remark 1.1.26. Let (M,+) be an abelian monoid (i.e. “a group without in-
verses”) and let N be a submonoid of M (i.e. 0 ∈ N and N + N ⊂ N).
Consider the equivalence relation: for m1,m2 ∈ M , define m1 ∼ m2 if there
exists n1, n2 ∈ N such that m1 + n1 = m2 + n2. Then the set of equivalence
classes M/∼ inherits a structure of abelian monoid via [m]+ [m′] := [m+m′].
It is denoted by M/N . Assume that for any element m ∈ M there is an
element m′ ∈ M such that m + m′ ∈ N , then M/N is an abelian group
with −[m] = [m′]. It is then canonically isomorphic to the quotient of the
Grothendieck group of M by the subgroup generated by N .

Definition 1.1.27 (Knebusch). Let (E , ∗, $) be an exact category with
duality. The Witt group of E is the quotient of symmetric spaces modulo
metabolic spaces, i.e.

W(E , ∗, $) :=
MW(E , ∗, $)
NW(E , ∗, $)

.

This is an abelian group. We denote by [P,ϕ] the class of a symmetric space
(P,ϕ) in W(E), sometimes called the Witt class of the symmetric space (P,ϕ).
We have −[P,ϕ] = [P,−ϕ] by Ex. 1.1.22 and the above Remark.

Definition 1.1.28. Two symmetric spaces (P,ϕ) and (Q,ψ) which define
the same Witt class, [P,ϕ] = [Q,ψ], are called Witt equivalent . This amounts
to the existence of metabolic spaces (N1, θ1) and (N2, θ2) and of an isometry
(P,ϕ)⊥(N1, θ1) ' (Q,ψ)⊥(N2, θ2).
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Remark 1.1.29. A Witt class [P,ϕ] = 0 is trivial in W(E) if and only if there
exists a split metabolic space (N, θ) with (P,ϕ)⊥(N, θ) metabolic, or equiva-
lently, if and only if there exists a metabolic space (N, θ) with (P,ϕ)⊥(N, θ)
split metabolic. This follows easily from the definition, by stabilizing with suit-
able symmetric spaces inspired by Ex. 1.1.22. However, we will see in Ex. 1.2.6
below that a symmetric space (P,ϕ) with [P,ϕ] = 0 needs not be metabolic
itself, even when E is a split exact category.
Remark 1.1.30. It is easy to check that W(−) is a covariant functor from exact
categories with duality to abelian groups, via the construction of Def. 1.1.11.

1.1.5 The Sublagrangian Reduction

We now explain why the Witt-equivalence relation (Def. 1.1.28) is of interest
for symmetric spaces. Two spaces are Witt equivalent in particular if we can
obtain one of them by “chopping off” from the other one some subspace on
which the symmetric form is trivial, i.e. by chopping off a sublagrangian.

Let (E , ∗, $) be an exact category with duality. Let (P,ϕ) be a symmetric
space in E and let (L,α) be an admissible sublagrangian (Def. 1.1.17) of the
space (P,ϕ). Recall from (1.1) that we have a commutative diagram

Q∗

��
µ∗

��
L // α //
��

β
��

P

ϕ'
��

π // // (L⊥)∗

β∗
����

L⊥ //
π∗

//

µ ����

P ∗
α∗

// // L∗

Q := L⊥/L

(1.3)

where we also introduce the cokernel Q in E of the admissible monomorphism
β, displayed in the first column. The third column is the dual of the first.

Now consider the morphism s := π ϕ−1π∗ : L⊥ −→ (L⊥)∗. This is nothing
but the form ϕ “restricted” to the orthogonal L⊥ via the monomorphism
ϕ−1π∗ : L⊥ � P from Def. 1.1.16. Observe that the morphism s is symmetric :
s∗ = s, that s β = 0 and that β∗ s = 0. From this, we deduce easily (in two
steps) the existence of a unique morphism

ψ : Q −→ Q∗ such that s = µ∗ ψµ. (1.4)

One checks that ψ∗ also satisfies equation (1.4). Therefore ψ is symmetric :
ψ = ψ∗. Below, we shall get for free that ψ is an isomorphism, and hence
defines a form on Q = L⊥/L, but note that we could deduce it immediately
from the Snake Lemma in some “ambient abelian category”.
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Lemma 1.1.31. The following left hand square is a push-out :

L // α //
��

β

��

P
�� (

1
0

)
��

π // // (L⊥)∗

L⊥ //

(
ϕ−1π∗

µ

)
// P ⊕Q

(
π −µ∗ψ

)
// // (L⊥)∗

(1.5)

and the diagram commutes and has admissible exact lines.

Proof. One checks directly that the left-hand square satisfies the universal
property of the push-out : use that if two test-morphisms x : P → Z and
y : L⊥ → Z are such that xα = yβ then the auxiliary morphism w :=
y − xϕ−1π∗ : L⊥ → Z factors uniquely as w = w̄µ because of w β = 0 and
hence (x w̄) : P ⊕Q→ Z is the wanted morphism. It follows from the axioms
of an exact category that the morphism γ :=

(
ϕ−1π∗

µ

)
: L⊥ � P ⊕ Q is an

admissible monomorphism. It is a general fact that the two monomorphisms
α and γ must then have the same cokernel, and it is easy to prove (using that
µ is an epimorphism) that Coker(γ) is as in the second line of (1.5). ut

Comparing that second line of (1.5) to its own dual and using symmetry
of ϕ and ψ, we get the following commutative diagram with exact lines :

L⊥ //

(
ϕ−1π∗

µ

)
// P ⊕Q

(
π −µ∗ψ

)
// //(

ϕ 0
0 −ψ

)
��

(L⊥)∗

L⊥ //

(
π∗

−ψµ
)

// P ∗ ⊕Q∗

(
π ϕ−1 µ∗

)
// // (L⊥)∗.

This proves two things. First
( ϕ 0

0 −ψ
)

is an isomorphism and hence ψ is an
isomorphism, i.e. (Q,ψ) is a symmetric space, as announced. Secondly, our
monomorphism γ : L⊥ � P ⊕Q is a lagrangian of the space (P,ϕ)⊥(Q,−ψ).
This means that the space (P,ϕ)⊥(Q,−ψ) is metabolic, i.e. [P,ϕ] = [Q,ψ] in
the Witt group. So we have proven the following folklore result :

Theorem 1.1.32. Let (E , ∗, $) be an exact category with duality. Let (P,ϕ)
be a symmetric space in E and let (L,α) be an admissible sublagrangian of the
space (P,ϕ). Consider the orthogonal L⊥ and the quotient L⊥/L. Then there
is a unique form ψ on L⊥/L which is induced by the restriction of ϕ to L⊥.
Moreover, the symmetric space (L⊥/L , ψ) is Witt equivalent to (P,ϕ). ut

Remark 1.1.33. A sort of converse holds : any two Witt equivalent symmet-
ric spaces can be obtained from a common symmetric space by the above
sublagrangian reduction, with respect to two different sublagrangians. This is
obvious since a metabolic space with lagrangian L reduces to zero : L⊥/L = 0.
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Remark 1.1.34. Observe that L⊥/L is a subquotient of P and hence should
be thought of as “smaller” than P . If L⊥/L still possesses an admissible sub-
lagrangian, we can chop it out again. And so on. If the category E is reason-
able, this process ends with a space possessing no admissible sublagrangian –
this could be called (admissibly) anisotropic. Even then, such an admissibly
anisotropic symmetric space needs not be unique up to isometry in the Witt
class of the symmetric space (P,ϕ) that we start with. See more in 1.2.22.

1.2 Usual Witt Groups : Examples and Motivations

Still in a very anti-chronological order, we specialize the categorical definitions
of the previous section to more classical examples.

