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Abstract. We explain how the gluing of a closed piece of the tensor-triangular

spectrum with its open complement hinges on the support of the Tate ring.
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1. Introduction

Let T be a rigidly-compactly generated tensor-triangulated category. Write T d for
the subcategory of ‘small’ objects in T, namely the dualizable objects or, equivalently,
the compact ones. The premier invariant of tensor triangular geometry is the
spectrum Spc(T d). This topological space yields the classification of all tt-ideals
of T d. It also provides information about the support of ‘big’ objects of T. This
explains why the space Spc(T d) has been computed, is being computed, and will be
computed in a wide range of examples.

When attempting such computations, it is standard to decompose Spc(T d)
into subspaces, like the images of maps Spc(Sd) → Spc(T d) induced by auxiliary
tt-functors T → S. In doing so, we often encounter a partition of the spectrum

(1.1) Spc(T d) = U t Y
into disjoint subsets U and Y whose topology, as subspaces of Spc(T d), we un-
derstand independently. To fix the ideas, assume that Y is closed and that U is
quasi-compact open. (For specialists: it suffices for Y to be a Thomason subset.)

In such a situation, the set Spc(T d) is completely determined by (1.1) and a
great deal of its topology reduces to that of the subspaces U and Y . Indeed, the
topology is often characterized by specializations x; y. This notation, borrowed
from algebraic geometry, indicates that y ∈ {x}. We say that y is a specialization
of x, or that x a generalization of y. If both x and y belong to U , or if they both
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belong to Y , the information about x; y comes from our knowledge of the spaces U
and Y . Since U is generalization-closed and Y is specialization-closed, the only
mystery is:

1.2. Question. For x in U and y in Y , when do we have x; y?

To appreciate the problem, the reader should imagine the case where both U
and Y are at the same time closed and open, so that Spc(T d) is a topological
coproduct of U and Y ; in this situation the answer to Question 1.2 is ‘Never’. This
happens exactly when T = T1 × T2 is a product of two tt-categories, such that
U = Spc(Td

1 ) and Y = Spc(Td
2 ). See Remark 3.15. The mere decomposition (1.1)

cannot differentiate this split case from a non-split case. The spaces U and Y , in
isolation, cannot remember the full topology of Spc(T d). We need some information
that bridges the gap between U and Y , in order to answer Question 1.2.

To this end, we invoke the Tate ring tY associated to Y . This construction is
due to Greenlees [Gre01] and is recalled in Definition 3.31 below. The ring object

tY = 1̂|U
is obtained in T from the unit 1 of the tensor product by completing (̂−) along
the closed subset Y and then localizing (−)|U onto the open complement U . The
support of tY (as a ‘big’ object, see Definition 2.9) is entirely contained in U . We
can now state our Tate Intermediate Value Theorem:

1.3. Theorem (Corollary 6.4). Let Y ⊂ Spc(T d) be a Thomason subset (e. g. a
closed subset with quasi-compact complement) and let x ∈ Spc(T d) r Y and y ∈ Y
be two points, one outside of Y and one inside Y . We have a specialization x; y
in Spc(T d) if and only if there exists an intermediate point z ∈ Supp(tY ) in the
support of the Tate ring such that x; z ; y.

Y

• y

•∃z

Supp(tY )

• x

This result explains how Y is attached to its complement in Spc(T d). For instance,
the split case mentioned above (that is, Y open and closed) is exactly the situation
where tY = 0, in which case Supp(tY ) = ∅ and no point z can exist.

Note that the complement U = Spc(T d)rY may be identified with the spectrum
of the localization T → T|U := T/TY away from Y . On the other hand, we
will see that Y ∪ Supp(tY ) is precisely the image of the map on spectra induced

by the completion T d → T̂ d along Y . The overlap between those two pieces is
precisely Supp(tY ). The ‘bottom’ specialization x ; z in Theorem 1.3 holds in
the spectrum of the localization T|U . On the other hand, it follows from a strong
form of the Tate Intermediate Value Theorem (Theorem 6.1) that one can find z so
that the ‘top’ specialization z ; y is also the image of such a specialization in the

spectrum of the completion T̂ d.
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We can consider the commutative square of tt-categories

(1.4)

T d
‘(−)

//

(−)|U
����

T̂ d

(−)|V
����

T d|U // T̂ d|V
comparing completion along Y , in the top row, with the respective localizations

on U and on V = ϕ−1(U), where ϕ : Spc(T̂ d) → Spc(T d) is the map induced
by completion. We prove in Corollary 7.5 that the induced square on tt-spectra
is a pushout. This explains how Spc(T d) is recovered from U = Spc(T d|U ) and

Spc(T̂ d) glued along V . This pushout property nicely matches a recent result of
Naumann–Pol–Ramzi [NPR24, Theorem 5.11] stating that the ‘fracture’ square of
∞-categories underlying (1.4) is cartesian in a suitable ∞-category of ∞-categories.

Our set-up is extremely general: Tensor-triangulated categories are abundant
throughout mathematics and their spectra offer an unlimited supply of Thomason
subsets Y to play with. It is therefore unsurprising that we can give a long list of
examples that illustrate our results. The simpler of these examples are sprinkled
over the first few sections. The less elementary ones are concentrated in the last
section of the paper, which is entirely dedicated to examples and applications.

Outline of the paper: We briefly recall some standard definitions and terminology
in Section 2 including notions of support for big objects in tt-geometry. We use
this support to give a description of the image of a map on spectra which may be
of independent interest (Theorem 2.20). In Section 3 we recall the recollements
of Y -torsion, U -local and Y -complete subcategories and we clarify the meaning of
completion along Y . We discuss the completion map ϕ on the spectrum in Section 4.
Among other things, we prove that ϕ is a homeomorphism above Y (Theorem 4.6).
Then in Section 5 we make preparations for the proof of the main theorem by
analyzing the interaction between completion and geometric tt-functors, in particular
localizations. We also prove in Theorem 5.8 that the Tate construction satisfies
excision around Y . In Section 6 we state and prove the main theorem and we give
the description of Spc(T d) as a pushout in Section 7. We close the paper in Section 8
with a survey of examples arising in chromatic homotopy theory (Theorem 8.8 and
Proposition 8.11), equivariant stable homotopy theory (Theorem 8.20), modular
representation theory (Proposition 8.23) and Goodwillie calculus (Theorem 8.31).

2. Support of big objects

A standard reference for triangulated categories is Neeman’s textbook [Nee01].
The original reference for tt-geometry is [Bal05].

2.1. Recollection. A rigidly-compactly generated tensor-triangulated category T, or
a ‘big’ tt-category for short, is a triangulated category with a compatible closed
symmetric monoidal structure in the sense of [HPS97, Appendix A], which admits
arbitrary coproducts, which is compactly generated as a triangulated category,
and which has the property that its compact objects coincide with its dualizable
objects. The latter are the ‘small’ objects of T and they form an essentially small
tt-subcategory T d ⊂ T. By construction, the tt-category T d is rigid, meaning that
every object is dualizable.
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2.2. Notation. We write ⊗ for the tensor, [−,−] for the internal hom and 1 for the
⊗-unit. For c ∈ T d dualizable we write c∨ := [c,1] for its dual.

2.3. Recollection. A geometric functor f∗ : T → S between ‘big’ tt-categories is
a tensor-triangulated functor that commutes with arbitrary coproducts. Such a
functor admits a right adjoint f∗ : S→ T which itself admits a further right adjoint
f ! : T → S; see [Nee96] and [BDS16, Section 2]. We also have f∗(T d) ⊆ Sd since
tensor functors preserve dualizable objects. Thus we have the restricted tt-functor
f∗ : T d → Sd and a continuous map f := Spc(f∗) : Spc(Sd)→ Spc(T d).

2.4. Recollection. For an essentially small additive category K, like K = T d, a (right)
K-module is an additive functor Kop → Ab to abelian groups. We denote by Mod-K
the abelian category of all such modules and by mod-K the subcategory of finitely
presented ones, i.e., the cokernels of maps of K realized in Mod-K via Yoneda. See
more in [Kra00, Sections 1–2] or [Nee01, Chapter 5].

If K is triangulated then the Yoneda embedding h: K→ mod-K is the universal
homological functor to an abelian category [Kra00, Lemma 2.1] and h: K→ Mod-K
is the universal homological functor to an abelian category satisfying (AB 5) [Kra00,
Lemma 2.2]. Hence any triangulated functor f∗ : K→ L to another essentially
small triangulated category induces a unique exact coproduct-preserving functor
f̃∗ : Mod-K→ Mod-L that also preserves finite presentation f̃∗(mod-K) ⊆ mod-L

and agrees with f∗ under Yoneda: h ◦f∗ ∼= f̃∗ ◦ h.
If K is tensor-triangulated then Mod-K inherits a unique tensor product (Day

convolution) that is right-exact and commutes with coproducts in both variables,
preserves mod-K×mod-K→ mod-K and makes the Yoneda embedding into a tensor
functor. Moreover, this tensor makes the induced functor f̃∗ : Mod-K → Mod-L
into a tensor functor whenever f∗ : K→ L is a tt-functor.

2.5. Recollection. A weak ring in T is an object A with a morphism η : 1→ A such
that A⊗ η : A→ A⊗A is a split monomorphism. Of course, ring objects and their
unit map η define weak rings, since multiplication is a retraction of A⊗ η.

2.6. Recollection. The support supp(c) ⊆ Spc(T d) of a small object c ∈ T d is
built into the definition of the spectrum. For big objects t ∈ T several notions of
support are conceivable. The first general one was proposed in [BF11] by means of
idempotents but the construction needs the space Spc(T d) to be weakly noetherian;
see also [BHS23a]. A more general notion of support for big objects is the homological

support Supph(t) of [Bal20a]. It is a subset of the homological spectrum

(2.7) Spch(T d) := {B ( mod-T d maximal Serre ⊗-ideal}.
For every ‘homological prime’ B in Spch(T d), we have a homological ⊗-functor

hB : T
h // Mod-T d QB // (Mod-T d)/Loc〈B〉 =: ĀB

called the ‘homological residue field’ functor at B; it is composed of the restricted
Yoneda functor h followed by the Gabriel quotient QB of the big module cate-
gory Mod-T d by the localizing ideal Loc〈B〉 = Loc⊗〈B〉 generated by B.

2.8. Definition. The homological spectrum comes with a surjective comparison map

π : Spch(T d)�Spc(T d)

defined by π(B) := h−1(B) = Ker
(
(hB)|T d

)
. This map π is a bijection in all known

examples. When π is bijective, we say that T satisfies the steel condition.
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2.9. Definition. For every ‘big’ object t ∈ T, one defines Supph(t) in Spch(T d) as{
B ∈ Spch(T d)

∣∣ [t, EB] 6= 0
}

where EB is the pure-injective object in T correspond-

ing to the injective hull of 1 in the residue category ĀB. Conveniently, for a weak
ring A, this definition simplifies into the following conceptually clearer formula:

(2.10) Supph(A) =
{
B ∈ Spch(T d)

∣∣ hB(A) 6= 0
}
.

See [Bal20a, Theorem 4.7]. One can then define the ‘big’ support of an object t ∈ T

in the ordinary spectrum Spc(T d) by projecting Supph(t) along π:

(2.11) Supp(t) := π(Supph(t)) ⊆ Spc(T d).

For a weak ring A this reads

Supp(A) =
{
P ∈ Spc(T d)

∣∣∃B ∈ π−1({P}) such that hB(A) 6= 0
}
.

If T satisfies the steel condition, π : Spch(T d)
∼→Spc(T d), then the above quantifiers

simplify: The weak ring A is supported at P if and only if hP(A) is non-zero, where
hP = hπ−1(P) is the unique homological residue field functor at the point P.

2.12. Remark. When Spc(T d) is weakly noetherian, the above support Supp(A)
agrees with the Balmer–Favi support if A is a weak ring; see [BHSZ24, Proposi-
tion 5.11]. This agreement can fail for general objects; see [BHS23a, Example 5.5].

2.13. Remark. If A is a weak ring then Supp(A) = ∅ implies A = 0 by [Bal20a,
Theorem 1.8]. Again, this ‘detection property’ need not hold for general objects.

2.14. Remark. If A → A′ is a unital map of weak rings then hB(A) → hB(A′)
remains a unital map in ĀB, for every homological prime B. We deduce from (2.10)

that Supph(A) ⊇ Supph(A′) and hence Supp(A) ⊇ Supp(A′), too.

2.15. Remark. Let f∗ : T → S be a geometric functor and let f := Spc(f∗) :

Spc(Sd) → Spc(T d) and f h := Spch(f∗) : Spch(Sd) → Spch(T d) be the induced
maps. These fit into a commutative diagram

(2.16)

Spch(Sd) Spch(T d)

Spc(Sd) Spc(T d).

π

f h

π

f

The following base-change formulas for support are established in [BHSZ24].

2.17. Proposition. With the above notation, the following statements hold:

(a) For any weak ring A in T, we have Supph(f∗(A)) = (f h)−1(Supph(A)). If T
satisfies the steel condition (Definition 2.8) then Supp(f∗(A)) = f−1(Supp(A)).

(b) For any weak ring B in S, we have Supph(f∗(B)) = f h(Supph(B)). Hence
Supp(f∗(B)) = f(Supp(B)).

2.18. Remark. In particular, taking B = 1S, we have the formula

Im(f) = Supp(f∗(1S))

for the image of the map f : Spc(Sd) → Spc(T d) induced by a geometric functor
f∗ : T → S. This formula, first established in [Bal20a, Corollary 5.13], relies on the
‘big’ categories T and S. We want to extend this result to the setting where we are
only given a tt-functor on the small objects. The resulting Theorem 2.20 may be
useful in other contexts.
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2.19. Recollection. To prove the theorem, we first recall two twin lemmas concerning
the existence of primes for an essentially small tt-category K:

(a) The first one [Bal05, Lemma 2.2] is purely tt-categorical. For every tt-ideal J ⊂ K

and every ⊗-multiplicative class of objects S ⊂ K such that J ∩ S = ∅ there
exists a triangular prime P ∈ Spc(K) such that J ⊆ P and P ∩ S = ∅.

