EXAMPLES OF TENSOR-TRIANGULATED CATEGORIES

PAUL BALMER

ABSTRACT. As an introduction to tensor-triangular geometry, we review ex-
amples of tensor-triangulated categories occurring in a range of different areas.
Our goal is not to provide detailed constructions and definitions but to under-
line the repetition of the same structures throughout areas.
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1. COMMUTATIVE ALGEBRA AND ALGEBRAIC GEOMETRY

Let us start in commutative algebra. Let A be a commutative ring. Consider
(1.1) K =DP"(4A) C T=D(A)

where DP®(A) denotes the category of perfect complexes and D(A) is the de-
rived category of all A-modules. Perfect complexes DP(A) = Kb(A—proj) can
be realized as the category of bounded complexes of finitely generated projective
A-modules, with maps of complexes up to homotopy. The big derived category is
obtained by inverting quasi-isomorphisms on unbounded complexes of A-modules.

This extends to algebraic geometry. Let X be a quasi-compact and quasi-
separated scheme (a purely topological condition, asking for the underlying space
of X to admits a basis of quasi-compact open). One generalizes (1.1)

(1.2) KX=Dr"(X) C T=D(X)

in an essentially straightforward way. The big triangulated category, D(X), is
the derived category of complexes of Ox-modules with quasi-coherent homology.
The small one, Dperf(X ), consists of those complexes that are perfect on each affine
open of X. Neeman [Nee92a] proves that perfect complexes are the compact objects
of D(X), those objects ¢ € T such that Homg (¢, —): T — Ab preserves coproducts.
The fact that the ‘big’ category T is generated by the ‘small’ subcategory K = T°¢
of compact objects is a recurring feature of all examples.
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One can wonder why we care about these structures. Derived categories have
been tremendously useful in algebraic geometry, for instance through the power of
homological algebra. But perhaps one of their first uses was to formulate what
we now call Grothendieck duality. Let us mention it since it connects with our
geometric motivations.

1.3. Ezample. To illustrate Grothendieck duality in an embryonic form, consider
the ring A = Z and its quotient k = Z/pZ. A finite-dimensional k-vector space V'
can be viewed as an A-module 7, V. Although the dual of V' as a vector space has
the same dimension as V', the dual of ..V over A is zero: Hom 4 (7. V, A) = 0 simply
because i,V is a torsion A-module. Take V' = k for instance. Then ¢,V is in fact
(quasi-isomorphic to) a perfect complex. In the derived category of A, we have
V(0= A% A-0--), with the two A’s in homological degree 1 and 0.
The dual (=) of the latter, as a perfect complex, is (---0 — A % A —0--+), with
the two A’s now in homological degree 0 and —1. So (V)Y = i, (VV)[—1] and
this relation is true for any perfect complex over k. The shift by 1 comes from the
difference of Krull dimensions between Spec(A) and Spec(k). Playing instead with
A=Ek[Xy,...,Xp] and k = A/(Xq,...,X,) would yield a shift by n for instance.

Full-scale Grothendieck duality relies even more on derived categories than is
apparent in the above example. Indeed, the exceptional inverse image functor f'
and dualizing complexes only make sense at the derived level.

In any case, the elementary Example 1.3 already illustrates two things:

(1) There are phenomena that occur at the level of derived categories that simply
do not make sense at the level of modules.

(2) Some geometric information can be read on the derived category, like the rela-
tive dimension of the morphism i: Spec(k) — Spec(A) in our example.

1.4. Remark. An area that grew hand-in-hand with derived categories is K-theory.
Indeed, in the paper that is considered by some as the birthplace of K-theory [BS58],
Grothendieck constructs the push-forward on Ky by means of the derived direct-
image functor f, akin to the i, we considered in Example 1.3. Decades later,
Thomason’s famous higher K-theory paper [TT90] also relies in a critical way on
improvements in the theory of perfect complexes. The relationship between trian-
gulated categories and K-theory has not been entirely rosy though. Notoriously,
Neeman [Nee92b] showed that Waldhausen’s K-theory cannot be recovered from
homotopy categories and it was not until the recent work of Muro-Raptis [MR17]
on K-theory of derivators that the two subjects reconciled to live happily ever after.