1.2.1 Schemes

The origin is Knebusch [41]. The affine case is older : see the elegant Milnor-
Husemoller [50]. A modern reference is Knus [42, Chap. VIII].

Let X be a scheme and let VBX be the category of locally free coherent
OX -modules (i.e. vector bundles). Let L be a line bundle overX. One defines a
duality ∗ : VBX → VBX by E∗ := HomOX

(E,OX)⊗OX
L, which is the usual

duality twisted by the line bundle L. One defines the natural identification
$ : E ∼→ E∗∗ in the usual way. For L = OX , this E∗ is of course the usual
dual and$ is locally given by mapping an element e to the evaluation at e. The
triple (VBX , ∗, $) is an exact category with duality in the sense of Def. 1.1.13.
We can thus apply Def. 1.1.27 to get Knebusch’s original one [41] :

Definition 1.2.1. With the above notations, the usual Witt group of a
scheme X with values in the line bundle L is the Witt group (Def. 1.1.27) :

W(X,L) := W(VBX , ∗, $).

The special case L = OX is the usual usual Witt group W(X).

Remark 1.2.2. Let R be a commutative ring. We define W(R) as W(Spec(R));
this common convention of dropping the “Spec(−)” applies everywhere below.
The category VBR is simply the category of finitely generated projective R-
modules, which is a split exact category. So, here, metabolic spaces are the
split-metabolic ones. If 1

2 ∈ R, these are simply the hyperbolic spaces, yielding
the maybe better known definition of the Witt group of a commutative ring.
Remark 1.2.3. When L = OX , then the group W(X) is indeed a ring, with
product induced by the tensor product : (E,ϕ) · (F,ψ) = (E⊗OX

F , ϕ⊗OX
ψ).

We now produce examples proving “strictness” of the trivial implications :
hyperbolic =⇒ split metabolic =⇒ metabolic =⇒ trivial in the Witt group.
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Example 1.2.4. Over the ring R = Z, the symmetric space (R2,
(

0 1
1 1

)
) is split

metabolic but not hyperbolic (the hyperbolic space H(R) = (R2, ψ) has the
property that ψ(v, v) ∈ 2R for any v ∈ R2 but the above form represents 1).
Example 1.2.5. An example of a metabolic space which is not split-metabolic
cannot exist in the affine case. Choose an exact sequence OX � P � OX ,
say on an elliptic curve X, with P indecomposable. Then ∧2P is trivial and
hence P has a structure of skew-symmetric space. It is metabolic with the
(left) OX as lagrangian but cannot be split metabolic since P itself is inde-
composable as module. An example of a symmetric such space can be found
in Knus-Ojanguren [44, last remark]. They produce a metabolic symmetric
space, which is not split metabolic, as can be seen on its Clifford algebra.
Example 1.2.6 (Ojanguren). Let A := R[X,Y, Z]/X2 + Y 2 + Z2 − 1 and let
P be the indecomposable projective A-module of rank 2 corresponding to the
tangent space of the sphere. The rank 4 projective module E := EndA(P ) is
equipped with the symmetric bilinear form ϕ : E ∼→ E∗, where ϕ(f)(g) =
1
2 (q(f + g) − q(f) − q(g)), for any f, g ∈ E, is the form associated to the
quadratic form q(f) := det(f). Then [E,ϕ] = 0 in W(A) but the symmetric
space (E,ϕ) is not metabolic.

If Q is the field of fractions of A, it is easy to write ϕ⊗AQ and to check it is
hyperbolic. Hence the class [E,ϕ] belongs to the kernel of the homomorphism
W(A) → W(Q), which is known to be injective (A is regular and dim(A) ≤ 3,
see e.g. Thm. 1.5.19 below). Hence [E,ϕ] = 0 and (E,ϕ) is stably metabolic.
To see that this symmetric space is not metabolic, assume the contrary. Here,
a metabolic space is hyperbolic (affine case and 1

2 ∈ A). So, we would have
(E,ϕ) ' H(M) for some projective module M of rank 2. Using the hyperbolic
form on H(M) and the presence of idP ∈ E with q(id) = det(id) = 1, one
can find an element f ∈ E such that q(f) = −1, that is an endomorphism
f : P → P with determinant −1. Such an endomorphism cannot exist since
it would yield a fibrewise decomposition of P into two eigenspaces, and hence
would guarantee the unlikely triviality of the tangent space of the sphere.

(By the way, one can show that W(A) ∼= Z⊕ Z/2, see [42, §VIII.6.2].)
Remark 1.2.7. The simplest schemes are the points X = Spec(k) for k a
field, or k a local ring, containing 1

2 . In these cases, the Witt group allows a
complete classification of quadratic forms – see Subsection 1.2.4. With this in
mind, several people got interested in the map W(A) → W(Q) for A a domain
with field of fractions Q. This is commented upon in Subsection 1.5.2.
Example 1.2.8. For elementary examples of Witt groups of affine schemes (i.e.
commutative rings) like for W(Z) = W(R) = Z, or, q being a power of a prime,
for W(Fq) = Z/2 when q is even, W(Fq) = Z/2[ε]

/
(ε2) or Z/4 when q ≡ 1 or

3 mod 4 respectively, or for W(Q) = W(Z)⊕
⊕

p∈P W(Fp), or for Witt groups
of other fields, or of Dedekind domains, and so on, the reader is referred to
the already mentioned [50] or to Scharlau [71].
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Example 1.2.9. As a special case of Karoubi’s Thm. 1.2.19, we see that for
any commutative ring R containing 1

2 , for instance R = k a field of odd char-
acteristic, the Witt group of the affine space over R is canonically isomorphic
to the one of R :

W(AnR) = W(R).

(See also Thm. 1.5.10 below.) The case of the projective space over a field is
a celebrated result of Arason [1] (compare Walter’s Thm. 1.5.28 below) :

Theorem 1.2.10 (Arason). Let k be a field of characteristic not 2 and let
n ≥ 1. Then W(Pnk ) = W(k).

This has been extended to Brauer-Severi varieties :

Theorem 1.2.11 (Pumplün). Let k be a field of characteristic not 2. Let
A be a central simple k-algebra and X the associated Brauer-Severi variety.

(i) The natural morphism W(k) → W(X) is surjective.
(ii) When A is of odd index, W(k) → W(X) is injective.

See [67], where further references and partial results for twisted dualities
are to be found. Injectivity fails for algebras with even index, in general.
Example 1.2.12. Here is an example of the possible use of Witt groups in
algebraic geometry. The problem of Lüroth, to decide whether a unirational
variety is rational, is known to have a positive answer for curves over arbitrary
fields (Lüroth), for complex surfaces (Castelnuovo), and to fail in general.
Simple counter-examples, established by means of Witt groups, are given in
Ojanguren [57], where an overview can be found. See also [20, Appendix].

Here is another connection between Witt groups and algebraic geometry.

Theorem 1.2.13 (Parimala). Let R be a regular finitely generated R- or C-
algebra of Krull dimension 3. Then the Witt group W(R) is finitely generated
if and only if the Chow group CH2(R)/2 is finite.

See [64, Thm. 3.1] where examples are given; compare also Totaro’s
Thm. 1.5.23 below. This important paper of Parimala significantly contributed
to the study of connections between Witt groups and étale cohomology. Abun-
dant work resulted from this, among which the reader might want to consider
Colliot-Thélène –Parimala [21], which relates to the subject of real connected
components discussed below in Subsection 1.2.2. In this direction, see also
Scheiderer [73].

We end this Subsection by a short guide to the literature for a selection of
results in Krull dimension 1 and 2. The reader will find additional information
in Knus [42, §VIII.2]. For Witt groups of fields (dim = 0), see Subsection 1.2.4.
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In dimension 1, we have :

Dedekind domains : If D is a Dedekind domain with field of fractions Q, there
is an exact sequence : 0 → W(D) −→ W(Q) ∂−→⊕p W(D/p) where the sum
runs over the non-zero primes p of D and where ∂ is the classical second
residue homomorphism, which depends on choices of local parameters.
See [50, Chap. IV].