(b) The second one [Bal20b, Lemma 3.8] assumes that K is rigid and involves the
abelian tensor-category mod-K. For every Serre ⊗-ideal I ⊂ mod-K and every
⊗-multiplicative class of objects S ⊂ K such that I ∩ h(S) = ∅ there exists a

homological prime B ∈ Spch(K) such that I ⊆ B and B ∩ h(S) = ∅.

2.20. Theorem. Let T be a rigidly-compactly generated tt-category (Recollection 2.1)
and let f∗ : T d → L be a tt-functor to an essentially small tt-category L. Let A ∈ T

be a weak ring, not necessarily compact.

(a) Suppose that every morphism α in T d such that f∗(α) = 0 satisfies A⊗ α = 0.
Then we have Supp(A) ⊆ Im(Spc(f∗)).

(b) Suppose that every morphism α in T d such that A⊗ α = 0 satisfies f∗(α) = 0.
Then we have Im(Spc(f∗)) ⊆ Supp(A).

Proof. For (a), let P ∈ Supp(A), meaning that P = π(B) for some maximal Serre
⊗-ideal B ⊂ mod-T d such that Ā := hB(A) is non-zero in the residue category ĀB.
This implies that the unit 1̄� Ā is a monomorphism by [Bal20a, Proposition 3.5].
We need to show that P ∈ Im(Spc(f∗)) which amounts to proving that the tt-
ideal 〈f∗(P)〉L does not meet the ⊗-multiplicative class f∗(T d r P) in L. (See
Recollection 2.19 (a) for L. Any prime Q ∈ Spc(L) such that 〈f∗(P)〉L ⊆ Q and
Q ∩ f∗(Kr P) = ∅ satisfies (f∗)−1(Q) = P.) If ab absurdo there was some c ∈ P

and some d ∈ T d r P such that f∗(d) ∈ 〈f∗(c)〉L then, by the usual arguments
of [Bal10], we would have f∗(ξ⊗nc ⊗d) = 0 for some n� 1, where the map ξc : b→ 1
is the homotopy fiber of coev : 1→ c⊗ c∨ in T d. By hypothesis this implies that
A ⊗ ξ⊗nc ⊗ d = 0. Applying the tensor-functor hB : T → ĀB to this relation we
see that hB(ξc)

⊗n is zero on the object Ā ⊗ hB(d). However hB(c) = 0 since
c ∈ P = π(B) = ker(hB) and therefore hB(ξc) is an isomorphism. We conclude
that the object Ā⊗ hB(d) must be zero, and therefore hB(d) = 0 since 1̄� Ā is a
monomorphism and hB(d) is ⊗-flat. So d ∈ ker(hB) = P which is a contradiction.

For (b), let P = (f∗)−1(Q) for Q ∈ Spc(L). Consider the functor g∗ : T d →
L�L/Q. Note that A⊗ α = 0 also implies g∗(α) = 0 and since P = (g∗)−1(0) we
can replace f∗ by g∗ and assume for simplicity that L is local (0 is prime) and that
P = Ker(f∗). Consider now the commutative diagram (Recollection 2.4)

(2.21)

T d f∗
//

h

��

L

h

��

mod-T d f̃∗
// mod-L.

Let I ⊂ mod-T d be the kernel of f̃∗, that is, I =
{
M ∈ mod-T d

∣∣ f̃∗(M) = 0
}

and

let S ⊂ T d be the ⊗-multiplicative complement of P. By the above discussion, we
have I∩h(S) = ∅. Hence (Recollection 2.19 (b)) there exists B ∈ Spch(T d) such that
I ⊆ B and B ∩ h(S) = ∅. It follows from these properties that π(B) = h−1(B) = P.
So we get the result if we prove that hB(A) is non-zero in the residue category ĀB,
for then B provides the homological prime above P that detects A. For this, let
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I ∈ Mod-T d be the kernel of 1 → h(A) in Mod-T d. Since I is a subobject of the
finitely presented 1, we must have I = ∪M⊆IM where M runs over the finitely
presented subobjects of I (see [BKS20, Lemma 3.9] if necessary). Any such M is
the image of some h(α) for some map α : a → 1 in T d. It follows that A⊗ α = 0
in T by using that this holds under restricted Yoneda and that A is a weak ring. By
hypothesis, this forces f∗(α) = 0. Therefore f̃∗(M) = 0 in mod-L by exactness of f̃∗

and commutativity of (2.21). Hence M ∈ B and therefore I = ∪MM ∈ Loc〈B〉. It
follows that I 7→ 0 in ĀB and therefore 1̄�hB(A) is a monomorphism. �

3. Localization, completion and the Tate construction

Let us remind the reader of finite recollements; see [Gre01].

3.1. Hypothesis. Let T be a ‘big’ tt-category (Recollection 2.1). Choose a Thomason
subset Y of its spectrum and denote the complement of Y by U :

(3.2) Y ⊆ Spc(T d) and U := Y C = Spc(T d) r Y.

The choice of Y is the only parameter in our entire discussion. It amounts to
choosing the corresponding tt-ideal T c

Y :=
{
c ∈ T c = T d

∣∣ supp(c) ⊆ Y
}

of small
objects supported on Y . (We explain in Remark 3.19 why we write T c

Y instead
of T d

Y .) The latter generates the localizing ideal TY := Loc〈T c
Y 〉 = Loc⊗〈T c

Y 〉 of T.
Brown–Neeman Representability provides two semi-orthogonal decompositions (1)

(3.3) T = 〈TY ⊥ T⊥Y 〉 and T = 〈T⊥Y ⊥ T⊥⊥Y 〉.

In the literature, TY is sometimes called the subcategory of Y -torsion objects ; objects
of its right-orthogonal T⊥Y :=

{
t ∈ T

∣∣ HomT(s, t) = 0 for all s ∈ TY
}

= (T c
Y )⊥ are

called local ; and finally the double orthogonal T⊥⊥Y = (T⊥Y )⊥ is usually called the
subcategory of Y -complete objects. When the tt-ideal T c

Y is given a name, say J,
some authors speak of ‘J-torsion’, ‘J-local’ and ‘J-complete’.

Since the local T⊥Y appears in both decompositions (3.3), the quotient T/T⊥Y has
two equivalent realizations, namely the Y -torsion and the Y -complete subcategories.
Hence they are equivalent via the composite TY �T�T⊥⊥Y of the inclusion of TY
and the left adjoint to the inclusion of T⊥⊥Y . We have two equivalent recollements

(3.4)

TY
��

incl

��

��

[eY ,−]
��

∼= T⊥⊥Y
��

eY ⊗−
��

��

incl

��

T

eY ⊗−

OOOO

fY ⊗−
����

[fY ,−]
����

= T

[eY ,−]
OOOO

fY ⊗−
����

[fY ,−]
����

T⊥Y

OO
incl

OO

= T⊥Y

OO
incl

OO

with identical ‘bottom’ part. We highlight the inclusions ‘incl’ of subcategories.
The other functors are uniquely defined as adjoints. We indicate in (3.4) how to

1Recall that T = 〈A ⊥ B〉, for two triangulated subcategories A,B ⊆ T, means that every

object t ∈ T fits in an exact triangle a→ t→ b→ Σa with a ∈ A and b ∈ B and that there is no
non-zero morphism in T from objects of A to those of B. In that case, the inclusion A� T admits
a right adjoint identifying A with T/B and B� T admits a left adjoint identifying B with T/A.
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compute those adjoints via the tensor structure. (It follows that the equivalence

TY
∼→T⊥⊥Y is given by [eY ,−] with inverse eY ⊗−.) This involves the exact triangle

(3.5) eY → 1→ fY → ΣeY

in T that is uniquely characterized by the properties eY ∈ TY and fY ∈ T⊥Y ; this
triangle comes from the semi-orthogonal decomposition T = 〈TY ⊥ T⊥Y 〉 applied to
the object t = 1. See details in [BF11] where (3.5) is called an idempotent triangle
since e⊗2Y

∼= eY and f⊗2Y
∼= fY . For an object t ∈ T its triangles with respect to the

decompositions (3.3) can be extracted from (3.5) by applying −⊗ t and [−, t]:

For T = 〈TY ⊥ T⊥Y 〉 : eY ⊗ t→ t→ fY ⊗ t→ ΣeY ⊗ t(3.6)

For T = 〈T⊥Y ⊥ T⊥⊥Y 〉 : [fY , t]→ t→ [eY , t]→ Σ[fY , t].(3.7)

The idempotent endofunctors eY ⊗−, fY ⊗−, [eY ,−], [fY ,−] : T → T satisfy:

TY = Im(eY ⊗−) = Ker(fY ⊗−)(3.8)

T⊥Y = Im(fY ⊗−) = Im([fY ,−]) = Ker(eY ⊗−) = Ker([eY ,−])(3.9)

T⊥⊥Y = Im([eY ,−]) = Ker([fY ,−]).(3.10)

3.11. Remark. By the Neeman–Thomason Theorem, the localization fY ⊗− : T�T⊥Y
is a geometric functor whose image T⊥Y

∼= T/TY is a genuine ‘big’ tt-category in the
sense of Section 2. In tt-geometry, it is usually denoted

(3.12) T|U := T/TY ∼= T⊥Y .

Its subcategory of small objects is given by T|dU = (T d/T c
Y )\, the idempotent-

completion of the corresponding quotient of small objects. See [Nee92]. It follows
that its spectrum is just U , embedded in Spc(T d) via the injective map induced
by localization: Spc(T|dU ) ∼= U . We think of T|U as the restriction of T to U . For
instance, in algebraic geometry, if T is the derived category of a quasi-compact and
quasi-separated scheme X and U ⊆ X ∼= Spc(T d) is a quasi-compact open subset
then T|U recovers the derived category of U and T�T|U is the usual restriction
to U . In view of this, the objects of T⊥Y should be called U -local (not Y -local).

The story is more complicated with the Y -torsion and Y -complete subcategories.

3.13. Remark. At first sight, both TY and T⊥⊥Y have many desirable properties.
They are tensor-triangulated categories with coproducts. The tensor in TY is the
one in T but with unit eY ; the tensor in T⊥⊥Y is s⊗̂t := [eY , s⊗ t], the tensor in T

followed by [eY ,−]; it has unit [eY ,1] ∼= [eY , eY ]. The upward functors in (3.4) that
go from T to these categories TY and T⊥⊥Y are Bousfield localizations with respect
to tensor-ideals. These localizations preserve the tensor (hence dualizable objects)
and they have adjoints on both sides. Furthermore, the categories TY and T⊥⊥Y are
compactly generated by dualizable objects, namely by T c

Y which is the subcategory
of compact objects in both of them:

(3.14) (TY )c = (T⊥⊥Y )c = T c
Y .

For TY = Loc〈T c
Y 〉, this follows from [Nee92, Lemma 2.2]: the compact objects in a

compactly generated subcategory are given by the thick closure of the generators.
Transporting this under the equivalence [eY ,−] : TY

∼→T⊥⊥Y and using that [eY , c] ∼=
[eY ⊗ c∨,1] ∼= [c∨,1] ∼= [1, c] ∼= c when c ∈ T c

Y is dualizable and supported on Y , we
get (T⊥⊥Y )c = T c

Y again.
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3.15. Remark. Unfortunately, neither TY nor T⊥⊥Y is rigidly-compactly generated
in general. Indeed, their tensor-unit is only compact in the split case where T ∼=
T1 × T2 and Y = Spc(Td

1 ) and U = Spc(Td
2 ). See [BS24a, Remark 2.12]. Thus the

localizations T�TY and T�T⊥⊥Y are not geometric functors of ‘big’ tt-categories
in the sense of Recollection 2.3 except in the split case.

3.16. Remark. Despite its snazzy name, the Y -complete subcategory T⊥⊥Y is not
any better than the ‘naive’ Y -torsion subcategory TY . There is absolutely no more
mathematical information in the right-hand side of (3.4) than in its tt-equivalent
left-hand side.

We must nevertheless acknowledge the weight of tradition and the vast litera-
ture that presents T⊥⊥Y as the completion of T along Y . Mathematicians like to
compose functors with their right adjoint, as in the case of extension-of-scalars
B ⊗A − : A-Mod→ B-Mod: We like to think of B as an A-module and we like to
think of B ⊗A − as a monad on A-Mod. If we compose the localization T�T⊥⊥Y
(or T�TY ) in (3.4) with its right adjoint we get (in both cases!) the functor

(3.17) [eY ,−] : T → T.

This is just a Bousfield localization. This functor does have a ‘completion’ vibe
to it, as we discuss in [BS24a, Remark 2.6]. For instance, the following holds true.

In the case of the derived category T = D(R) of a commutative noetherian ring R,

the above functor [eY ,−] almost agrees with R̂I ⊗− : D(R)→ D(R) where R̂I is

the I-adic completion and Y = V (I). The agreement [eY , c] ∼= R̂I ⊗ c holds on

perfect complexes c. However it fails for ‘big’ objects, like the object R̂I itself, since
[eY , R̂I ] is R̂I again whereas R̂I⊗R̂I is not. The (Bousfield) completion T⊥⊥Y cannot

recover D(R̂I), since the latter is always a legitimate ‘big’ tt-category. Nobody
expects extension-of-scalars along R→ R̂I to be a mere localization.