1.5. Remark. The expectations for the derived category D(X) to be a rich invariant
of the scheme X were lowered by Mukai [Muk81] when he gave examples of non-
isomorphic schemes X 2 X’ with equivalent derived categories D(X) ~ D(X’), as
triangulated categories (for instance any abelian variety X and its dual X'). A key
realization came with Thomason’s classification [Tho97] of so-called thick tensor-
ideals of DP(X ), where it became apparent that the tensor structure on D(X)
plays an important role. So D(X) is not only a triangulated category but a tensor-
triangulated category and Mukai’s equivalences D(X) ~ D(X"’) do not preserve the
tensor structure. It is one of the first results of tensor-triangular geometry that
a tensor-triangulated equivalence D(X) ~ D(X’), or just DP*(X) ~ DPf(X"),
does force a scheme isomorphism X ~ X’.
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2. MODULAR REPRESENTATION THEORY

Let G be a finite group and k be a field of coefficients. By Maschke, we know
that if & has characteristic zero or prime to the order |G| of the group then kG is
semisimple. The hard case, when we assume that char(k) = p > 0 divides |G|, is
the topic of modular representation theory.

The non-semisimplicity of kG is measured by the additive quotient of the cate-
gory of kG-modules by the subcategory of projectives. These are the stable module
categories:

(2.1) K =stab(kG) C T = Stab(kG).

The objects of T (resp. K) are the (finitely generated) kG-modules; their maps are
the kG-linear ones modulo the ones that factor via a projective module.

A great feature of the Krull-Schmidt property is that it passes from the abelian
category kG -mod to the quotient stab(kG). So studying objects of stab(kG) and
their decomposition into sums of indecomposables can be understood as studying
non-projective indecomposable kG-modules. Obviously, understanding those stable
module categories is a core question of modular representation theory and no ad
hoc motivation is necessary.

Note that one does not expect to recover the group G from Stab(kG) already
because Stab(kG) = 0 for all groups G of order prime to p. In fact, we also
have equivalences Res$: Stab(kG) = Stab(kH) for so-called strongly p-embedded
subgroups H < G (i.e. when HY9 N H has order prime to p for all ¢ € G\ H), like
for instance Cy < S3 for p = 2. Still, such equivalences simply means that G and
H have basically the same modular representation theory.

2.2. Remark. The tensor product (over k) of representations M ®j N with diagonal
G-action g-(m®n) := (gm)®(gn) passes to the quotient by projectives and defines a
tensor product ® on Stab(kG). It then becomes interesting to describe kG-modules
M that induce equivalences M ® —: Stab(kG) = Stab(kG), i.e. those that are ®-
invertible in Stab(kG). For instance, every indecomposable N would then come
together with its translates M®" ® N for all n € Z. Of course kG-modules M that
are of dimension one over k, that is, those that are ®-invertible in kG - mod remain
®-invertible in Stab(kG) but being ®-invertible in Stab(kG) is more flexible. In
kG -mod, it boils down to the fact that MY ® M ~ k ® P for P projective, a
property that has sadly been called endotrivial since MY @ M = Endy(M). The
study of endotrivial kG-modules has been a central topic of modular representation
theory for the last decades and this is an area where the ideas of tensor-triangulated
categories have brought some applications.

3. STABLE HOMOTOPY THEORY

Historically, triangulated categories emerged in algebra, as discussed in Section 1,
and simultaneously in topology. Simplifying the study of pointed topological spaces
(say, compactly-generated ones, or simplicial sets) by working up to homotopy and
by forcing suspension to be an equivalence leads to the stable homotopy categories

(3.1) KX =SH™ c T=SH.

The finiteness on the left-hand refers to taking finite CW-complexes and the large
right-hand category is the homotopy category of spectra. Defining these precisely
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takes time but the reader can think of SH among tensor-triangulated categories as
the analogue of Z among commutative rings: It is the ‘initial’ one. (Making such
statement precise requires more structure than just triangulated categories.)