Elliptic curves : There is a series of articles by Arason, Elman and Jacob,
describing the Witt group of an elliptic curve with generators and relations.
See Arason-Elman-Jacob [2] for an overview and for further references. See
also the work of Parimala-Sujatha [65].

Real curves : For curves over R, the story stretches from the original work of
Knebusch [41, §V.4] to the most recent work of Monnier [53]. Note that
the latter gives a systematic overview including singular curves, which were
already considered in Dietel [23]. See also Rem. 1.2.15 below.

In dimension 2, we have :

Complex surfaces : Fernández-Carmena [24, Thm. 3.4] proved among other
things the following result : if X is a smooth complex quasi-projective sur-
face then W(X) ' (Z/2)1+s+q+b where s, q and b are the number of copies
of Z/2 in OX(X)∗

/
(OX(X)∗)2, in 2Pic(X) and in 2Br(X) respectively.

Real surfaces : The main results are due to Sujatha [75, Thms. 3.1 and 3.2] and
look as follows. See also Sujatha - van Hamel [76] for further developments.

Theorem 1.2.14 (Sujatha). Let X be a smooth projective and integral sur-
face over R.

(i) Assume that X(R) 6= ∅ and has s real connected components. Then

W(X) ' Zs ⊕ (Z/2)m ⊕ (Z/4)n.

(ii) Assume that X(R) = ∅. Then

W(X) ' (Z/2)m ⊕ (Z/4)n ⊕ (Z/8)t.

Moreover, the integers m, n and t can be described in terms of 2-torsion of
the Picard and Brauer groups of X, and of the level of R(X) in case (ii).

Remark 1.2.15. For an algebraic variety X over R, the formulas describing
W(X), which can be found in the above literature, basically always look as
follows : W(X) = Zs⊕ (2-primary torsion part), where s is the number of real
connected components of X(R) and where cohomological invariants are used
to control the 2-primary torsion part. See Mahé’s result 1.2.17.
Remark 1.2.16. Further results on Witt groups of schemes have been obtained
by means of triangular Witt groups and are presented in Section 1.5. Even in
low dimension, say up to 3, the situation is quite clarified by the corollaries
of Thm. 1.5.15 below.
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1.2.2 Motivation From Real Algebraic Geometry

There is a long lasting love-story between quadratic forms and real algebraic
geometry, originating in their common passion for sums of squares. For a
survey, see [18, Chap. 15]; early ideas are again in Knebusch [41, Chap. V].

A nice application of Witt groups to real geometry is the following problem,
stated by Knebusch. Let X be an algebraic variety over R. Consider the set
of real points X(R) with the real topology. Then its connected components
are conjectured to be in one-to-one correspondence with signatures of W(X),
that are ring homomorphisms W(X) → Z. Basically, the construction goes as
follows. Pick a closed point x in X(R); its residue field R(x) is R and hence
localization produces a homomorphism W(X) → W(R(x)) = Z and one can
show that this homomorphism only depends on the connected component Cx
of X(R) where x was chosen. In this way, one obtains the following pairing,
where CC(X(R)) denotes the above set of real connected components

λ : CC(X(R))×W(X) // Z

(Cx , ϕ) � // ϕ(x) ∈ W(R(x)) = Z.

This can be read either as a map Λ : CC(X(R)) → Homrings(W(X),Z) or as
a ring homomorphism Λ∗ : W(X) → Cont(X(R),Z), the total signature map.

Theorem 1.2.17 (Mahé). Let X = Spec(A) be an affine real algebraic
variety. Then the map Λ is a bijection between the set of connected components
of the real spectrum Specr(A) and the set of signatures W(A) → Z.

See [47, Cor.3.3] for the above and see Houdebine-Mahé [31] for the exten-
sion to projective varieties. In fact, a key ingredient in the proof consists in
showing that the cokernel of the total signature Λ∗ : W(X) → Cont(X(R),Z)
is a 2-primary torsion group. Knowing this, it is interesting to try understand-
ing the precise exponent of this 2-primary torsion group. Such exponents are
obtained in another work of Mahé [48], and more recently by Monnier [52].

1.2.3 Rings with Involution, Polynomials and Laurent Rings

Definition 1.2.18. A ring with involution is a pair (R, σ) consisting of an as-
sociative ring R and an involution σ : R→ R, i.e. an additive homomorphism
such that σ(r · s) = σ(s) · σ(r), σ(1) = 1 and σ2 = idR.

For a left R-module M we can define its dual M∗ = HomR(M,R), which
is naturally a right R-module via (f · r)(x) := f(x) · r for all x ∈ M , r ∈ R
and f ∈M∗. It inherits a left R-module structure via r · f := f · σ(r), that is
(r ·f)(x) = f(x) ·σ(r). There is a natural R-homomorphism $M : M −→M∗∗

given by ($M(m))(f) := σ(f(m)). When P ∈ R–Proj is a finitely generated
projective left R-module, this homomorphism $P is an isomorphism. Hence
the category (R–Proj, ∗, $) is an additive category with duality. The same



1 Witt Groups 15

holds for (R–Proj, ∗, ε ·$) for any central unit ε ∈ R× such that σ(ε) · ε = 1,
like for instance ε = −1. The Witt group obtained this way is usually denoted

Wε(R) := W(R–Proj , ∗ , ε ·$)

and is called the Witt group of ε-hermitian bilinear forms over R. This part
of Witt group theory is of course quite important, and the reader is referred
to the very complete Knus [42] for more information. We mention here two
big K-theory like results.

Theorem 1.2.19 (Karoubi). Let R be a ring with involution containing 1
2 .

Then Wε(R[T ]) = Wε(R), where R[T ] has the obvious involution fixing T .

See Karoubi [37, Part II]. An elementary proof is given in Ojanguren-
Panin [59, Thm. 3.1], who also prove a general theorem for the Witt group of
the ring of Laurent polynomials, giving in particular :

Theorem 1.2.20 (Ranicki). Let R be a regular ring with involution con-
taining 1

2 . Then the following homomorphism

Wε(R)⊕Wε(R) −→ Wε(R[T, T−1]) (α, β) 7→ α+ β · 〈T 〉

is an isomorphism, where the involution on R[T, T−1] fixes the variable T .

See Ranicki [69] where regularity is not required (neither is it in [59]) and
where suitable Nil-groups are considered. Compare Thm. 1.5.27 below.

1.2.4 Semi-local Rings and Fields

Recall that a commutative ring R is semi-local if it has only finitely many
maximal ideals. Local rings and fields are semi-local.

Theorem 1.2.21 (Witt Cancellation). Let R be a commutative semi-local
ring in which 2 is invertible. If (P1, ϕ1), (P2, ϕ2) and (Q,ψ) are symmetric
spaces such that (P1, ϕ1)⊥(Q,ψ) is isometric to (P2, ϕ2)⊥(Q,ψ), then (P1, ϕ1)
and (P2, ϕ2) are isometric.