In [BS24a], we prove that something about D(R̂I) can nevertheless be read
off T⊥⊥Y in the above example of T = D(R). Namely, the compact-dualizable

objects Dperf(R̂I) in D(R̂I) can be recovered as the dualizable objects in D(R)⊥⊥Y .
This result suggests a better notion of completion of T along Y in general; namely

it should be a ‘big’ tt-category T̂ whose small objects is equal to

(3.18) T̂ d := (T⊥⊥Y )d

the subcategory of dualizable objects in the Y -complete T⊥⊥Y , or equivalently (!)
the dualizable objects in TY . In both cases, we mean the dualizable objects in the
tt-category itself, not in the ambient category T under any of the embeddings. This

is one possible definition of the ‘big’ T̂ adopted by our ∞-friends Naumann–Pol–

Ramzi [NPR24]. In the presence of an ∞-categorical model, they construct T̂ as

the Ind-completion of the T̂ d prescribed in (3.18); see [NPR24, Definition 5.1].

3.19. Remark. With (3.18), we began considering dualizable objects in T⊥⊥Y
∼= TY .

This is the reason why ever since Hypothesis 3.1 we have been systematically writing
T c
Y instead of T d

Y for the tt-ideal (T c)Y = (T d)Y of the compact-dualizables in T

supported on Y . We want to avoid any possible confusion with (TY )d.

3.20. Remark. We could make other choices for the completion of T d along Y instead

of the dualizables T̂ d = (T⊥⊥Y )d in the Y -complete subcategory chosen in (3.18).
The smallest choice is the thick envelope T̂ d

0 = ThickT⊥⊥Y
([eY ,T d]) of the image

of T d → T̂ d. This is the same as T̂ d when the latter is generated by the unit, as in
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the ring case discussed above, but in general we should expect ‘exotic’ dualizable

objects in T⊥⊥Y , that is, outside of T̂ d
0 . Exotic dualizables exist in homotopy theory,

for instance in the K(n)-local category; see [BIKP24a, Section 5] with details in
[HS99, Section 15.1]. In contrast, [BIKP24b] establishes that there are no exotic
dualizables for the stable module category. Compare also [NP24].

For any such choice of an intermediate tt-subcategory L, between T̂ d
0 and T̂ d,

the fully faithful functors T̂ d
0 ↪→ L ↪→ T̂ d induce surjective maps on spectra

Spc(T̂ d)�Spc(L)�Spc(T̂ d
0 ) by [Bal18]. In particular, all those spectra have the

same image in the original Spc(T d). Under some noetherian hypotheses, one can

also prove that these maps Spc(T̂ d)�Spc(L)�Spc(T̂ d
0 ) are quotient maps with

connected fibers, by upcoming work of the second author [San25].

Let us summarize our discussion.

3.21. Definition. We call T⊥⊥Y the Bousfield completion of T along Y and call T̂ d =
(T⊥⊥Y )d as in (3.18) the completion of T d along Y . When we need to emphasize Y ,
we shall write (T̂Y )d instead of T̂ d but for most of the paper Y is clear from context.
We denote the completion tt-functor [eY ,−] : T → T⊥⊥Y on dualizables by

(3.22)
(̂−) : T d // T̂ d

c � // ĉ = [eY , c].

By extension, we also denote by ĉ = [eY , c] the object ĉ viewed in T. For instance,

1̂ = [eY ,1] is the completed unit. We write ϕY for the induced map on spectra

(3.23) ϕY : Spc(T̂ d)→ Spc(T d).

Again, we drop the mention of Y and simply write ϕ when clear from context.

3.24. Remark. At first, some readers might dislike the absence of Y in the above

notation T̂ for completion. This simplification follows standard practice when
completing a topological space: One omits the metric, unless several metrics are
involved. In our case, there is another reason. We shall see in Theorem 4.6

that Y identifies with a Thomason subset of Spc(T̂ d); therefore (T̂ d)Y already has

a meaning — the objects of T̂ d supported on Y — which would collide with writing

the completion as T̂ d
Y , for instance. Mathematicians are overusing indices.

We can generalize the example considered in Remark 3.16.

3.25. Example. Let R be a commutative ring, let I = 〈s1, . . . , sr〉 ⊆ R be a

finitely generated ideal, and let R̂I = limnR/I
n be the I-adic completion. Suppose

that s = (s1, . . . , sr) is ‘Koszul-complete’, meaning that the canonical map on
Koszul complexes KosR(s)→ KosR̂I (s) is a quasi-isomorphism. If R is noetherian

then every s is Koszul-complete by [BS24a, Proposition 3.17]. Let T := D(R)

and Y := V (I) ⊆ Spec(R) ∼= Spc(T d). By [BS24a, Theorem 5.1], we have 1̂ ∼= R̂I

and a tt-equivalence T̂ d ∼= Dperf(R̂I) that turns the tt-functor (̂−) : T d → T̂ d into

extension-of-scalars Dperf(R) → Dperf(R̂I). The map ϕY : Spc(T̂ d) → Spc(T d)

of (3.23) identifies with the map Spec(R̂I)→ Spec(R) induced by I-adic completion
on ordinary Zariski spectra.

So the completion T̂ d is what we expect it to be in this example. In particular it

is essentially small. It might not be clear a priori why T̂ d is so in general.
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3.26. Proposition. Let S be a tt-category that is compactly generated as in [HPS97].

(a) The tensor of a compact object with a dualizable object is compact: Sd⊗Sc ⊆ Sc.
(b) The subcategory of dualizable objects Sd is essentially small.

Proof. For (a), if d ∈ Sd is dualizable and c ∈ Sc is compact, we have Hom(c⊗d,−) ∼=
Hom(c, d∨ ⊗−) and both d∨ ⊗− and Hom(c,−) commute with coproducts.

For (b), for every infinite cardinal α, let us denote by Lα the α-localizing
subcategory generated by the compact objects, that is, closing Sc under triangles
and coproducts of fewer than α objects. It follows from (a) and cocontinuity of
the tensor that Sd ⊗ Lα ⊆ Lα. One can check that each Lα is essentially small; for
instance, it is contained in the essentially small category of α-compact objects in
the sense of Neeman [Nee01]. Since S = Loc〈Sc〉, we have S = ∪αLα and therefore
there exists α large enough so that 1 ∈ Lα. In that case, Sd = Sd ⊗ 1 ⊆ Lα is
essentially small. �

3.27. Remark. One can adapt the above argument to establish that Sd is essentially
small for tt-categories S that are only ‘well generated’.

3.28. Corollary. The category T̂ d of dualizable objects in T⊥⊥Y is essentially small.

Proof. The Bousfield completion T⊥⊥Y is compactly generated (Remark 3.13). �

Besides commutative algebra, completion also appears in representation theory.

3.29. Example. Let k be a field of characteristic p > 0 and let G be a finite
group. The tensor of k-linear G-representations is the tensor over k with diagonal
G-action. Let T = K Inj(kG) be the homotopy category of complexes of injective kG-
modules and consider the localization Q : T�D(kG) onto the derived category,
which mods out the subcategory Kac Inj(kG) of acyclic complexes of injectives. Write
J : Kac Inj(kG)�K Inj(kG) for the inclusion. They fit into a recollement [BK08]

(3.30)

D(kG)
��

Qλ

��

��
Qρ

��

K Inj(kG)

Q

OOOO

Jλ

����

Jρ
����

Kac Inj(kG)

OO
J

OO

Dperf(kG)
��

��

Db(kG)

����

stab(kG)

whose compact objects are displayed on the right-hand side. More precisely, Db(kG)

means Db(kG-mod) which embeds in K Inj(kG) via Qρ. Using that Qλ agrees
with Qρ on perfect complexes, the compacts of Kac Inj(kG) identify with the sta-
ble module category stab(kG) = kG-mod/kG-proj. Consequently, Kac Inj(kG) ∼=
Stab(kG) is equivalent to the big stable module category.

In this example, Dperf(kG) = T d
Y where Y = {∗} is the closed point in the

homogenous spectrum of cohomology Spech(H•(G, k)) ∼= Spc(T d), the latter being

the tt-spectrum of Db(kG). Therefore the Bousfield completion of T = K Inj(kG)
along Y = {∗} is the derived category D(kG). The ‘big’ completion would re-
cover K Inj(kG) again, as the dualizables T̂ d in D(kG) are just Db(kG), which are in-
deed the compacts of K Inj(kG). In other words, the local tt-category T = K Inj(kG)
should be considered ‘complete’ (at its closed point).
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Note that in this example the ring object 1̂T = [eY ,1] = Qρ(1) is 1T , confirming
the fact that T is Y -complete. Its localization fY ⊗ [eY ,1] = fY = 1Stab(kG) is
the unit in the stable module category, whose graded endomorphism ring is Tate
cohomology. This fact explains the following terminology.

3.31. Definition. Under Hypothesis 3.1, the Tate functor tY : T → T is defined by

tY (t) := fY ⊗ [eY , t] ∼= [fY ,ΣeY ⊗ t].
The above natural isomorphism is the ‘Warwick Duality’ of Greenlees [Gre01,
Corollary 2.5]. One observes that tY is lax monoidal. Thus tY (t) is a (weak) ring
whenever t is a (weak) ring. In particular, we have the Tate ring

tY (1) = fY ⊗ [eY ,1] ∼= [fY ,ΣeY ]

which is a commutative ring object in T. (The Tate ring tY (1) was denoted tY in
the introduction, for simplicity.) Note that every tY (t), and in particular the Tate
ring tY (1), is a U -local object of T by construction.

The vanishing of the Tate functor forces a direct-sum decomposition.

3.32. Proposition. Let t ∈ T be an object such that tY (t) = 0. Then the exact
triangle (3.6) splits and we have t ∼= (eY ⊗ t)⊕ (fY ⊗ t).

Proof. We have T(fY ⊗t,ΣeY ⊗t) ∼= T(t, [fY ,ΣeY ⊗t]) ∼= T(t, tY (t)). Hence tY (t) = 0
forces the third morphism in (3.6) to be zero. �

3.33. Remark. For any object t ∈ T, tensoring the idempotent triangle (3.5) by
[eY , t] and using that eY ⊗ [eY , t] ' eY ⊗ t, we obtain an exact triangle

(3.34) eY ⊗ t→ [eY , t]→ tY (t)→ ΣeY ⊗ t
called the ‘norm’ exact triangle. The name comes from the ‘norm cofiber sequence’
in equivariant homotopy theory; see Remark 8.18 below.

We end this section with an easy observation that will come in handy later.

3.35. Lemma. Let Y,W ⊆ Spc(T d) be disjoint Thomason subsets: Y ∩W = ∅.
Then [s, t] = 0 in T for all s ∈ TY and t ∈ TW .

Proof. This is clear if s ∈ T c
Y and t ∈ T d

W are dualizable since supp([s, t]) =
supp(s∨) ∩ supp(t) = ∅. It passes to t ∈ TW arbitrary by compactness of s ∈ T c

Y .
It then passes to every s ∈ TY since Ker([−, t]) is a localizing subcategory of T. �

4. The spectral map induced by completion

We next discuss the map ϕ : Spc(T̂ d)→ Spc(T d) induced by the tt-functor (̂−) =

[eY ,−] : T d → T̂ d of completion along Y . We keep the notation of Hypothesis 3.1
and Definition 3.21.

4.1. Proposition. Consider the commutative ring object [eY ,1] in T. For a mor-

phism α in T d we have α̂ = 0 in T̂ d if and only if [eY ,1]⊗ α = 0 in T.

Proof. We have in T that [eY , c] ∼= [eY ,1]⊗ c for every dualizable c ∈ T d. �

Recall our discussion of the support of big (ring) objects in Section 2.

4.2. Corollary. The image of the continuous map Spc(T̂ d)→ Spc(T d) induced by
completion is Supp([eY ,1]).
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Proof. Apply Theorem 2.20 to the ring A = [eY ,1] of Proposition 4.1. �

We now want to show that ϕ : Spc(T̂ d)→ Spc(T d) is a homeomorphism above Y .

4.3. Remark. As explained in Remark 3.13, the compact objects in T⊥⊥Y are given
by T c

Y = (T d)Y , on which completion [eY , c] ∼= c is isomorphic to the identity. (Recall
Remark 3.19.) These compact objects are dualizable in T⊥⊥Y since [eY ,−] : T → T⊥⊥Y
is a tensor functor. Hence we have a rigid tt-category T̂ d = (T⊥⊥Y )d that contains
the subcategory (T⊥⊥Y )c of compact objects and the latter is equivalent (equal) to
the tt-ideal T c

Y in the original category.

By Proposition 3.26 (a), the class of compact objects T c
Y forms a tt-ideal in T̂ d.

For every c ∈ T c
Y and every d ∈ T̂ d, we can therefore speak of the properties of the

object c⊗ d ∈ T c
Y ⊆ T d as a small object of the original category T. We do so in

the preparatory lemmas below.

4.4. Lemma. Let A be a class of objects in T c
Y and the corresponding class Â ={

â
∣∣ a ∈ A

}
in T̂ d. Then A is a tt-ideal in T d if and only if Â is a tt-ideal in T̂ d.

Proof. Since T c
Y
∼= (T⊥⊥Y )c is an equivalence of triangulated categories, A is a thick

triangulated subcategory of T c
Y if and only if Â is so in T̂ d. For the ‘ideal’ property,

since completion T d → T̂ d is a tt-functor, it is clear that A is a tt-ideal in T d if Â is

one in T̂ d. Conversely, suppose that A is a tt-ideal in T c
Y . Let a ∈ A and d ∈ T̂ d and

let us show that â⊗ d belongs to Â. Note that â⊗ d is compact hence â⊗ d ' ĉ for

some c ∈ T c
Y . Therefore, â⊗2⊗ â∨⊗ d '⁄�a⊗ a∨ ⊗ c belongs to Â since A is an ideal.