Here the motivation is somewhat different from Section 1. One is not trying
to reconstruct a scheme from the invariant D(X) anymore. Understanding SH is a
heavily watered-down but still very interesting version of the hopelessly complicated
study of all topological spaces. In particular SH is additive thanks to stabilization,
whereas Top certainly is not. The tensor product is given by the smash product,
whose unit is the sphere spectrum S°. The groups of homomorphisms from S° to its
suspensions are the stable homotopy groups of spheres. Computing them is a core
and very hard problem of topology, that connects with other parts of mathematics.
So a first motivation for understanding SH as a whole is also to provide global
structures that can ultimately shed new light on these groups.

The so-called chromatic theory of [DHS88, HS98] is such a global structure on SH
and can be considered as an ancestor of tensor-triangular geometry.

Another motivation for the big category SH is Brown’s representability theorem.
It guarantees that all (suitably defined) ‘cohomology theories’ can be realized as
Homgy(—, F) for some fixed spectrum E € SH. It is important to allow arbitrary
coproducts and thus to work with the big stable homotopy category SH and with
spectra. Brown Representability is another theme traversing all examples and one
of the motivations to study the big 7 and not merely its compact part XK.

There is a broader class of examples which is perhaps more in the spirit of
Sections 1-2. Let G be a compact Lie group, for instance a finite one. There are
versions of (3.1) based on G-spaces

(3.2) KX =SH™G) c T=SH(G).

Again, the precise constructions require some care. For specialists, we mean here
the homotopy categories of genuine G-spectra. We invert G-homotopy equiva-
lences (maps that are homotopy equivalences on all H-fixed points for all closed
subgroups H < GG) and we are stabilize with respect to all G-spheres.

In this class of examples, one can try to see how much of the combinatorial
structure of G and its subgroups gets reflected in the tensor-triangulated structure
of SH(G). Again, this is an area where tensor-triangular geometry sheds some light.

4. MOTIVIC THEORY

Let S be a base noetherian scheme, typically the spectrum of a (perfect) field.
Roughly speaking, motivic theory is the study of the cohomological properties of
(smooth) schemes X over the base S, in which a new homotopy invariance is con-
sidered, i.e. with respect to the ‘interval’ Aly. It comes in different flavors, most
importantly, in analogy with (1.2), the derived category of motives over S

(4.1) X =DM®"(S) C T =DM(S)
and, in analogy with (3.1), the Al-stable homotopy category over S
(4.2) X =SH(S)© C T =SH(S).

These categories contain in particular objects [X] for every smooth scheme X
over S, in such a way that [A' x5 X] ~ [X]. The difference between the ‘alge-
braic’ (4.1) and the ‘topological’ (4.2) is that the ‘coefficients’ of the former are
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complexes of abelian groups whereas the ‘coefficients’ of the latter are spectra. In
analogy with inverting all G-spheres in (3.2), we are here inverting another sphere
coming from geometry, which amounts to inverting P*.

The importance of motivic theory is both conceptual and practical. It allowed
Voevodsky to realize Grothendieck’s vision of the abelian category of motives at a
triangular level and it led him to prove the Bloch-Kato Conjecture.

We reach an interesting point where the tensor-triangulated categories have be-
come substantially more complicated to construct and to apprehend as a whole
than the ones of representation theory (2.1) for instance. This complexity is an-
other motivation for tensor-triangular geometry as a way to provide general meth-
ods to analyze otherwise untractable structures. The tensor-triangular geometry of
motivic examples is still at an early stage.

5. FURTHER EXAMPLES

Many of the examples listed above have variants that are highly interesting in
their own right. A more detailed survey can be found in [Ball9].

The use of tensor-triangulated categories also appears in the K K-theory of C*-
algebras, equivariant or not. A survey can be found in [Dell0].

Triangulated categories that ought to have a tensor structure (!) feature notably
in homological mirror symmetry [Kon95].
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