This was first proven for fields by Witt [86]. This result and much more in-
formation on these cancellation questions can be found in Knus [42, Chap. VI].
Remark 1.2.22. The above result is wrong for non-commutative semi-local
rings, i.e. rings R such that R/ rad(R) is semi-simple. Keller [39] gives a very
explicit counter-example, constructed as follows : let k be a field of odd char-
acteristic; let A0 be the semi-localization of k[X,Y ]/(X2 + Y 2 − 1) at the
maximal ideals ξ = (0, 1) and η = (0,−1); let B ⊂ A0 be the subring of those
f ∈ A0 such that f(ξ) = f(η); finally define the non-commutative semi-local
ring to be A =

{(
b r
s a0

) ∣∣ b ∈ B , a0 ∈ A0 , r, s ∈ rad(A0)
}

with transposition
as involution. Then there are two symmetric forms on the same projective
right A-module N :=

(
1 0
0 0

)
·A which are not isometric but become isometric

after adding the rank one space (A, 〈1〉). See more in [39] or in [42, VI.5.1].
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Remark 1.2.23. Let R be a commutative semi-local ring containing 1
2 , with

Spec(R) connected (otherwise do everything component by component). Then
any finitely generated projective R-module if free. Using the sublagrangian
reduction 1.1.32 and the above Witt cancellation, we know that any symmetric
space (P,ϕ) over R can be written up to isometry as

(P,ϕ) ' (P0, ϕ0)⊥H(Rm)

for m ∈ N and for (P0, ϕ0) without admissible sublagrangian – let us say that
the space (P0, ϕ0) is (admissibly) anisotropic – and we know that the number
m and the isometry class of (P0, ϕ0) are unique. Moreover, the spaces (P,ϕ)
and (P0, ϕ0) are Witt equivalent and by Witt cancellation again, there is
exactly one (admissibly) anisotropic space in one Witt class. This establishes
the following result, the original motivation for studying Witt groups :

Corollary 1.2.24. Let R be a commutative semi-local ring containing 1
2 (for

instance a field of characteristic not 2). The determination of the Witt group
W(R) allows the classification up to isometry of all quadratic forms over R.

Remark 1.2.25. Reading the above Corollary backwards, we avoid comment-
ing the huge literature on Witt groups of fields, by referring the reader to the
even bigger literature on quadratic forms at large. See in particular Lam [45],
Scharlau [71] and Serre [74]. For instance, there exist so-called structure theo-
rems for Witt groups of fields, due to Witt, Pfister, Scharlau and others, and
revisited in Lewis [46], where further references can also be found. In fact,
several results classically known for fields extend to (commutative) semi-local
rings. See [41, Chap. II] again or Baeza [3].

1.3 A Glimpse at Other Theories

Our Chapter focusses on the internal theory of Witt groups but the reader
might be interested in knowing which are the neighbor theories, more or less
directly related to Witt groups. We give here a rapid overview with references.

Quadratic forms : When 2 is not a unit one must distinguish quadratic forms
from the symmetric forms we mainly considered. See the classical refer-
ences already given in Remark 1.2.25. The Witt group of quadratic forms
can also be defined, see for instance Milnor-Husemoller [50, App. 1]. See
also the recent Baeza [4] for quadratic forms over fields of characteristic
two. The reader looking for a systematic treatise including quadratic forms
and their connections with algebraic groups should consider the book [43].

Motivic approach : Techniques from algebraic geometry, Chow groups and
motives, have been used to study quadratic forms over fields, by means of
the corresponding quadrics. See the work of Izhboldin, Kahn, Karpenko,
Merkurjev, Rost, Sujatha, Vishik and others, which is still in development
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and for which we only give here a sample of references : [32], [33], [34], [35],
[38] among many more.

Topological Witt groups : Let M be a smooth paracompact manifold and let
R = C∞(M,R) be the ring of smooth real-valued functions on M . It is
legitimate, having Swan-Serre’s equivalence in mind, to wonder if the Witt
group of such a ring R can be interpreted in terms of the manifold M . The
answer is that W(R) is isomorphic to KO(M) the real (topological) K0 of
M , that is the Grothendieck group of isomorphism classes of real vector
bundles over M . This is due to Lusztig see [50, §V.2]. This should not be
mistaken with the Witt group of real algebraic varieties discussed above.

Cohomological invariants : We already mentioned briefly in Rem. 1.2.15 the
importance of cohomological invariants in the part dedicated to real alge-
braic geometry. For quadratic forms over fields, the relation between Witt
groups and Galois cohomology groups is the essence of the famous Mil-
nor Conjecture [49], now proven by Voevodsky, see e.g. Orlov, Vishik and
Voevodsky [60]. See also Pfister’s historical survey [66].
For a scheme X, there is a homomorphism rk : W(X) → Cont(X,Z/2),
the reduced rank, to the continuous (hence locally constant) functions from
X to Z/2, which sends a symmetric space to its rank modulo 2 (metabolic
spaces have even rank). The fundamental ideal I(X) of W(X) is the kernel
of this homomorphism.
Following [42, §VIII.1], we denote by Disc(X) the abelian group of isom-
etry classes of symmetric line bundles, with ⊗ as product. We denote by
δ : I(X) → Disc(X) the signed discriminant, which sends the class of an
even-rank symmetric space (E,ϕ) of rank 2m to the symmetric bundle
〈(−1)m〉 · (∧mE,∧mϕ).
One can define further the Witt invariant, which takes values in the Brauer
group, see Knus [42, § IV.8] and which is defined by means of Clifford al-
gebras. See also Barge-Ojanguren [15] for the lift of the latter to K-theory.
Higher invariants are not known in this framework. One can try to define
general invariants into subquotients ofK-theory groups, for arbitrary exact
categories or in more general frameworks. This was started by Szyjewski
in [77] and remains “in progress” for higher ones.

Grothendieck-Witt groups : One often considers also GW the Grothendieck-
Witt group, which is defined by the same generators as the Witt group but
with less relations; namely if a space (P,ϕ) is metabolic with lagrangian
L then one sets the relation (P,ϕ) − H(L) = 0 in the Grothendieck-Witt
group, instead of the relation (P,ϕ) = 0 ( = H(L) ) in the Witt group.
There is a group homomorphism K0 → GW, induced by the hyperbolic
functor L 7→ H(L) and whose cokernel is the Witt group. We intention-
ally do not specify what sort of categories we define GW(−) for, because
it applies whenever the Witt group is defined. For instance, in the tri-
angular framework of the next two sections, it is also possible to define
Grothendieck-Witt groups, as recently done by Walter [83].
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Hermitian K-theory, Karoubi’s Witt groups : The above Grothendieck -Witt
group is equal to Kh

0 , the 0-th group of Karoubi’s hermitian K-theory. For
a recent reference, see Hornbostel [29], where hermitian K-theory is ex-
tended to exact categories. There are higher and lower hermitian K-theory
groups Kh

n and natural homomorphisms Hyp : Kn → Kh
n from K-theory

towards hermitian K-theory, which fit in Karoubi’s “Fundamental Theo-
rem” long exact sequence. Karoubi’s Witt groups are defined in a mixed
way, namely as the cokernels of these homomorphisms Hyp : Kn → Kh

n .
For regular rings, these groups coincide with the triangular Witt groups,
see more in [36] or in [30].

L-theory : We refer the reader to Williams [85] in this Handbook or to Ran-
icki [70] for the definition of the quadratic and symmetric L-theory groups
of Wall-Mischenko-Ranicki and for further references. We shortly compare
them to the triangular Witt groups to come. First, like triangular Witt
groups, L-groups are algebraic, that is, their definition does not require
the above hermitian K-theory. Secondly, unlike triangular Witt groups,
L-groups also work when 2 is not assumed invertible and this is of central
importance in surgery theory. Unfortunately, it does not seem unfair to
say that the definition of these L-groups is rather involved and requires
some heavy use of complexes.
The advantage of triangular Witt theory is two-fold : first, it applies to
non-split exact categories and hence to schemes, and secondly, by its very
definition, it factors via triangulated categories, freeing us from the burden
of complexes.
Note that both theories coincide over split exact categories under the as-
sumption that 2 is invertible and that even in the non-split case, the de-
rived Witt groups of an exact category have a formation-like presentation
by generators and relations (see Walter [83]). In the present stage of the au-
thor’s understanding, the triangular theory of Witt groups, strictly speak-
ing, does not exist without the “dividing by 2” assumption. Nevertheless,
even when 2 is not assumed invertible, there are good reasons to believe
that a sort of “L-theory of non-necessarily-split exact categories” should
exist, unfolding the higher homotopies in a Waldhausen-category frame-
work, using weak-equivalences, cofibrations and so on, but most probably
renouncing the elegant simplicity of the triangular language...