On the other hand, â is a direct summand of â⊗2 ⊗ â∨ in T̂ d by dualizability and it

follows that â⊗ d is a direct summand of â⊗2 ⊗ â∨ ⊗ d, hence remains in Â. �

4.5. Lemma. Let c ∈ T c
Y be a small object in the original category supported on Y .

(a) Let P ∈ Spc(T d) be a prime in the support of c. Consider the subcategory of T̂ dÛP :=
{
d ∈ T̂ d

∣∣∃ a ∈ T c
Y ∩ P such that â ' ĉ⊗ d

}
.

Then ÛP is a prime tt-ideal of T̂ d that belongs to the support of ĉ. Moreover, its

image under ϕ : Spc(T̂ d)→ Spc(T d) is P.

(b) Let Q ∈ Spc(T̂ d) be a prime in the support of ĉ and let P =
{
b ∈ T d

∣∣ b̂ ∈ Q
}

be its image under ϕ : Spc(T̂ d)→ Spc(T d). Then P belongs to the support of c

and, with the notation of (a), we have ÛP = Q.

Proof. Consider the tt-ideal A = T c
Y ∩ P of T d and the corresponding tt-ideal Â ={

â
∣∣ a ∈ A

}
of T̂ d, applying Remark 4.3 and Lemma 4.4.

In (a), by construction, ÛP consists of all dualizable objects d ∈ T̂ d such that ĉ⊗ d
belongs to Â. This forms a tt-ideal. Let us check that it is prime. Suppose that

d, d′ ∈ T̂ d are such that d⊗ d′ ∈ ÛP. Consider the compact objects ĉ⊗ d and ĉ⊗ d′.
By Remark 4.3, there exists a, a′ ∈ T c

Y such that ĉ⊗ d ' â and ĉ⊗ d′ ' â′ and our

assumption that ĉ⊗ d⊗ d′ ∈ Â implies that â⊗ â′ ' ĉ⊗ d⊗ ĉ⊗ d′ also belongs to Â.
In other words, a ⊗ a′ ∈ T c

Y ∩ P and in particular a ⊗ a′ belongs to the prime P.

This forces one of a or a′ to belong to P, and in turn d ∈ ÛP or d′ ∈ ÛP respectively.
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Furthermore, ÛP is proper for otherwise ĉ ∈ Â which forces c ∈ A ⊆ P and this

contradicts the hypothesis that P belongs to the support of c. Similarly, ĉ ∈ ÛP
would force c⊗2 ∈ P, leading to the same contradiction.

It is clear that
{
b̂
∣∣ b ∈ P

}
⊆ ÛP. Conversely, if b ∈ T d satisfies b̂ ∈ ÛP then

c⊗ b ∈ A ⊆ P and, using again that c /∈ P and that P is prime, we see that b ∈ P.

In short, ϕ(ÛP) =
{
b ∈ T d

∣∣ b̂ ∈ ÛP} is equal to P as claimed.
Let us now turn to (b). Since P is the preimage of Q under completion, ĉ /∈ Q

forces c /∈ P. Let us prove that ÛP = Q. Let d ∈ ÛP. This means that ĉ⊗ d ' â for
some a ∈ T c

Y ∩ P. From a ∈ P = ϕ(Q) we have â ∈ Q. Hence we have ĉ⊗ d ' â ∈ Q

and since by assumption ĉ /∈ Q we conclude that d ∈ Q. This proves ÛP ⊆ Q.
Conversely, let d ∈ Q and consider a ∈ T c

Y such that ĉ⊗ d ' â by Remark 4.3 again.
We have â ∈ Q hence a ∈ P by the definition of P. Therefore, a ∈ T c

Y ∩ P and

ĉ⊗ d ' â exactly means that d ∈ ÛP by (a). In short Q ⊆ ÛP and we are done. �

4.6. Theorem. The map ϕ : Spc(T̂ d)→ Spc(T d) induced by completion is a home-
omorphism above Y , meaning that its restriction ϕ−1(Y )→ Y is a homeomorphism

with the subspace topologies. Moreover, the tt-ideal (T̂ d)ϕ−1(Y ) of T̂ d supported

on ϕ−1(Y ) is precisely the tt-ideal of compact objects (T⊥⊥Y )c = T c
Y .

Proof. Lemma 4.5 shows that ϕ is a bijection on the subsets ϕ−1(supp(c))
∼→ supp(c)

for every c ∈ T c
Y . Since Y = ∪c∈T c

Y
supp(c) is the filtered union of these closed

subsets, we obtain the bijection of the statement. By general tt-geometry, the

subcategory of T̂ d supported on ϕ−1(Y ) is precisely the tt-ideal generated by the

image of T c
Y under the tt-functor (̂−) : T c → T̂ d we are considering. But we proved

in Remark 4.3 that (̂−) is an equivalence between T c
Y and the compacts in T⊥⊥Y ,

which form a tt-ideal in T̂ d. It follows that ϕ−1(−) also yields a bijection between the
closed subsets of Y and of ϕ−1(Y ) of the form supp(c) for some c ∈ T c

Y . Since such

closed subsets form a basis for the topology, the bijection ϕ−1(Y )
∼→Y given by ϕ

is a homeomorphism with the induced topologies from Spc(T d) and Spc(T̂ d). �

In view of Theorem 4.6, the map ϕ is particularly interesting outside of Y . Recall
from Definition 3.31 that tY (1) is the Tate ring.

4.7. Corollary. We have Im(ϕ) ∩ Y C = Supp(tY (1)).

Proof. We have that Supp(t) ∩ Y C = Supp(t ⊗ fY ) for every t ∈ T. This follows

from the definition (2.11) and the fact that Supph(fY ) = π−1(Y C) by [BHS23a,
Lemma 3.8]. By Corollary 4.2, we have Im(ϕ) = Supp([eY ,1]). The result then
follows since tY (1) = fY ⊗ [eY ,1]. �

4.8. Remark. The support of the Tate ring tY (1) is usually not empty. Indeed,
Supp(tY (1)) = ∅ forces tY (1) = 0 by Remark 2.13, which only happens in the
‘split’ case of Remark 3.15, by Proposition 3.32. In other words, if Y is not open
and closed, then the support of the Tate ring is non-empty.

4.9. Remark. The support Supp(tY (1)) is ‘proconstructible’, that is, it is closed for
the constructible topology (a. k. a. the patch topology). A constructible subset of the
spectral space Spc(T d) is one built from the supports supp(c) of small objects c ∈ T d

and their complements, by taking finite intersections and finite unions. The pro-
constructible subsets are the arbitrary intersections of constructible subsets. For
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instance, the complement of a Thomason subset is proconstructible. More generally,
the image Im(ϕ) of a spectral map ϕ is proconstructible by [DST19, Corollary 1.3.23].
It follows that Supp(tY (1)) = Y C ∩ Im(ϕ) is always proconstructible.

Let us show that the completion of a local tt-category remains local.

4.10. Proposition. Suppose that T is local, meaning that 0 is a prime tt-ideal in T d,

and that our Thomason subset Y is non-empty. Then T̂ d is local. Furthermore the

map ϕ : Spc(T̂ d)→ Spc(T d) preserves the closed point.

Proof. Let c, d ∈ T̂ d such that c ⊗̂ d = 0 in T̂ d. This means [eY , c ⊗ d] = 0 in T.
Pick a, b ∈ T c

Y compact objects supported on Y . Tensoring [eY , c⊗ d] = 0 by a⊗ b
and using that eY ⊗ a∨ = a∨, etc., we get

(4.11) (a⊗ c)⊗ (b⊗ d) = 0

in T. By Remark 4.3 we know that a⊗c and b⊗d belong to T c
Y and in particular (4.11)

can be viewed in the local category T c = T d. Now, either a ⊗ c = 0 for every
a ∈ T c

Y , or not. If not, there is one a ∈ T c
Y such that a⊗ c 6= 0 and then, by locality,

b⊗ d = 0 for all b ∈ T c
Y . By symmetry of the argument, we can assume a⊗ c = 0

in T for all a ∈ T c
Y . But then, by eY ∈ Loc〈T c

Y 〉 and cocontinuity of [−, c] we have

[eY , c] = 0 which means c = 0 in T⊥⊥Y . We have shown that T̂ d is local.

By Theorem 4.6 we know that ϕ restricts to a homeomorphism ϕ−1(Y )
∼→Y ,

which necessarily preserves closed points. Since ϕ−1(Y ) is specialization-closed

in Spc(T̂ d), its only closed point is the one of Spc(T d), namely 0. �

5. Functoriality

We next consider the functoriality of the constructions of Section 3. We keep our
Hypothesis 3.1. In particular, we have chosen a Thomason subset Y in Spc(T d).

5.1. Notation. Let f∗ : T → S be a geometric functor (Recollection 2.3) and let f =
Spc(f∗) : Spc(Sd)→ Spc(T d). We write Z := f−1(Y ) ⊆ Spc(Sd) for the preimage
of Y . Recall that f∗ admits a coproduct-preserving right adjoint f∗ : S→ T, which
itself admits a further right adjoint f ! : T → S by Brown–Neeman Representability.

5.2. Proposition. Keep the above Notation 5.1, in particular Z = f−1(Y ).

(a) We have canonical isomorphisms f∗(eY ) ∼= eZ and f∗(fY ) ∼= fZ in S. Therefore
f∗(TY ) ⊆ SZ and f∗(T⊥Y ) ⊆ S⊥Z , yielding commutative diagrams

TY // //

f∗

��

T
eY ⊗− // //

f∗

��

TY

f∗

��

SZ // // S
eZ⊗−

// // SZ

and

T⊥Y
// //

f∗

��

T
fY ⊗− // //

f∗

��

T⊥Y

f∗

��

S⊥Z
// // S

fZ⊗−
// // S⊥Z

showing that f∗ is compatible with torsion and with local subcategories.

(b) We have four canonical isomorphisms of functors S→ T:

f∗(eZ ⊗−) ∼= eY ⊗ f∗(−) and f∗(fZ ⊗−) ∼= fY ⊗ f∗(−)

f∗([eZ ,−]) ∼= [eY , f∗(−)] and f∗([fZ ,−]) ∼= [fY , f∗(−)].
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Therefore f∗(S
⊥
Z ) ⊆ T⊥Y and f∗(S

⊥⊥
Z ) ⊆ T⊥⊥Y , yielding commutative diagrams

S⊥Z
// //

f∗

��

S
fZ⊗− // //

[fZ ,−]
// //

f∗

��

S⊥Z

f∗

��

T⊥Y
// // T

fY ⊗− // //

[fY ,−]
// // T⊥Y

and

S⊥⊥Z
// //

f∗

��

S
[eZ ,−]

// //

f∗

��

S⊥⊥Z

f∗

��

T⊥⊥Y
// // T

[eY ,−]
// // T⊥⊥Y

showing that f∗ is compatible with local and with complete subcategories. (The
square with f⊗− and the one with [f,−] commute separately.)

(c) We have two canonical isomorphisms of functors T → S:

[eZ , f
!(−)] ∼= f !([eY ,−]) and [fZ , f

!(−)] ∼= f !([fY ,−]).

Therefore f !(T⊥⊥Y ) ⊆ S⊥⊥Z and we have a commutative diagram

T⊥⊥Y
// //

f !

��

T
[fY ,−]

// //

f !

��

T⊥⊥Y

f !

��

S⊥⊥Z
// // S

[fZ ,−]
// // S⊥⊥Z

showing that f ! is compatible with complete subcategories.

(d) Define the (Bousfield) completion of f∗ as the functor f̂∗ : T⊥⊥Y → S⊥⊥Z given by

f̂∗(−) := [eZ , f
∗(−)].

Then f̂∗ is a tt-functor, left adjoint to (the restriction of) f∗ : S⊥⊥Z → T⊥⊥Y
from (b). The functor f̂∗ restricts to a tt-functor T̂ d → Ŝd on dualizable objects
and the following two diagrams commute

T
[eY ,−]

// //

f∗

��

T⊥⊥Y

f̂∗

��

S
[eZ ,−]

// // S⊥⊥Z

and

T d
‘(−)Y

// //

f∗

��

T̂ d

f̂∗

��

Sd ‘(−)Z // // Ŝd
where (̂−)Y = [eY ,−] : T d → T̂ d is completion along Y (Definition 3.21) and

(̂−)Z = [eZ ,−] : Sd → Ŝd is completion along Z = f−1(Y ).

(e) We have a canonical isomorphism

tY ◦ f∗ ∼= f∗ ◦ tZ .

of lax symmetric monoidal functors S→ T (see Definition 3.31).

Proof. In (a) we have f∗(eY ) ∼= eZ and f∗(fY ) ∼= fZ by [BF11, Theorem 6.3]. The
other statements follow from (3.8) and (3.9). The first two isomorphisms in (b)
follow from the above and the projection formula. Taking right adjoints in

(eZ ⊗−) ◦ f∗ ∼= f∗ ◦ (eY ⊗−) and (fZ ⊗−) ◦ f∗ ∼= f∗ ◦ (fY ⊗−)
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gives the other two isomorphisms. The other statements follow from (3.9) and (3.10).
For (c), we can take right adjoints in the first two isomorphisms in (b). The other
statements follow from (3.10). Combining two of the isomorphisms in (b) we obtain

f∗(tZ(s))
def
= f∗(fZ ⊗ [eZ , s])

(b)∼= fY ⊗ [eY , f∗(s)]
def
= tY (f∗(s))

which is the isomorphism of (e). We leave to the reader the tedious verification that
this is an isomorphism of lax monoidal functors. In carrying out this verification, it
may be helpful to use that the isomorphism [a, f∗(b)] ' f∗[f∗a, b] of [BDS16, (2.17)]
makes the following diagram commute

[a1, f∗b1]⊗ [a2, f∗b2]

��

' // f∗[f
∗a1, b1]⊗ f∗[f∗a2, b2]

lax// f∗([f
∗a1, b1]⊗ [f∗a2, b2])

��

f∗[f
∗a1 ⊗ f∗a2, b1 ⊗ b2]

'��
[a1 ⊗ a2, f∗b1 ⊗ f∗b2]

[1,lax]
// [a1 ⊗ a2, f∗(b1 ⊗ b2)]

' // f∗[f
∗(a1 ⊗ a2), b1 ⊗ b2].

The projection formula satisfies an analogous property. For part (d), we need to
prove that the composition of tt-functors [eZ ,−] ◦ f∗ : T → S→ S⊥⊥Z vanishes on
the localizing ideal T⊥Y , for then it factors uniquely as in the left-hand square of (d).
This holds since (a) gives the inclusion f∗(T⊥Y ) ⊆ S⊥Z = Ker([eZ ,−]); see (3.10).
The restriction to dualizable objects is then formal. Finally the adjunction is a
direct computation. For every t ∈ T⊥⊥Y and s ∈ S⊥⊥Z , we have T⊥⊥Y (t, f∗(s)) =
T(t, f∗(s)) ∼= S(f∗(t), s) since T⊥⊥Y ⊆ T is a full subcategory and f∗ a f∗. The last
group is also S(f∗(t), s) ∼= S⊥⊥Z ([eZ , f∗(t)], s) since [eZ ,−] is the left adjoint to the

inclusion S⊥⊥Z � S by (3.4). We conclude by the definition of f̂∗(t) = [eZ , f∗(t)]. �

5.3. Remark. We only prove functoriality of the Tate construction for the pushfor-
ward f∗ and not for f∗. It is not true that f∗(tY (t)) agrees with tf−1(Y )(f

∗(t)) even
when f∗ is a localization. For instance, if f∗ : T → T/TY ∼= T|U is the localization
away from Y itself, then f−1(Y ) = ∅ and tf−1(Y ) = 0. On the other hand, f∗(tY (t))
‘is’ essentially tY (t) in full, since tY (t) = fY ⊗ [eY , t] = f∗f

∗([eY , t]) is local over U .

5.4. Remark. However, if f∗ : T → S is a closed functor, meaning in particular
f∗([t, t′]) ∼= [f∗t, f∗t′] for every t, t′ ∈ T, then the isomorphisms f∗(eY ) ∼= ef−1(Y )

and f∗(fY ) ∼= ff−1(Y ) give us a natural isomorphism

f∗(tY (−)) ∼= tf−1(Y )(f
∗(−))

of lax symmetric monoidal functors T → S. This is the case, for example, if f∗

satisfies Grothendieck–Neeman duality; see [BDS16, (3.12)].

5.5. Corollary. Using Notation 5.1, the following hold:

(a) We have Supp(tY (f∗(1S))) = f(Supp(tf−1(Y )(1S))) in Spc(T d).

(b) If f∗ is a closed functor and T satisfies the steel condition (Definition 2.8) then
Supp(tf−1(Y )(1S)) = f−1(Supp(tY (1T))) in Spc(Sd).

Proof. Part (a) follows from Proposition 5.2(e) and Proposition 2.17 (b). Part (b)
follows from Remark 5.4 and Proposition 2.17 (a). �

5.6. Remark. We can precompose the isomorphism of Proposition 5.2 (e) with f∗

which yields by the projection formula f∗ ◦ f∗ ∼= f∗(1)⊗− an isomorphism

tY (f∗(1)⊗−) ∼= f∗(tf−1(Y )f
∗(−))
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of lax symmetric monoidal functors T → T. Let us spell this out for a finite
localization.

5.7. Corollary. Let W ⊆ Spc(T d) be a Thomason subset and consider f∗ : T� S =
T/TW the localization of T away from W . Let f∗ : S�T be the fully faithful right
adjoint. (If one identifies S with T⊥W as in (3.4) then f∗ = fW ⊗− and f∗ = incl.)
Note that f−1(Y ) = Y ∩WC since f : Spc(Sd) ↪→ Spc(T d) is the inclusion of WC

(Remark 3.11). Then for every t ∈ T we have a natural isomorphism

tY (fW ⊗ t) ∼= f∗(tY ∩W Cf∗(t))

in T and in particular f∗(tY (fW ⊗ t)) ∼= tY ∩W Cf∗(t) in S = T|W C .

Proof. We have f∗(1) = fW as in (3.4) and f∗ ◦ f∗ ∼= IdS as with any localization.
Applying Remark 5.6 we see that tY (fW ⊗ t) ∼= f∗(tY ∩W Cf∗(t)). Applying f∗ to
both sides gives the second result. �

This allows us to prove an excision result about the Tate construction.

5.8. Theorem. Let W ⊆ Spc(T d) be a Thomason subset such that Y ∩W = ∅. Let
S = T/TW = T|W C be the WC-local tt-category and f∗ : T� S the localization. Note
that Y ⊆WC = Spc(Sd), so we can Y -complete S.

(a) The Bousfield completed tt-functor f̂∗ : T⊥⊥Y � S⊥⊥Z of Proposition 5.2 (d) is

an equivalence. In particular, it restricts to an equivalence f̂∗ : T̂ d ∼→ Ŝd on
dualizables, between the Y -completion of T d and the Y -completion of Sd.

(b) For every t ∈ T the Tate object tY (t) is WC-local in T and we have a canonical
isomorphism

tY (t) ∼= f∗(tY (f∗(t)))

where f∗ is the fully faithful right adjoint of f∗. In other words, the Tate functor
can be computed WC-locally.

Proof. Let us temporarily write Z = f−1(Y ) for Y seen inside Spc(Sd), in accordance
with Proposition 5.2, where f : Spc(Sd) ↪→ Spc(T d) is the inclusion onto WC. We
claim that the fully faithful f∗ : S→ T which we already know restricts to S⊥⊥Z →
T⊥⊥Y by Proposition 5.2 (b) defines an inverse to f̂∗ : T⊥⊥Y → S⊥⊥Z . Since f∗ is fully

faithful, it suffices to prove that f∗ ◦ f̂∗ ' IdT⊥⊥Y
.

By Lemma 3.35 the assumption Y ∩W = ∅ gives [eY , eW ⊗ t] = 0 for every t ∈ T.
This forces [eY , t] ∼= [eY , fW ⊗ t]. Since fW ⊗ − ∼= f∗f

∗ : T → T, this shows that
[eY , t] ∼= [eY , f∗f∗t] ∼= f∗[eZ , f∗t] by Proposition 5.2 (b). If we take t ∈ T⊥⊥Y we have

[eY , t] = t and the previous equation reads t ∼= f∗(f̂
∗(t)) by the definition of f̂∗.

The second part follows similarly from the above [eY , t] ∼= [eY , fW ⊗ t]:

tY (t)
def
= fY ⊗ [eY , t] ∼= fY ⊗ [eY , fW ⊗ t]

def
= tY (fW ⊗ t)

and the latter is isomorphic to f∗(tY ∩W C(f∗(t))) by Corollary 5.7. This is the
statement since WC ∩ Y = Y . �

5.9. Corollary. Let W ⊆ Spc(T d) be a Thomason subset such that Y ∩W = ∅.

Then the image of Y -completion Spc(T̂ d)→ Spc(T d) is contained in WC. �
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5.10. Remark. For Y fixed, there is a biggest Thomason subset W = W (Y ) such
that Y ∩W = ∅, namely the union of all of them

(5.11) W (Y ) :=
⋃

W Thomason
W∩Y=∅

W =
⋃
a∈T d

supp(a)∩Y=∅

supp(a).

This Thomason subset is also the support of the kernel of completion:

5.12. Proposition. The support of Ker
(
(̂−) : T d → T̂ d

)
is the W (Y ) of (5.11). In

other words, for c ∈ T d we have ĉ = 0 if and only if supp(c) ∩ Y = ∅.

Proof. If ĉ = 0 then for every d ∈ T c
Y we have 0 = ĉ⊗ d ∼= c⊗ d (see Remark 4.3).

Thus supp(c) ∩ supp(d) = ∅. Since Y = ∪d∈T c
Y

supp(d) we get supp(c) ∩ Y = ∅.
Conversely, if supp(c) ∩ Y = ∅ then ĉ = [eY , c] ∼= [eY ⊗ c∨,1] = 0. �

5.13. Example. Suppose that Y contains all the closed points of Spc(T d). This holds

for example if T is local and Y 6= ∅. Then the completion tt-functor T d → T̂ d

along Y is conservative (on dualizable objects).

5.14. Remark. Completion along Y , like any tt-functor, can be decomposed into a
localization followed by a conservative induced functor:

T d � Sd := T d|W (Y )C

‘(−)−−→ T̂ d ∼= Ŝd.

Here, Theorem 5.8 tells us that the second tt-functor is just completion with respect
to the ‘same’ Y , using that Y ⊆W (Y )C = Spc(Sd) is contained in the spectrum of
the localization. The Y -completion and the Tate ring are W (Y )C-local phenomena.
Consequently, we can replace T by S = T|W (Y )C and suppose that W (Y ) = ∅, that
is, we can assume that the support of every non-zero dualizable object meets Y . In

other words, we can assume that (̂−) : T d → T̂ d is conservative.

5.15. Notation. For any subset S ⊂ Spc(T d), we write

gen(S) :=
{
x ∈ Spc(T d)

∣∣ {x} ∩ S 6= ∅
}

for the set of generalizations of S.

5.16. Proposition. The Thomason subset W (Y )C of (5.11) coincides with the

subset gen(Y
cons

) where Y
cons

denotes the closure of Y in the constructible topology.
If the Thomason subset Y is closed or if the space Spc(T d) is noetherian then

gen(Y
cons

) = gen(Y ).

Proof. Observe that P ∈ W (Y )C if and only if W ∩ Y 6= ∅ for every Thomason
subset W which contains P. This is equivalent to saying that P belongs to the
closure of Y in the Hochster dual topology Y

inv
. The latter coincides with gen(Y

cons
)

by [DST19, Corollary 1.5.5]. For the second part, first note that if Y is closed then it

is proconstructible, hence Y
cons

= Y . Finally, we claim that if Spc(T d) is noetherian

then Y
inv

= gen(Y
cons

) is contained in, and hence coincides with, gen(Y ). Indeed,

if x 6∈ gen(Y ) then {x} ∩ Y = ∅. If the space is noetherian then {x} is Thomason

hence open in the Hochster dual topology. Thus {x} ∩ Y = ∅ implies x 6∈ Y inv
. �

5.17. Remark. Thus, if the Thomason subset Y is closed or if Spc(T d) is noetherian,
then every point in Supp(tY (1)) is a generalization of a point in Y . The following
example shows that in general this need not be the case, which justifies the need for
the more general statement of Proposition 5.16.
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5.18. Example. Let R be a non-noetherian absolutely flat ring, such as an infinite
product of fields, and consider T := D(R). For any non-open point p ∈ Spec(R),
the complement Y := {p}C = gen(p)C is Thomason (but not closed). The image of

completion Spc(T̂ d)→ Spc(T d) must be everything; otherwise, Supp(tY (1)) = ∅
so that Y would be open and closed by Remark 4.8, which is false. Thus, in this
example Supp(tY (1)) = {p}. Note that p is not a generalization of any point
in Y . However, in this example Y is constructibly dense, so indeed Supp(tY (1)) =

gen(Y
cons

) ∩ Y C = Spc(T d) ∩ Y C = Y C.

We can also illustrate this phenomenon in another area of mathematics:

5.19. Example. Let F be a finite field and let T be the derived category of Artin
motives over F with coefficients in a field k of positive characteristic. This big
tt-category is also the derived category of permutation modules over the absolute
Galois group of F; see [BG25]. Its spectrum of dualizables looks as follows

M0 M1 · · · Mn Mn+1 · · · M∞

P1

^^ @@ ZZ

· · ·

CC

Pn

__ ==

Pn+1

cc >>

· · ·

See details in [BG25, Theorem 1.4]. In particular, the point M∞ is closed but not
Thomason. Its complement Y =

{
Mn

∣∣ 0 ≤ n < ∞
}
∪
{
Pn
∣∣ 1 ≤ n < ∞

}
is a

Thomason subset which is not closed, for M∞ belongs to its closure. It follows
that M∞ belongs to the support of the Tate ring tY (1) as Y C = {M∞} and the
category is not split. Note that M∞ is not a generalization of any point in Y . This
is an example where Spc(T d) is not noetherian and Y is not closed. On the other

hand, M∞ is contained in Y
cons

.

5.20. Remark. We have established that in general

Im(ϕY ) ⊆W (Y )C = gen(Y
cons

).

Several examples given below (e.g., Example 6.10) show that this can be a strict
inclusion.

6. The Tate Intermediate Value Theorem

We keep Hypothesis 3.1: We have a ‘big’ tt-category T and a Thomason sub-

set Y ⊆ Spc(T d) of its spectrum. We write (̂−) : T d → T̂ d for the completion

along Y as in Definition 3.21 and ϕ = ϕY : Spc(T̂ d) → Spc(T d) for the induced
map on spectra. Recall from Theorem 4.6 that ϕ is a homeomorphism above Y .

6.1. Theorem (Tate Intermediate Value Theorem, Strong Form). Let P1 ∈ Y

and let Q1 ∈ Spc(T̂ d) be its unique preimage in the spectrum of completion. Let
P0 ∈ Spc(T d) be a generalization of P1 which is not contained in Y , that is,

P1 ∈ {P0} and P0 /∈ Y . Then there exists a point Q ∈ Spc(T̂ d), which is a
generalization of Q1 and which is not contained in ϕ−1(Y ), whose image under ϕ

is an intermediate specialization between P0 and P1, that is, ϕ(Q) ∈ {P0} and

P1 ∈ {ϕ(Q)}.
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Y

•
P1 = ϕ(Q1)

•ϕ(Q)

Supp(tY )

Im(ϕ)C•P0

ϕ←−

•
Q1

•Q

ϕ−1Y ∼= Y
ϕ−1Y C

∃

Proof. We begin by reducing to the case where T d (and therefore T̂ d by Proposi-
tion 4.10) is local, and where P1 = 0 and Q1 = 0 are the closed points.