1.4 Triangular Witt Groups : General Theory

The second half of this Chapter is dedicated to triangular Witt groups, i.e.
Witt groups of triangulated categories with duality. The style is quite direct
and a reader needing a more gentle introduction is referred to [10].
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1.4.1 Basic Notions and Facts

All definitions and results of this Section are to be found in [6].
For the definition of a triangulated category we refer to Verdier’s original

source [81], to Weibel [84, Chap. 10], or to [6, § 1], where the reader can
find Axiom (TR 4+), the enriched version of the Octahedron Axiom, due to
Bĕılinson, Bernstein and Deligne [17]. All known triangulated categories and
all triangulated categories considered below satisfy this enriched axiom. Note
that a triangulation is an additional structure, not intrinsic, on an additive
category K, which consists of a translation or suspension T : K −→ K plus a
collection of distinguished triangles satisfying some axioms. The fundamental
idea is to replace admissible exact sequences by distinguished triangles.

Definition 1.4.1. Let δ = 1 or −1. A triangulated category with δ-duality is
an additive category with duality (K,#, $) in the sense of Def. 1.1.6, where
K is moreover triangulated, and satisfying the following conditions :

(a) The duality # is a δ-exact functor Kop −→ K, which means that

T ◦# ∼= # ◦ T−1

(we consider this isomorphism as an equality) and, more important, that

for any distinguished triangle A
u // B

v // C
w // T (A) in K, the

following triangle is exact :

C#
v#

// B#
u#

// A#
δ · T (w#)

// T (C#) .

(b) The identification $ between the identity and the double dual is compat-
ible with the triangulation, which means $T (M) = T ($M) for all M ∈ K.

Note that all “additive notions” presented in Subsection 1.1.1 also make
sense in this framework, as for instance the monoid MW(K,#, $) of symmet-
ric spaces (Def. 1.1.24). We now explain how the other classical notions which
depended on the exact category structure (absent here) can be replaced.

Definition 1.4.2. A symmetric space (P,ϕ) is called neutral (or metabolic if
no confusion occurs) when it admits a lagrangian, i.e. a triple (L,α, β) such
that α : L→ P is a morphism, such that the following triangle is distinguished

L
α // P

α#ϕ // L#
β // T (L)

and such that β : L# → T (L) is δ-symmetric, which here means :

δ · T (β#) = $T (L) ◦ β.
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In short, the symmetric short exact sequence L � P � L∗ is replaced by
the above symmetric distinguished triangle. Note that we still have α#ϕα = 0,
that is (L,α) is a sublagrangian. (By the way, there is a triangular partial ana-
logue of the sublagrangian reduction, called the sublagrangian construction,
which can be found in [6, § 4] or, in a simpler case, in [5, § 3].)

Definition 1.4.3. Let (K,#, $) be a triangulated category with δ-duality.
As before, its Witt group is the following quotient of abelian monoids :

W(K,#, $) :=
MW(K,#, $)
NW(K,#, $)

,

where NW(K,#, $) is the submonoid of MW(K,#, $) consisting of the
classes of neutral spaces.

Definition 1.4.4. Let (K,#, $) be a triangulated category with δ-duality.
Let n ∈ Z arbitrary. Then the square of the functor Tn ◦ # : Kop −→ K is
again isomorphic to the identity, but this functor Tn # is only δn-exact, where
δn := (−1)n · δ. We define the n-th shifted duality on K to be

Tn
(
(K,#, $)

)
:=

(
K , Tn ◦# , εn ·$

)
,

where εn := (−1)
n(n+1)

2 · δn.

It is easy to check that Tm
(
Tn(K,#, $)

)
= Tm+n(K,#, $) for any m,n ∈

Z, keeping in mind that the δn-exactness of Tn# is given by δn = (−1)n · δ.

Definition 1.4.5. The n-th shifted Witt group of (K,#, $), or simply of K,
is defined as the Witt group of Tn(K,#, $) :

Wn(K,#, $) := W
(
Tn(K,#, $)

)
.

Proposition 1.4.6. For any n ∈ Z we have a natural isomorphism, induced
by T : K −→ K, between Wn(K,#, $) and Wn+2(K,#, −$). In particular,
we have the 4-periodicity : Wn(K,#, $) ∼= Wn+4(K,#, $).

See [6, Prop. 2.14]. In fact, these isomorphisms are induced by equivalences
of the underlying triangulated categories with duality.
Example 1.4.7. Assume that (K,#, $) is a triangulated category with exact
duality (that is δ = +1). Then so is T 2(K,#, $) and the latter is isomorphic to
(K,#,−$). The other two T 1(K,#, $) and T 3(K,#, $) are both categories
with skew-exact duality (that is δ1 = δ3 = −1), respectively isomorphic to
(K , T# , −$) and (K , T# , $).

Definition 1.4.8. A morphism of triangulated categories with duality (F, η)
is a morphism of categories with duality (Def. 1.1.5) such that F is an exact
functor, i.e. F sends distinguished triangles to distinguished triangles. More
precise definitions are available in [14] or in [27]. With this notion of morphism,
all the groups Wn(−) constructed above become functorial.
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The following very useful result [6, Thm. 3.5] contrasts with the classical
framework (compare Ex. 1.2.6) :

Theorem 1.4.9. Let K be a triangulated category with duality containing 1
2

(see 1.4.10). Then a symmetric space (P,ϕ) which is Witt-equivalent to zero,
i.e. such that [P,ϕ] = 0 ∈ W(K), is necessarily neutral.

1.4.2 Agreement and Localization

Definition 1.4.10. Let A be an additive category (e.g. a triangulated cat-
egory). We say that “ 1

2 ∈ A ” when the abelian groups HomA(M,N) are
uniquely 2-divisible for all objects M,N ∈ A, i.e. if A is a Z[ 12 ]-category.

The main result connecting usual Witt groups to the triangular Witt
groups is the following.

Theorem 1.4.11. Let (E , ∗, $) be an exact category with duality such that
1
2 ∈ E. Equip the derived category Db(E) with the duality # derived from ∗.
Then the obvious functor E −→ Db(E), sending everything in degree 0, induces
an isomorphism

W(E , ∗, $) '−→ W(Db(E),#, $) .

This is the main result of [7, Thm. 4.3], under the mild assumption that E
is semi-saturated. The general case is deduced from this in [14, after Thm. 1.4].
Example 1.4.12. The above Theorem provides us with lots of (classical) exam-
ples : all those described in Section 1.2, the most important being schemes. So,
if X is a scheme “containing 1

2” (i.e. a scheme over Z[ 12 ]) and if the bounded
derived category K(X) := Db(VBX) of vector bundles overX is equipped with
the derived duality twisted by a line bundle L (e.g. L = OX), then W0

(
K(X)

)
is the usual Witt group of Knebusch W(X,L) and similarly W2

(
K(X)

)
is the

usual Witt group of skew-symmetric forms W−(X,L). The Witt groups

Wn(Db(VBX))

are often called the n-th derived Witt groups of X. They are functorial (con-
travariant) for any morphism of scheme. Other triangulated categories with
duality can be associated to a scheme X, see 1.5.2 below.
Remark 1.4.13. Let us stress that the definitions of Subsection 1.4.1 also make
sense when 2 is not assumed invertible. The 1

2 -assumption is used to prove
results, like Thm. 1.4.11 for instance. As already mentioned, in the case of the
derived category (Db(E),#, $) of an exact category with duality (E , ∗, $),
Walter has a description of W1 and of W3 in terms of formations, generalizing
the “split” L-theoretic definitions. See [83].