To this end, let us use localization away from a Thomason subset W ⊂ Spc(T d).
We shall apply this to W = Supp(P1) = gen(P1)C but this choice is not essential
right now. We simply assume that P0 and P1 belong to WC, which is equivalent
(since P1 ⊆ P0) to T d

W ⊆ P1.
Let us use functoriality of completion, in the form of Proposition 5.2 (d), for

the localization functor f∗ : T� S := T|W C = T/TW . Recall that in this case f =
Spc(f∗) : Spc(Sd) ↪→ Spc(T d) is the inclusion of WC inside Spc(T d) and there-
fore Z := f−1(Y ) is simply Y ∩WC. Proposition 5.2 (d) provides the left-hand
commutative square of tt-categories below

(6.2)

T d
‘(−)Y

//

f∗

��

T̂ d

f̂∗

��

Spc(T d) oo
ϕY

OO

f

� ?

Spc(T̂ d)
OO

Spc(f̂∗)

Sd
‘(−)Z

// Ŝd Spc(Sd) oo
ϕZ

Spc(Ŝd)

whose image under Spc(−) is the right-hand commutative square.
Now observe the following:

(1) When viewed in Spc(Sd) = WC, the point P1 belongs to Z = Y ∩WC and the
point P0 lies outside of Z.

(2) By Theorem 4.6, there exists a unique point R1 ∈ Spc(Ŝd) with ϕZ(R1) = P1.
By the commutativity of (6.2) and the uniqueness of the preimage of P1 ∈ Y
under ϕY , the image of R1 under Spc(f̂∗) must be our Q1.

(3) If there exists a point R in Spc(Ŝd) such that R1 ∈ {R} and ϕZ(R) ∈ {P0}
in Spc(Sd), then there exists a point Q in Spc(T̂ d) such that Q1 ∈ {Q}
and ϕY (Q) ∈ {P0} in Spc(T d). Indeed, in view of the commutativity of (6.2),

it suffices to define Q as the image of R under Spc(f̂∗).

(4) Let R ∈ Spc(Ŝd) and let Q ∈ Spc(T̂ d) be its image under Spc(f̂∗). If ϕZ(R)
is not in Z then ϕY (Q) is not in Y . Indeed, if Y 3 ϕY (Q) = f(ϕZ(R)) then
ϕZ(R) ∈ f−1(Y ) = Y ∩WC = Z.

In other words, it is enough to prove the theorem for this S = T|W C , as long
as WC contains P1 (and therefore P0). The best such W is of course W = Supp(P1),
in which case WC = gen(P1) is local and P1/T

d
W = 0. So we can indeed assume

that T d is local and that P1 = 0, in which case its unique preimage under ϕY
is Q1 = 0 by Proposition 4.10.
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We assume that P1 = 0 and Q1 = 0 and that T d and T̂ d are local.

In particular, all primes Q that we construct in Spc(T̂ d) are generalizations of Q1

so we do not need to worry about this property anymore. We only need to find a

prime Q ∈ Spc(T̂ d) whose image under ϕY lies outside of Y and is a specialization
of P0.

We consider two classes of objects in T̂ d. First, the ⊗-multiplicative collection

S :=
{
b̂
∣∣ b ∈ T d, b 6∈ P0

}
which is the image of the complement of P0 and, secondly, the tt-ideal

J :=
{
ĉ
∣∣ c ∈ T c

Y

}
corresponding to T c

Y in T̂ d, by Lemma 4.4. The key fact is that they are disjoint:

6.3. Claim. With the above notation, we have S ∩ J = ∅.

Indeed, suppose, ab absurdo, that there exists b ∈ T d r P0 and c ∈ T c
Y such

that b̂ ' ĉ in T̂ d. Applying the left adjoint eY ⊗− to completion, as in (3.4), and
using that eY ⊗ [eY ,−] ∼= eY ⊗− and that eY ⊗ c ∼= c since c ∈ T c

Y we deduce that

eY ⊗ b ' c

in T. In particular, eY ⊗ b is dualizable and since b is as well, the exact triangle
eY ⊗ b → b → fY ⊗ b → ΣeY ⊗ b tells us that so is fY ⊗ b. Now, the dualizable
objects eY ⊗ b and fY ⊗ b tensor to zero so one of them must be zero since T d

is local. Both cases lead to a contradiction, using the assumption b /∈ P0 which
reads P0 ∈ supp(b). First, if fY ⊗ b = 0 then supp(b) = supp(eY ⊗ b) ⊆ Y gives us
P0 ∈ supp(b) ⊆ Y which contradicts our assumption on P0. Second, if eY ⊗ b = 0

then supp(b) = supp(fY ⊗ b) ⊆ Y C and the relation P1 ∈ {P0} ⊆ supp(b) ⊆ Y C

contradicts our assumption on P1. This proves Claim 6.3.

By Recollection 2.19 (a) for the tt-category T̂ d, the disjunction between the

⊗-multiplicative set S and the tt-ideal J must be witnessed by a prime Q ∈ Spc(T̂ d),
satisfying S ∩ Q = ∅ and J ⊆ Q. By the definition of S and J, this means that

b ∈ T d r P0 ⇒ b̂ /∈ Q and c ∈ T c
Y ⇒ ĉ ∈ Q.

In other words, the image of Q under ϕY = Spc((̂−)), namely
{
d ∈ T d

∣∣ d̂ ∈ Q
}

, is
contained in P0 and contains T c

Y . The former means that ϕY (Q) is a specialization
of P0 and the latter means that ϕY (Q) does not belong to Y . �

We now record the weak form of the Tate Intermediate Value Theorem:

6.4. Corollary. Let Y ⊆ Spc(T d) be a Thomason subset and let P0,P1 ∈ Spc(T d)
be two primes such that P1 belongs to Y while P0 lies outside of Y . If P1 belongs to
the closure of P0 in Spc(T d) then there exists an ‘intermediate’ point P0.5

P1 ∈ {P0.5} and P0.5 ∈ {P0}

that furthermore belongs to the support of the Tate ring: P0.5 ∈ Supp(tY (1)).

Proof. This is direct from Theorem 6.1 and Corollary 4.7. �

6.5. Remark. We say that a point x ∈ Y C is an immediate generalization of Y if
there exists y ∈ Y such that gen({y}) ∩ {x} = {x, y}.
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6.6. Corollary. Every x ∈ Y C that is an immediate generalization of Y belongs

to Supp(tY (1)). In other words, Im(Spc(T̂ d) → Spc(T d)) contains not only the
subset Y but also all its immediate generalizations.

Proof. Let y ∈ Y such that x ; y and gen({y}) ∩ {x} = {x, y}. This means that
x; z ; y forces z = x or z = y. The result now follows from Corollary 6.4. �

We just proved that Im(ϕ) is bounded below by Y and its immediate generaliza-
tions. On the other hand, here is a statement about upper bounds for Im(ϕ).

6.7. Proposition. Let T be a rigidly-compactly generated tt-category and let

ϕ : Spc(T̂ d)→ Spc(T d)

be the map induced by completion with respect to the Thomason subset Y ⊆ Spc(T d).
Let c ∈ T d and consider the exact triangle

(6.8) wc
ξc−→ 1

coev−−−→ c⊗ c∨ → Σwc.

The following are equivalent:

(i) The image of ϕ is contained in supp(c).
(ii) The map ξc is nilpotent on eY : there exists n ≥ 1 such that ξ⊗nc ⊗ eY = 0.

Proof. First recall from [Bal18, Proposition 2.10] that the collection NilT(ξc) of
objects of T on which ξc is nilpotent forms a thick ideal of the big category T:

NilT(ξc) = 〈c〉T = 〈cone(ξc)〉T = 〈cone(ξ⊗nc )〉T
for all n ≥ 1. Next recall that ϕ−1(supp(d)) = supp(d̂) for any d ∈ T d. This

immediately implies that Im(ϕ) ⊆ supp(d) if and only if d̂ ∈ T c
Y is fully supported,

supp(d̂) = Spc(T̂ d), which is the case if and only if 1̂ belongs to the thick ideal of

T̂ d generated by d̂. If (ii) holds then eY is a direct summand of eY ⊗ cone(ξ⊗nc )

for some n ≥ 1. Setting d := cone(ξ⊗nc ), it follows that 1̂ is a direct summand of d̂

in T̂ d. Hence supp(d̂) = Spc(T̂ d) so that Imϕ ⊆ supp(d). As noted above 〈d〉 = 〈c〉
which gives (i). Conversely, if (i) holds then 1̂ is in the thick ideal generated by ĉ.
This implies that in T we have eY ∈ Thick〈eY ⊗ c⊗ T c

Y 〉. Since NilT(ξc) is a thick
ideal and contains c, it must therefore contain eY , which gives (ii). �

6.9. Corollary. Let R be a commutative ring which contains two elements a, b ∈ R
such that an divides b for all n ≥ 1. Let T = D(R) and Y = V (a) = supp(cone(a)).

Then the image of ϕ : Spc(T̂ d)→ Spc(T d) is contained in V (b).

Proof. The idempotent eV (a) ∈ D(R) is well-known to be the homotopy colimit of

the following sequence of maps cone(an)[−1]→ cone(an+1)[−1], for n ≥ 0:

cone(an)[−1]

��

· · · // 0 // R
an // R //

a
��

0 // · · ·

cone(an+1)[−1] · · · // 0 // R
an+1

// R // 0 // · · ·

In other words, eY for Y = V (a) fits in an exact triangle∐
n∈N

cone(an)[−1]→
∐
n∈N

cone(an)[−1]→ eY →
∐
n∈N

cone(an).

Since b divides every an, it is easy to see that b ⊗ idcone(an) is zero on each sum-
mand cone(an)[∗] and therefore on

∐
n∈N cone(an)[∗] as well. It follows that b⊗ eY
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is zero (thanks to the model, or we can conclude that it squares to zero just using
the above triangle). Setting c := cone(b : 1→ 1), in the notation of (6.8) we have
ξc⊗ c = 0, which implies that ξc : wc → 1 factors through b : 1→ 1. Hence, ξc⊗ eY
is zero and we conclude by Proposition 6.7 (ii)⇒(i). �

6.10. Example. Let R be the valuation domain with valuation ν : R → Z2 ∪ {∞}
where Z2 has the lexicographic order; see [FS01, Chapter II], for example. The
spectrum of R consists of three points: the zero prime ideal 0, a middle prime
ideal p =

{
r ∈ R

∣∣ ν(r) ∈ (Z>0 × Z) ∪ {∞}
}

and a principal maximal ideal m ={
r ∈ R

∣∣ ν(r) > (0, 0)
}

. Let a be a generator of the maximal ideal, which has
valuation (0, 1), and let b be any non-zero element of the middle prime, for example,
an element which has valuation (1, 0). Then the map on completion with respect
to Y = V (a) = {m} is the inclusion of the two top points:

(6.11)

Spc(T̂ d) Spc(T d)

Y

Supp(tY )

Indeed, an | b for all n ≥ 1 since ν(an) = (0, n) ≤ (1, 0) = ν(b). Hence, Corollary 6.9
implies that the image of ϕV (a) is contained in V (b) which does not contain the
generic point since b is not nilpotent. Moreover, Supp(tY (1)) must contain the

middle point by Corollary 6.6. On the other hand, the m-adic completion R̂m is a
discrete valuation ring by [KP99, Theorem 7] and [Sta20, Lemma 05GH]. Finally,
since the maximal ideal m = (a) is Koszul-complete, (6.11) can be identified with the

map Spec(R̂m)→ Spec(R) induced by classical m-adic completion (Example 3.25).
It follows that the map ϕY is indeed as depicted above.

7. The gluing of completion and localization

The Tate Intermediate Value Theorem of the previous section shows how the
topological interaction between a Thomason subset and its complement is mediated
through the support of the associated Tate ring. From a slightly different point
of view, the theorem enables us to completely determine the inclusions among the
primes of T d provided we understand such inclusions for the completion T̂ d along Y
and for the localization T|dU onto its complement U = Y C. In particular, keeping
the notation of Section 3, we have:

7.1. Corollary. A subset V ⊆ Spc(T d) is specialization-closed if and only if the
following two conditions are satisfied:

(i) V ∩ U is a specialization-closed subset of U ∼= Spc(T|dU ) and

(ii) ϕ−1(V ) is a specialization-closed subset of Spc(T̂ d).

Proof. The (⇒) direction is immediate since the preimage of any specialization-
closed subset along any continuous map remains specialization-closed. To establish
the (⇐) direction, suppose x ∈ V and x ; y. We need to prove y ∈ V . If y 6∈ Y
(hence also x 6∈ Y ) then this follows from (i). On the other hand, if x ∈ Y (hence
also y ∈ Y ), then since ϕ−1(Y )→ Y is a homeomorphism (Theorem 4.6), we have
x′ ; y′ for the unique points x′, y′ ∈ Spc(T̂ d) with ϕ(x′) = x and ϕ(y′) = y. Since
x′ ∈ ϕ−1(V ), (ii) implies y′ ∈ ϕ−1(V ) so that y ∈ V . It remains to consider the case
where y ∈ Y and x 6∈ Y , which is the setup of the Tate Intermediate Value Theorem.

https://stacks.math.columbia.edu/tag/05GH
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So y = ϕ(y′) for a unique y′ ∈ Spc(T̂ d). By Theorem 6.1, there exists z′ ∈ Spc(T̂ d)
such that z′ ; y′, ϕ(z′) 6∈ Y and x; ϕ(z′) ; y. By (i), we have ϕ(z′) ∈ V . Hence
z′ ∈ ϕ−1(V ). Thus (ii) implies y′ ∈ ϕ−1(V ) so that y ∈ V , as desired. �

7.2. Remark. If the spectrum Spc(T d) is noetherian then its topology is completely
determined by the inclusions among primes, but in general this need not be the
case. For example, a non-noetherian absolutely flat ring, such as an infinite product
of fields, has trivial specialization order (it has dimension zero) but its spectrum is
not discrete.

7.3. Remark. In general, the topology of a spectral space X such as X = Spc(T d)
is completely determined by the specializations among its points together with the
associated constructible topology on X. This is formalized by the isomorphism
between the category of spectral spaces and the category of so-called Priestley
spaces; see [DST19, Theorem 1.5.4]. The closed subsets of X are precisely the
subsets which are closed in the constructible topology (a. k. a. proconstructible) and
specialization-closed.

7.4. Corollary. A subset Z ⊆ Spc(T d) is closed if and only if the following two
conditions are satisfied:

(i) Z ∩ U is a closed subset of U ∼= Spc(T|dU ) and

(ii) ϕ−1(Z) is a closed subset of Spc(T̂ d).

Proof. The (⇒) direction is immediate. For the (⇐) direction, Corollary 7.1 implies
that Z is specialization-closed. By Remark 7.3, it remains to prove that Z is
proconstructible. Note that the complement U = Y C is a proconstructible subset
of X := Spc(T d) (for example, because it is closed in the Hochster dual topology).
Hence by [DST19, Theorem 2.1.3], (i) implies that Z ∩ U = W ∩ U for some
proconstructible subset W ⊆ X. It follows that Z ∩ U is a proconstructible subset
of X being the intersection of two proconstructible sets. On the other hand, (ii)
implies that Z ∩ Im(ϕ) = ϕ(ϕ−1(Z)) is proconstructible since it is the image of a
proconstructible set under a spectral map; see [DST19, Corollary 1.3.23]. Hence
Z = Z ∩ (Im(ϕ) ∪ U) = (Z ∩ Im(ϕ)) ∪ (Z ∩ U) is proconstructible, as desired. �

7.5. Corollary. Let V := ϕ−1(U) ⊂ Spc(T̂ d) be the preimage of the complement
of Y in the completion along Y . The commutative square

Spc(T d) Spc(T̂ d)
ϕ

oo

U
?�

OO

V = ϕ−1(U)
?�

OO

ϕ|V
oo

is a pushout of topological spaces.

Proof. It follows from Theorem 4.6 that it is a pushout of sets and Corollary 7.4
then establishes that it is a pushout of topological spaces. �

7.6. Remark. The commutative square of Corollary 7.5 is also a pushout in the
category of spectral spaces and spectral maps (i.e., continuous maps for which
the preimage of a quasi-compact open remains quasi-compact). This is a general
fact about a finite diagram of spectral spaces: If a spectral space X is the colimit
in topological spaces of a finite diagram Xi of spectral spaces and spectral maps,
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then X is also the colimit of the Xi in the category of spectral spaces. This is a
straightforward exercise based on the fact that a subset of X is quasi-compact if its
preimage in every Xi is quasi-compact.

7.7. Remark. The commutative square of Corollary 7.5 is the image under Spc(−)
of the commutative square of tt-categories

T d

(−)|U
��

‘(−)
// T̂ d

(−)|V
��

T d|U

(‘(−))|U
// T̂ d|V

where the bottom arrow is defined as the localization of the top one over U (not as
a completion). This compares to the pullback in [NPR24, Theorem 5.11].

8. Examples

Let us review a broad range of examples, grouped into four subsections.

8.A. Chromatic examples. Recall that the category of spectra SH = Ho(Sp) has

spectrum consisting of points Cp,n :=
{
x ∈ SHd

∣∣K(p, n−1)∗(x) = 0
}

ranging over
the primes p and ‘chromatic’ integers 1 ≤ n ≤ ∞.

8.1. Remark. The category of spectra SH satisfies the steel condition (Definition 2.8)
and the homological residue fields are provided by the Morava K-theories; see [BC21].
It follows that for any weak ring A in SH we have Cp,n ∈ Supp(A) if and only if
K(p, n− 1)∗(A) 6= 0. The following is surely well-known:

8.2. Lemma. If Cp,n ∈ Supp(A) for all finite 1 ≤ n <∞ then Cp,∞ ∈ Supp(A).

Proof. The claim is that if A is a weak ring (with unit η : 1→ A) then HFp⊗A = 0
implies K(n)⊗A for some finite n. (We drop the p from the notation.) Write HFp =
hocolimn P (n) as in [HS98, 1.2] and let un : 1→ P (n) denote the unit map of the
homotopy ring spectrum P (n). Then HFp⊗A = 0 implies 0 = colimn π0(P (n)⊗A).
Thus u1⊗η : 1→ P (1)⊗A vanishes in this colimit. Since the maps P (n)→ P (n+1)
are ring homomorphisms, it follows that un ⊗ η = 0 for some n, which implies that
P (n) ⊗ A = 0. This in turn implies K(n) ⊗ A = 0 by the equality of Bousfield
classes 〈P (n)〉 = 〈K(n)〉 ∨ 〈P (n+ 1)〉 established in [Rav84, Theorem 2.1]. �

8.3. Recollection. The p-local stable homotopy category SH(p) is the finite localization

of SH with respect to the Thomason subset W :=
⋃
q 6=p {Cq,2}. That is, SH(p) is

the restriction SH|W C to the (non-open) subset WC =
{
Cp,n

∣∣ 1 ≤ n ≤ ∞}. When

speaking of the points Cp,n ∈ Spc(SH d
(p)) we drop the p and just write Cn.

8.4. Example. Let T = SH(p) be the p-local stable homotopy category. Bousfield

completion with respect to Y := {C2} is called p-completion and T⊥⊥Y =: SH∧p is
the category of p-complete spectra. Note that Y = supp(M(p)) where M(p) =
cone(1

p−→ 1) is the mod-p Moore spectrum.

8.5. Example. Let T = SH be the stable homotopy category and consider the Thoma-
son subset Y := {Cp,2} = supp(M(p)). Note that Y ∪ {C1} is the complement of

the Thomason subset W (Y ) =
⋃
q 6=p {Cq,2} =

⋃
q 6=p supp(M(q)) from Remark 5.10.
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Recall that the localization SH→ SH|W (Y )C = SH(p) is precisely p-localization. By
Tate excision (Theorem 5.8) we recover the standard equivalence

SH SH(p)

SH⊥⊥Y (SH(p))
⊥⊥
Y .'

In other words, p-completion can be performed either on SH or on SH(p) depending
on convenience and personal taste.

8.6. Proposition (Strickland). The p-completion SHd → (SH∧p )d is essentially
surjective: Every dualizable p-complete spectrum is the p-completion of a finite
spectrum.

Proof. This is established in [Str24, Proposition 5.31]. Note that although loc. cit. is
stated for a bounded below p-complete spectrum X, the implication (c) ⇒ (f)
holds for any p-complete spectrum, since a dualizable p-complete spectrum is
necessarily bounded below. Indeed, the homotopy groups πi(X) of a p-complete
spectrum are Ext-p-complete; see [Str24, Section 5]. If X ∈ SH∧p is dualizable
then X ⊗M(p) = X/p is compact. Hence πi(X/p) = 0 for i � 0, which implies
p : πi(X)

∼−→ πi(X) is an isomorphism for i� 0. This implies that X is bounded
below since an abelian group A which is Ext-p-complete must vanish if p : A→ A
is an isomorphism; see [Str20, Section 12]. �

8.7. Proposition. Let F : K → L be a tt-functor which is essentially surjective.
Then Spc(F ) : Spc(L)→ Spc(K) is a topological embedding.

Proof. The map ϕ := Spc(F ) is injective by [Bal05, Corollary 3.8]. Let Z ⊆
Spc(L) be a Thomason closed subset. Then Z = supp(a) for some a ∈ L and
a ' F (b) or some b ∈ K. Hence Z = supp(F (b)) = ϕ−1(supp(b)). Thus ϕ(Z) =
ϕ(ϕ−1(supp(b))) = Imϕ ∩ supp(b). Thus ϕ : Spc(K) → Imϕ is a spectral map
which sends Thomason closed subsets to closed sets. By [DST19, Theorem 5.3.3],
this implies that ϕ is a closed map. Hence ϕ is a homeomorphism onto its image. �

8.8. Theorem. The p-completion SH(p) → SH∧p induces a homeomorphism

ϕ : Spc((SH∧p )d)
∼−→ Spc(SHd

(p)).

Proof. We know that Imϕ ⊇ Y by Theorem 4.6. Moreover, the generic point C1 is
also contained in Imϕ by Corollary 6.6 since it is an immediate generalization of
C2 ∈ Y . Therefore ϕ is surjective. On the other hand, the functor SHd

(p) → (SH∧p )d

is essentially surjective by Proposition 8.6. Invoking Proposition 8.7, we conclude
that ϕ is a surjective embedding. �

8.9. Remark. The usefulness of the Tate Intermediate Value Theorem is potentially
limited by the possibility that Supp(tY (1)) could simply consist of all generalizations
of Y , that is, Supp(tY (1)) = gen(Y )∩Y C. In this case, the theorem is not particularly
helpful. For example, if T is local with Thomason closed point Y = {m}, then it could
be the case that the map induced by completion Spc(T̂ d)→ Spc(T d) is surjective.
This is to be expected in noetherian commutative algebra, but Example 6.10 shows
that it need not hold in the non-noetherian case. Let us give an example of this
phenomenon in (non-noetherian) chromatic homotopy theory.
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8.10. Example. Let T = SHE(n) denote the category of E(n)-local spectra (at some
implicit prime p). The spectrum

Spc(SHd
E(n)) = {C1 ; · · ·; Cn ; Cn+1}

is a local irreducible space consisting of n+ 1 points, as depicted above. Here Ch ={
x ∈ SHd

E(n)

∣∣K(h− 1)∗(x) = 0
}

. This result is due to Hovey–Strickland [HS99]

and is also discussed in [BHS23b, Section 10].

8.11. Proposition. The Bousfield completion of T = SHE(n) at the unique closed
point can be identified with the K(n)-localization

SHE(n) → SHK(n)

which induces a surjective map on spectra

(8.12) Spc(SHd
K(n)) � Spc(SHd

E(n)).

Proof. Let Y = {Cn+1} denote the unique closed point. Since the E(n)-local
category T is stratified [BHS23b, Theorem 10.14] and hence satisfies the telescope
conjecture [BHS23b, Theorem 9.11], the finite localization on T associated to Y
coincides with the smashing localization Ln−1 associated to E(n−1). It follows that,
in the terminology of [HS99, Section 6.3], the Bousfield completion eY ⊗ T ∼= [eY ,T]
is the monochromatic category Mn which [HS99, Theorem 6.19] identifies with the
K(n)-local category SHK(n). It then follows from Corollary 4.2 that the image of
the map (8.12) is precisely Supp(LK(n)1), the support of the K(n)-local sphere.

Recall from [HS99, Proposition 5.3] that we have equalities of Bousfield classes

〈LK(n)1〉 = 〈LE(n)1〉 = 〈E(n)〉 = 〈K(0)〉 ∨ · · · ∨ 〈K(n)〉.
In other words, LK(n)1 ⊗ t = 0 if and only if K(i) ⊗ t = 0 for each i = 0, . . . , n.
Taking t to be the Morava K-theory K(m) we see that LK(n)1⊗K(m) = 0 if and
only if m > n. The homological support is given by tensoring with the Morava
K-theories (see e.g. [BHS23a, (5.12)]). Hence (taking into account a shift by one)

Supp(LK(n)1) = {C1, . . . ,Cn+1}, that is, the whole of Spc(SHd
E(n)). �

8.13. Remark. The Hovey–Strickland Conjecture asserts that the map (8.12) is a
homeomorphism; see [BHN22, Proposition 3.5 and Remark 3.6].

8.14. Remark. The above proposition shows that in the case of the E(n)-local
category, the support of the associated Tate ring (for the unique closed point) is the
whole spectrum (minus the closed point). Nevertheless, completing at the closed
point of a local category can result in a Tate ring with an interesting support, as
we saw already in the minimal Example 6.10.

8.B. Examples from equivariant homotopy theory.

8.15. Example. Let G be a finite group and let SH(G) = Ho(SpG) denote the
equivariant stable homotopy category. As a set, the spectrum Spc(SH(G)d) consists

of a number of copies of Spc(SHd), one copy, or ‘layer’

LH :=
{
PG(H, p, n)

∣∣ all p, 1 ≤ n ≤ ∞
}

for each conjugacy class of subgroups H ≤ G; see [BS17]. The layer for the trivial
subgroup L{e} = supp(G+) =: Y is Thomason closed and its associated idempotent

triangle is the isotropy separation sequence EG+ → S0 → ‹EG. The Bousfield
completion of SH(G) along Y may be identified with the tt-category of Borel
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equivariant spectra SH(G)borel := Ho(Fun(BG, Sp)); see [MNN17, Proposition 6.17].
The Y -complete G-spectra SH(G)⊥⊥Y = [eY ,SH(G)] ⊂ SH(G) are often called the
Borel complete G-spectra.

8.16. Notation. We write tG : SH(G) → SH(G) for the Tate construction tY
associated to Y = supp(G+). That is, tG(−) = ‹EG⊗ [EG+,−].

8.17. Notation. Given a nonequivariant spectrum s ∈ SH, we write bG(s) :=
[EG+, trivG(s)] for the Borel equivarization (or Borel completion) of s.

8.18. Remark. The ‘norm’ exact triangle (3.34) takes the form

EG+ ⊗ t→ [EG+, t]→ tG(t)→ ΣEG+ ⊗ t
for any t ∈ SH(G). Applying the fixed point functor (−)G : SH(G)→ SH and using
the Adams isomorphism one obtains the norm cofiber sequence

thG → thG → tG(t)G → ΣthG.