The key computational device in the triangular Witt group theory is the
following localization theorem.
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Theorem 1.4.14. Let (K,#, $) be a triangulated category with duality such
that 1

2 ∈ K. Consider a thick subcategory J ⊂ K stable under the duality,
meaning that (J )# ⊂ J . Induce dualities from K to J and to L := K/J . We
have, so to speak, an exact sequence of triangulated categories with duality :

J � K � L.

Then, there is a 12-term periodic long exact sequence of Witt groups :

· · · → Wn−1(L) ∂−→Wn(J ) −→ Wn(K) −→ Wn(L) ∂−→Wn+1(J ) → · · ·

where the connecting homomorphisms ∂ can be described explicitly.

This is [6, Thm. 6.2], with the easily removable extra hypothesis that K is
“weakly cancellative” (see [14, Thm. 2.1] for how to remove it).
Remark 1.4.15. In applications, one often knows K and a localization K � L,
like in the case of the derived category of a regular scheme and of an open sub-
scheme. Then the J is defined as the kernel of this localization and the relative
Witt groups are defined to be the Witt groups of J . See Subsection 1.5.1.

1.4.3 Products and Cofinality

The product structures on the groups Wn have been discussed in Gille-
Nenashev [27]. Inspired by the situation of a triangulated category with du-
ality and compatible tensor product, they consider the general notion of (ex-
ternal) dualizing pairing [27, Def. 1.11].

Theorem 1.4.16 (Gille-Nenashev). Let � : K × L −→ M be a dualizing
pairing. This induces naturally a left and a right pairing

Wr(K)×Ws(L) ?l−→
?r

Wr+s(M)

differing by signs, having the following properties :

(i) When K = L = M, both products turn ⊕
n∈Z

Wn(K) into a graded ring.

(ii) The multiplicative structure is compatible with localization.
(iii) The multiplicative structure is compatible with 4-periodicity.

Points (i) and (ii) are in [27, Thm. 2.9 and 2.11], for (iii) see [11, App. 1].
The behaviour of Witt groups with respect to idempotent completion can

be controlled with the following result of [30], whose proof uses the technical-
ities (and not only the front results) of [6]. See [30, App. I].

Theorem 1.4.17 (Hornbostel-Schlichting). Let B be a triangulated cat-
egory with δ-duality (δ = ±1) and A a full triangulated subcategory which is
cofinal (i.e. any object b ∈ B is a direct summand of an object of A). Then
there is a 12-term periodic long exact sequence
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· · · → Wn(A) → Wn(B) → Ĥn
(
Z/2Z , K0(B)/K0(A)

)
→ Wn+1(A) → · · ·

involving Tate cohomology groups of Z/2Z with coefficients in K0(B)/K0(A),
on which Z/2Z acts via the duality, and where K0 is the 0-th K-theory group.

1.5 Witt Groups of Schemes Revisited

1.5.1 Witt Cohomology Theories

Consider a scheme X containing 1
2 . Consider a presheaf (K,#, $) of triangu-

lated categories with duality on the scheme X. That is : for each Zariski-open
U ↪→ X, we give a triangulated category with duality K(U) and a restriction
qV,U : K(U) −→ K(V ) for each inclusion V ↪→ U , which is assumed to be a
localization of triangulated categories, in a compatible way with the duality,
and with the usual presheaf condition.

For each U ⊂ X one can then consider the Witt groups of K(U), which
we denote

Wn(K(U))

Here is a list of such presheaves, with their presheaves of Witt groups.
Example 1.5.1. Assume that X is regular (that is here : noetherian, separated
and the local rings OX,x are regular for all x ∈ X). For each open U ⊂
X, put K(U) := Db(VBU ) the bounded derived category of vector bundles
over U . Regularity is used to insure that the restriction K(X) → K(U) is a
localization. By 1.4.12, the 0-th and 2-nd Witt groups of K(U) are the usual
Witt groups of U of symmetric and skew-symmetric forms, respectively. The
latter result remains true without regularity of course.
Example 1.5.2. Assume that X is Gorenstein of finite Krull dimension. For
each open U ⊂ X, put K(U) := Db

Coh(QCohU ) the derived category of
bounded complexes of quasi-coherent OU -modules with coherent homology.
The duality is the derived functor of HomOU

(−,OU ). See details in Gille [25,
§ 2.5]. The Witt group obtained this way

W̃n(U) := Wn(Db
Coh(QCohU ))

is called the n-th coherent Witt groups of U . The groups W̃n(−) are only
functorial for flat morphisms of schemes. They do not agree with derived
Witt groups of 1.4.12 in general but do in the regular case, since the defining
triangulated categories are equivalent.
Example 1.5.3. Let X be a scheme containing 1

2 . One can equip the category
of perfect complexes over X with a duality, essentially as above. The Witt
group obtained this way could be called the perfect Witt groups. Nevertheless,
the presheaf of triangulated categories U 7→ Dperf(U) would fit in the above
approach only when U 7→ K0(U) is flasque (it is not clear if this is really much
more general than 1.5.1). Without this assumption, there will be a 2-torsion
noise involved in the localization sequence below, by means of Thm. 1.4.17.
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To any such data, we can associate relative Witt groups, as follows.

Definition 1.5.4. Let X be a scheme and U 7→ K(U) a presheaf of trian-
gulated categories with duality as above. Let Z ⊂ X be a closed subset. Let
us define Wn

Z , the Witt groups with supports in Z as the Witt groups of the
kernel category KZ(X) := ker

(
K(X) � K(X \ Z)

)
Wn
Z(K(X)) := Wn

(
KZ(X)

)
.

More generally, for any U ⊂ X, one defines Wn
Z(K(U)) as being Wn

Z∩U (K(U)).

We have the following cohomological behaviour.

Theorem 1.5.5. With the above notations, we have a 12-term periodic long
exact sequence

· · · → Wn−1(U) → Wn
Z(X) → Wn(X) → Wn(U) → Wn+1

Z (X) → · · ·

where Wn(−) is a short for Wn(K(−)), when the triangulated categories K(−)
are clear from the context and similarly for Wn

Z (−).

This follows readily from the Localization Theorem 1.4.14. This was con-
sidered for derived Witt groups in [8, Thm. 1.6], and for coherent Witt groups
in [25, Thm. 2.19]. We turn below to the question of identifying the groups
W∗
Z(X) with some groups W∗(Z), but we first obtain as usual the following :

Corollary 1.5.6. Assume that our presheaf K of triangulated categories is
natural in X and excisive with respect to a class C of morphisms of schemes,
i.e. for any morphism f : Y → X in C and for any closed subset Z ⊂ X such
that f−1(Z) ∼→ Z (with reduced structures), then the induced functor

f∗ : KZ(X) → Kf−1(Z)(Y )

is an equivalence. (This is the case for K(X) = Db(VBX) from Ex. 1.5.1
and C = flat morphisms of regular schemes; it is also the case for K(X) =
Db

Coh(QCohX) from Ex. 1.5.2 and C= flat morphisms of Gorenstein schemes.)
Then, for any such morphism f : Y → X, any Z ⊂ X such that Z ′ :=
f−1(Z) ∼→ Z, there is a Mayer-Vietoris long exact sequence :

· · · → Wn−1(Y \Z ′) → Wn(X) → Wn(Y )⊕Wn(X \Z) → Wn(Y \Z ′) → · · ·

where Wn(−) is a short for Wn(K(−)). (So this applies to derived Witt groups
over regular schemes and to coherent Witt groups over Gorenstein schemes.)

Remark 1.5.7. This holds in particular in the usual situation where Y := U
is an open subset, where f : U ↪→ X is the inclusion and where Z ⊂ U . In
this case, putting V := X \ Z, we have X = U ∪ V and Y \ f−1(Z) = U ∩ V ,
recovering in this way the usual Mayer-Vietoris long exact sequence. The
above generality is useful though, since it applies to elementary distinguished
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squares in the Nisnevich topology for instance. Observe that this result is a
direct consequence of the following three things : first, the very definition of
relative Witt groups via triangulated categories; secondly, the excision prop-
erty of triangulated categories themselves; thirdly, of course, the localization
theorem.

We now turn to dévissage (in the affine case).

Theorem 1.5.8 (Gille). Let R be a Gorenstein Z[ 12 ]-algebra of finite Krull
dimension n and let J ⊂ R be an ideal generated by a regular sequence of
length l ≤ n. Then the closed immersion ι : Spec(R/J) → Spec(R) induces
an isomorphism :

W̃i(R/J) '−→ W̃i+l
J (R)

where, of course, W̃j
J(R) := W̃j

Z(R) is the j-th coherent Witt group of R with
supports in the closed subset Z = V (J) of Spec(R) defined by J .

This is [25, Thm. 4.1]. Since coherent and derived Witt groups agree in
the regular case, one has the obvious and important :

Corollary 1.5.9 (Gille). Let R be a regular Z[ 12 ]-algebra of finite Krull
dimension and let J ⊂ R be an ideal generated by a regular sequence of length l.
Assume moreover that R/J is itself regular. Then there is an isomorphism of
derived Witt groups :

Wi(R/J) '−→ Wi+l
J (R).

It is natural to ask if the cohomology theory obtained by derived (and
coherent) Witt groups is homotopy invariant. The following result is a gener-
alization of Karoubi’s Theorem 1.2.19.

Theorem 1.5.10. Let X be a regular scheme containing 1
2 . Then the natural

homomorphism of derived Witt groups Wi(X) −→ Wi(A1
X) is an isomorphism

for all i ∈ Z. (In particular, for i = 0, this is an isomorphism of classical Witt
groups.)

This is [8, Cor. 3.3] and has then been generalized in [26] as follows (using
coherent Witt group versions of the result) :

Theorem 1.5.11 (Gille). Let X be a regular scheme containing 1
2 and let

E → X be a vector bundle of finite rank. Then the natural homomorphism
Wi(X) → Wi(E) is an isomorphism for all i ∈ Z.

1.5.2 Local to Global

Recall our convention : regular means regular, noetherian and separated.
Consider an integral scheme X, for instance (the spectrum of) a domain

R, and consider its function field Q (the field of fractions of R). It is natural
to study the homomorphism
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W(X) → W(Q)

e.g. because the Witt groups of fields are better understood (see Cor. 1.2.24).
It is immediate that for R = R[X,Y ]/(X2+Y 2), the map Z ' W(R) → W(R)
is split injective but that W(Q) is 2-torsion, since−1 is a square inQ and hence
that 2·[P,ϕ] = [(P,ϕ)⊥(P,ϕ)] = [(P,ϕ)⊥(P,−ϕ)] = 0. So the homomorphism
W(R) → W(Q) is not injective in general.

For regular schemes of dimension up to 3, injectivity of W(X) → W(Q)
holds: see Thm 1.5.19 below. It is well-known to fail in dimension 4 al-
ready, even for affine regular schemes. For an example of this, see Knus [42,
Ex. VIII.2.5.3]. Nevertheless, injectivity remains true in the affine complex
case, see Pardon [62] and Totaro [80]. In [9] it is proven that the kernel of
W(X) → W(Q) is nilpotent with explicit exponent, generalizing earlier re-
sults of Craven-Rosenberg-Ware [22] and Knebusch [41].

Theorem 1.5.12. Let X be a regular scheme containing 1
2 and of finite Krull

dimension d. Then there is an integer N , depending only on
[
d
4

]
such that the

N -th power of the kernel of W(X) → W(Q) is zero in W(X).

One can always take N = 2[ d
4 ] and one can take N =

[
d
4

]
+ 1 if the con-

jectural injectivity W(OX,x) ↪→ W(Q) holds for all x ∈ X. This is indeed the
case when X is defined over a field, as we discuss below. Moreover, Exam-
ple [9, Cor. 5.3] show that

[
d
4

]
+ 1 is the best exponent in all dimensions. We

have alluded to the following conjecture of Knebusch, which is a special case
of a general conjecture of Grothendieck :

Conjecture 1.5.13. Let R be a regular (semi-) local domain containing 1
2 and

let Q be its field of fractions. Then the natural homomorphism W(R) → W(Q)
is injective.

The key result about this conjecture was obtained by Ojanguren in [56]
and says that the conjecture holds if R is essential of finite type over some
ground field. Conjecture 1.5.13 has been upgraded as follows by Pardon [61] :

Conjecture 1.5.14 (Gersten Conjecture for Witt groups). Let R be a
regular (semi-) local ring containing 1

2 . There exists a complex

0 → W(R) →
⊕

x∈X(0)

W(κ(x)) →
⊕

x∈X(1)

W(κ(x)) → · · · →
⊕

x∈X(d)

W(κ(x)) → 0

and it is exact ; where X is Spec(R), X(p) are the primes of height p and
d = dim(X). The complex is now admitted to be the one of 1.5.15 below.

For a long time, it remained embarrassing not even to know a complex as
above (call this a Gersten-Witt complex ), which one would then conjecture
to be exact. In the case of K-theory, the complex is directly obtained from
the coniveau filtration. Analogously, by means of triangular Witt groups and
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of the localization theorem, it became possible to construct Gersten-Witt
complexes for all regular schemes [14, Thm. 7.2] :

Theorem 1.5.15 (Balmer-Walter). Let X be a regular scheme contain-
ing 1

2 and of finite Krull dimension d. Then there is a convergent (cohomo-
logical) spectral sequence Ep,q1 ⇒ Wp+q(X) whose first page is isomorphic to
copies of a Gersten-Witt complex for X in each line q ≡ 0 modulo 4 and whose
other lines are zero. These isomorphisms involve local choices but a canonical
description of the first page is :

Ep,q1 := Wp+q
(
D(p) /D(p+1)

)
where D(p) = D(p)(X) is the full subcategory of Db(VBX) of those complexes
having support of their homology of codimension ≥ p.

This was reproven and adapted to coherent Witt groups with supports
in Gille [25, Thm. 3.14]. Using Thm. 1.5.15, the following Corollaries are
immediate :

Corollary 1.5.16. Let X be regular integral Z[ 12 ]-scheme of dimension 1. Let
x0 be the generic point and Q = κ(x0) be the function field of X. There is an
exact sequence :

0 → W(X) −→ W(Q) ∂−→
⊕

x∈X\{x0}

W(κ(x)) −→ W1(X) → 0.

and we have W2(X) = W3(X) = 0.

Example 1.5.17. The above applies in particular to Dedekind domains con-
taining 1

2 . For instance for D := R[X,Y ]/(X2 + Y 2 − 1), it follows from [50,
Ex. IV.3.5] that W1(D) ' Z. Here, W(D) = Z⊕ Z/2, see [42, VIII.6.1].

Corollary 1.5.18. Let X be a regular scheme containing 1
2 and of Krull

dimension d ≤ 4. Let Wnr(X) be the unramified Witt group of X. The homo-
morphism W(X) → Wnr(X) is surjective.

Corollary 1.5.19. Let X be a regular integral Z[ 12 ]-scheme of Krull dimen-
sion 3 and of function field Q. Then, the above Gersten-Witt complex

0 → W(X) → W(Q) →
⊕

x∈X(1)

W(κ(x)) →
⊕

x∈X(2)

W(κ(x)) →
⊕

x∈X(3)

W(κ(x)) → 0

is exact at W(X) and at W(Q) and its homology in degree i (that is, where
X(i) appears) is isomorphic to Wi(X) for i = 1, 2, 3.

See [14, § 10] for detailed results and definitions as well as for the following :
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Corollary 1.5.20. Let X be regular scheme containing 1
2 and of dimension at

most 7. Then, with the notations of Thm. 1.5.15, there is an exact sequence :

0 // E2
4,0

// W0(X) // E2
0,0

// E2
5,0

// W1(X) // E2
1,0

��
. 0 E2

3,0
oo W3(X)oo E2

7,0
oo E2

2,0
oo W2(X)oo E2

6,0
oo

Note that E2
p,0 is the p-th homology group of the Gersten-Witt complex of X.

Corollary 1.5.21. The Gersten Conjecture holds in low dimension up to 4.

This is [14, Thm. 10.4] in the local case. For semi -local, one needs [9,
Cor. 3.6] plus the local vanishing of shifted Witt groups, which holds in any
dimension :

Theorem 1.5.22 (Balmer-Preeti). Let R be a semi-local commutative ring
containing 1

2 . Then Wi(R) = 0 for i 6≡ 0 modulo 4.

This is [7, Thm. 5.6] for local rings and will appear in [13] in general.

Totaro [80] used the above spectral sequence 1.5.15 in combination with
the Bloch-Ogus and the Pardon spectral sequences (see [63] for the latter) to
bring several interesting computations. He provides an example of a smooth
affine complex 5-fold U such that W(U) → W(C(U)) is not injective and also
gives a global complex version of Parimala’s result 1.2.13 (note that being
finitely generated over W(C) = Z/2 means being finite), see [80, Thm. 1.4] :

Theorem 1.5.23 (Totaro). Let X be a smooth complex 3-fold. Then the
Witt group W(X) is finite if and only if the Chow group CH2(X)/2 is finite.

We return to the Gersten Conjecture 1.5.14. In [58], Ojanguren and Panin
established Purity, which is exactness of the complex at the first two places,
for regular local rings containing a field. Using the general machinery of homo-
topy invariant excisive cohomology theories, as developed in Colliot-Thélène –
Hoobler –Kahn [19], the author established the geometric case of the following
result in [8] :

Theorem 1.5.24. The Gersten Conjecture 1.5.14 holds for semi-local regular
k-algebras over any field k of characteristic different from 2.

Like for the originalK-theoretic Gersten Conjecture, the geometric case [8,
Thm. 4.3] is the crucial step. It can then be extended to regular local k-
algebras via Popescu’s Theorem, by adapting to Witt groups ideas that Panin
introduced in K-theory. This is done in [12]. Now that we have the vanishing
of odd-indexed Witt groups for semi -local rings as well, see Thm. 1.5.22,
this Panin-Popescu extension also applies to semi -local regular k-algebras, as
announced in the statement. Details of this last step have been checked in [51].
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1.5.3 Computations

Here are some computations using triangular Witt groups :

Theorem 1.5.25 (Gille). Let R be a Gorenstein Z[ 12 ]-algebra of finite Krull
dimension and n ≥ 1. Consider the hyperbolic affine (2n− 1)-sphere

Σ2n−1
R := Spec

(
R [T1, . . . , Tn , S1, . . . , Sn ]

/ (
1−

nP
i=1

TiSi
))
.

Then its coherent Witt groups are W̃i(Σ2n−1
R ) = W̃i(R) ⊕ W̃i+1−n(R). In

particular for R regular, these are derived Witt groups. In particular for R = k
a field, or a regular semi-local ring, the classical Witt groups of Σ2n−1

k is

W(Σ2n−1
k ) =

 W(k)⊕W(k) if n ≡ 1 modulo 4

W(k) if n 6≡ 1 modulo 4 .

Theorem 1.5.26 (Balmer-Gille). Let X be a regular scheme containing 1
2

and let n ≥ 2. Consider the usual punctured affine space UnX ⊂ AnX defined by
UnX =

⋃n
i=1{Ti 6= 0 }. Then its total graded Witt ring Wtot :=

⊕
i∈Z/4 Wi is :

Wtot(UnX) ' Wtot(X)
[
ε
] /

ε2 = Wtot(X)⊕Wtot(X) · ε

where ε ∈ Wn−1(UnX) is of degree n− 1 and squares to zero : ε2 = 0.

The element ε is given quite explicitly in [11] by means of Koszul com-
plexes. The above hypothesis n ≥ 2 is only needed for proving ε2 = 0. For
n = 1, the scheme U1

X = X×Spec
(
Z

[
T, T−1

])
is the scheme of Laurent “poly-

nomials” over X and one has the following generalization of Thm. 1.2.20 :

Theorem 1.5.27. Let X be a regular scheme containing 1
2 . Consider the

scheme of Laurent polynomials X[T, T−1] = U1
X . There is an isomorphism :

Wi(X)⊕Wi(X) ' Wi
(
X[T, T−1]

)
given by (α, β) 7→ α+ β · 〈T 〉 where 〈T 〉 is the rank one space with form T .

The most striking computation obtained by means of triangular Witt
groups is probably the following generalization of Arason’s Theorem 1.2.10 :

Theorem 1.5.28 (Walter). Let X be a scheme containing 1
2 and r ≥ 1. Let

PrX be the projective space over X. Let m ∈ Z/2. Consider O(m) ∈ Pic(PrX)/2.

For r even, Wi
(
PrX ,O(m)

)
=

 Wi(X) for m even

Wi−r(X) for m odd.

For r odd, Wi
(
PrX ,O(m)

)
=

 Wi(X)⊕Wi−r(X) for m even

0 for m odd.
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This is indeed a special case of a general projective bundle theorem, for
Witt and Grothendieck-Witt groups, which is to appear in [82]. Walter has
also announced results for (Grothendieck-) Witt groups of quadratics, which
are in preparation. The case of Grassmannians was started by Szyjewski in [78]
and might also follow.

1.5.4 Witt Groups and A1-Homotopy Theory

Using the above cohomological behaviour of Witt groups, Hornbostel [28,
Cor. 4.9 and Thm. 5.7] establishes the following representability result.

Theorem 1.5.29 (Hornbostel). Witt groups are representable both in the
unstable and the stable A1-homotopy categories of Morel and Voevodsky.

This is one ingredient in Morel’s announced proof of the following :

Theorem 1.5.30 (Morel). Let k be a (perfect) field of characteristic not 2.
Let SHk be the stable A1-homotopy category over k. Then the graded ring⊕

n∈Z
HomSHk

(S0,Gm
∧n)

is isomorphic to the Milnor-Witt K-theory of k. In particular, HomSHk
(S0, S0)

is isomorphic to the Grothendieck-Witt group of k and for all n < 0,
HomSHk

(S0,Gm
∧n) is isomorphic to the Witt group of k.

Of course, this result requires further explanations (which can be found
in [55, § 6] or in [54]) but the reader should at least close this Chapter remem-
bering that Witt groups quite miraculously appear at the core of the stable
homotopy category SHk , disguised as “motivic stable homotopy groups of
spheres”, objects which, at first sight, do not involve any quadratic form.
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23. Gerhard Dietel. Wittringe singulärer reeller Kurven. I, II. Comm. Algebra,
11(21):2393–2448, 2449–2494, 1983.

24. Fernando Fernández-Carmena. The Witt group of a smooth complex surface.
Math. Ann., 277(3):469–481, 1987.



32 Paul Balmer

25. Stefan Gille. On Witt groups with support. Math. Ann., 322(1):103–137, 2002.
26. Stefan Gille. Homotopy invariance of coherent witt groups. Math. Z.,

244(2):211–233, 2003.
27. Stefan Gille and Alexander Nenashev. Pairings in triangular Witt theory. J.

Algebra, 261(2):292–309, 2003.
28. Jens Hornbostel. A1-representability of hermitian K-theory and Witt groups.

Preprint, 2002.
29. Jens Hornbostel. Constructions and dévissage in Hermitian K-theory. K-
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47. Louis Mahé. Signatures et composantes connexes. Math. Ann., 260(2):191–210,
1982.



1 Witt Groups 33
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