8.19. Remark. The category SH(G) satisfies the steel condition and for any weak
ring A we have P(H, p, n) ∈ Supp(A) if and only if Cp,n ∈ Supp(ΦH(A)) if and only
if K(p, n− 1)∗(Φ

H(A)) 6= 0; cf. Remark 8.1.

8.20. Theorem. Let G be a finite abelian group and let T = SH(G)(p) be the
p-localization of SH(G). For any H ≤ G, we have

Supp(tG(1)) ∩ LH =

®
LH if H is a nontrivial p-group

∅ otherwise.

That is, the support of the Tate ring consists precisely of the layers corresponding to
the nontrivial p-subgroups.

Proof. For any subgroup H ≤ G, the restriction functor SH(G)(p) → SH(H)(p)
satisfies Grothendieck–Neeman duality and hence is a closed functor (Remark 5.4).
Hence, if ϕGH : Spc(SH(H)c(p)) → Spc(SH(G)c(p)) denotes the induced map, then

it follows from Corollary 5.5(b) that Supp(tH(1)) = (ϕGH)−1(Supp(tG(1)). Thus,
PG(H, p, n) ∈ Supp(tG(1)) if and only if PH(H, p, n) ∈ Supp(tH(1)). We are thus
reduced to proving the H = G case of the theorem.

The statement is true if G = 1 is the trivial group, since Y = LH in that case.
Note that if G 6= 1 then ΦG(tG(1)) = ΦG(bG(1)) since the trivial family of subgroups
is then contained in the family of proper subgroups. By [MNN19, Theorem 4.25], the
derived defect base of the Borel equivarization of the p-local sphere bG(1) is the family
of p-subgroups of G. In other words, bG(1) ∈ Thick⊗〈G/K+ | K is a p-subgroup〉.
If G is not a p-group, then this family is contained in the family of proper subgroups,
and hence ΦG(bG(1)) = 0. This establishes that Supp(tG(1)) ∩ LG = ∅ if G is not
a nontrivial p-group.

Finally, suppose that G is a nontrivial (abelian) p-group. For any n, let En
denote a Lubin–Tate spectrum at p of height n. The ring homomorphism S0 → En
induces a ring homomorphism bG(1) → bG(En). This in turn induces a ring
homomorphism ΦG(tG(1)) = ΦG(bG(1))→ ΦG(bG(En)). Thus Supp(ΦG(tG(1))) ⊇
ΦG(Supp(bG(En))) by Remark 2.14. A key result [BHN+19, Theorem 3.5] establishes
that if n ≥ rankp(G) then the height of ΦG(bG(En)) is n− rankp(G). This implies
that C1+n−rankp(G) ∈ Supp(ΦG(bG(En)); see [BHN+19, Remark 3.2] and [ABHS24,

Remark 10.29]. Hence C1+n−rankp(G) ∈ Supp(ΦG(tG(1))). Thus, letting n vary,
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we see that Cm ∈ Supp(ΦG(tG(1))) for all finite m. It then follows that C∞ ∈
Supp(ΦG(tG(1))) by Lemma 8.2. This establishes that Supp(tG(1)) ∩ LG = LG
when G is a nontrivial p-group, which completes the proof. �

8.C. Examples from modular representation theory.

8.21. Example. Let G be a finite group and k a field of characteristic p > 0. Let
T = DRep(G; k) ' K Inj(kG) be the category of derived k-linear G-representations.
Recall from Example 3.29 that the Bousfield completion T → T⊥⊥Y at the unique
closed point Y = {m} is the canonical functor K Inj(kG) � D(kG), and that this

induces an equivalence K Inj(kG)c
∼−→ Db(kG-mod) = D(kG)d.

8.22. Proposition. Assume T = Ho(C) has an underlying model and let

f∗ : T = Ho(C)→ Ho([eY ,1]-ModC) =: S

be base-change along 1→ [eY ,1]. The Bousfield completion T → T⊥⊥Y factors as

T → S→ T⊥⊥Y

in which the tt-functor S→ T⊥⊥Y is fully faithful on small objects: Sd ↪→ T̂ d.

Proof. Recall that S is rigidly-compactly generated by f∗(Tc). By construction,
the unit 1S is f−1(Y )-complete. Indeed, applying the conservative functor f∗
to the canonical map 1S → [ef−1(Y ),1S], we obtain f∗(1S) → f∗[ef−1(Y ),1S] '
f∗[f

∗(eY ),1S] ' [eY , f∗(1S)] which is an isomorphism since f∗(1S) = [eY ,1T] is
Y -complete. It then follows from [BS24b, Theorem 2.16] that the bottom tt-functor
in the commutative diagram

T S

T⊥⊥Y S⊥⊥f−1(Y )

f∗

'

of Proposition 5.2(d) is an equivalence. On the other hand, since 1S is f−1(Y )-
complete, the right arrow is fully faithful on Sc = Sd. �

8.23. Proposition. Let G be a finite p-group and let k be a field of characteristic p.
Let T = DMack(G; k) be the category of derived Mackey functors. Its spectrum
Spc(T d) is the lattice of conjugacy classes of subgroups of G with the trivial subgroup

providing a unique closed point m. The completion T d → T̂ d at Y = {m} may be
identified with the canonical functor DMack(G; k)c → DRep(G; k)c.

Proof. The spectrum Spc(T d) is computed in [PSW22]; see also [BHS23b, Part V].
We are completing along Y = supp(G+). According to Proposition 8.22, the functor
T → T⊥⊥Y factors as T → S → T⊥⊥Y . Regarding T ' Ho(trivG(H k)-ModSpG) as
modules over the equivariant ring spectrum trivG(Hk) ∈ CAlg(SpG), the map of
rings 1→ [eY ,1] amounts to

trivG(Hk)→ [EG+, trivG(Hk)] =: bG(Hk).

As explained in [Bar22, Theorem 3.7], we have an equivalence of tt-categories
Ho(bG(Hk)-ModSpG) ' DRep(G; k). The functor T → S may thus be identified
with the geometric functor DMack(G; k)→ DRep(G; k). Moreover, on dualizable
objects, Sd ↪→ T̂ d is an equivalence, since S ∼= DRep(G; k) has the property that
Sc = Sd → (S⊥⊥f−1(Y ))

d is an equivalence (Example 8.21). �
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8.24. Example. Let G = D8 be the dihedral group of order 8 and let k = F2.

ϕY

The spectrum of DMack(G; k)c is the lattice of conjugacy classes of subgroups of D8;
it has 8 points as depicted on the left-hand side above, with specialization going
upwards, from larger subgroups to smaller ones. Each of these conjugacy classes is
a singleton, except the two red points which each represents a pair of G-conjugate
cyclic C2’s. Our chosen Thomason subset Y is the yellow point corresponding to the
trivial subgroup. The two green points correspond to the two Klein-four subgroups
of D8, which are its maximal elementary abelian 2-subgroups. Finally, it will follow
from our description of ϕY that the cyan region is the support of the Tate ring.

On the right-hand side, the spectrum of the Y -completion DMack(G; k)dm
∼=

Db(kG-mod) is Spech(H•(D8, k)). By Quillen Stratification, the latter has two
irreducible components (the closures of the green curves), one for each Klein-four
in D8. More precisely, we are mapping the spectra of the derived categories of
elementary abelian subgroups to the spectrum of Db(kG-mod) via the map induced
on Spc(−) by the restriction functor. Each of these two irreducible components is

the image of Spech(H•(C×22 , k)), that is, a P1
k with a closed point on top. Two of

the F2-rational points of P1
k get identified over G, because each Klein-four has two

cyclic subgroups that get conjugated in D8. This phenomenon is known as fusion.
This gives the (outer) red point on each component. (The orange point comes from
the center Z(D8) ∼= C2 which does not get ‘fused’ with any other C2 in D8.) These
two components are glued together along the Sierpiński space coming from the
center of D8 (the middle orange point and the yellow point). In particular, the
right-hand spectrum has again a unique closed point (the irrelevant ideal H+(G, k)

in Spech(H•(G, k))); this is the yellow point in the right-hand side.

The map ϕY : Spc(T̂ d)→ Spc(T d) is described by the colors: The preimage of
each point of the left-hand lattice is the part with the same color in the right-hand
picture. The yellow point is the unique preimage of the yellow point (compare
Theorem 4.6), each green area goes to the corresponding green point, etc. This
calculation is an easy verification from the following three facts. First, the object
FG(G/H+) in DMack(G, k)c is mapped to k(G/H) in Db(kG-mod). Second, the

support of FG(G/H+) ∼= IndGH(1) on the left-hand side consists of the image under
Spc(−) of restriction to H, by general étale tt-geometry. See [Bal16]. This amounts
to the conjugacy classes of subgroups of H. Similarly, by the same generalities,
the support of k(G/H) ∼= IndGH(1) on the right-hand side consists of the image
under Spc(−) of restriction to H. These subsets are precisely the ones described
above, in Quillen Stratification. And thirdly, again by general tt-geometry, the
preimage under ϕ = Spc(F ) of the support supp(c) of an object is the support of
the image F (c) of said object, here applied to c = FG(G/H+). The result follows
by inspection, by varying the subgroup H among the elementary abelian subgroups
of G, starting with H = 1 and then increasing the 2-rank one by one.
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8.D. Excisive examples. We will now illustrate these ideas in the case of categories
of excisive functors. This is based on [ABHS24] and we will assume some familiarity
with that work.

8.25. Notation. We fix a prime p and work p-locally throughout. For each d ≥ 1, we
have the tt-category of p-local d-excisive functors

Excd := Excd(Spc,Sp)(p) ' Excd(Spc,Sp(p)).

8.26. Recollection. As a set, the spectrum Spc(Excdd) consists of d disjoint copies of

Spc(Spd
(p)) which are pulled back via the Tate derivatives

∂` : Excd → Sp(p), 1 ≤ ` ≤ d.
The prime Spc(∂`)(Ch) is denoted Pd([`], h) and we write L` := Im(Spc(∂`)) ={
Pd([`], h)

∣∣ 1 ≤ h ≤ ∞} for the `th layer.

8.27. Remark. As explained in [ABHS24, Corollary 7.21], the steel condition holds
for Excd and the homological residue field at Pd([`], h) is the functor K(h− 1)∗ ◦ ∂`.
Thus, for a weak ring A, we have

Pd([`], h) ∈ Supp(A)⇐⇒ K(h− 1)∗∂`(A) 6= 0

⇐⇒ Ch ∈ Supp(∂`(A))

by invoking [Bal20a, Theorem 1.8] and Remark 8.1.

8.28. Remark. The category Excd is rigidly-compactly generated by a set of compact-
dualizable generators PdhS(i), 1 ≤ i ≤ d, which includes the unit 1 = PdhS(1). The
finite localization associated to the Thomason closed set Y := supp(PdhS(d)) = Ld
may be identified with the (d− 1)-excisive approximation Pd−1 : Excd → Excd−1.

Moreover, note that Y = Ld is a copy of Spc(Spd
(p)). In [ABHS24], the spectrum

Spc(Excdd) is computed by induction on d utilizing this open-closed decomposition.
It provides an excellent illustration of the philosophy of the present paper. Set-
theoretically we have Spc(Excdd) = Y t Y C = Spc(Spd

(p)) t Spc(Excdd−1). The key
to the inductive step is to understand how these pieces are glued together.

...

Y Spc(Excdd−1)

...
...

. . .

. . .

. . .

. . .

. . . ...

8.29. Remark. The Tate construction tY : Excd → Excd of interest to us is denoted td
in [ABHS24]. We write td for it.

8.30. Remark. Recall from [ABHS24, Definition 10.32] that a p-power partition of d
of length ` is a partition λ = (d1, . . . , d`) ` d such that each di is a power of p. (Here
we include p0 = 1 as a power of p.)

8.31. Theorem. Let d ≥ 1 be an integer and let T = Excd(Spc,Sp)(p). For any
1 ≤ ` ≤ d, we have

Supp(td(1)) ∩ L` =

®
L` if d > ` and d admits a p-power partition of length `

∅ otherwise
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Proof. Let id : Sp(p) → Excd denote the canonical geometric functor and consider

id(L
f
h S) ∈ Excd. The key theorem [ABHS24, Theorem 10.33] establishes that if

d > ` and d admits a p-power partition of length `, then

heightp(∂` td(idL
f
p,h S)) = h− 1

which implies that Ch ∈ Supp(∂` td(idL
f
p,h S)). This implies Ch ∈ Supp(∂` td(1)) by

Remark 2.14 due to the ring map

1 = id S→ idL
f
p,h S .

Since this is true for all finite 1 ≤ h < ∞, it then follows from Lemma 8.2 that
C∞ ∈ Supp(∂` td(1)) too. This proves that, in this case, Supp(td(1)) ∩ L` = L`.

It remains to prove that ∂` td(1) = 0 in the contrary case. This is the h = ∞
version of the vanishing result of [ABHS24, Theorem 10.33] interpreting Lfp,∞ as
the p-local sphere. One readily verifies that the argument goes through with this
interpretation. �

8.32. Example. For d = 3 and the prime p = 2, the spectrum is the following picture

P([3], 1)

P([3], 2)

P([3], 3)

P([3], 4)

...
P([3],∞)

[3]

...

[2]

P([1], 1)

P([1], 2)

P([1], 3)

P([1], 4)

...
P([1],∞)

[1]

where Y = supp(P3hS(3)) is the yellow region (the third layer) and Supp(tY (1)) is
precisely the cyan region (the second layer). Observe how all inclusions between the
third and first layer are mediated through the second, as predicted by Theorem 6.1.

8.33. Remark. The Bousfield completion of Excd along Y may be identified with
the tt-category of Borel equivariant Σd-spectra; see [ABHS24, Proposition 6.23].
Note that this is the same as the Bousfield completion of SH(Σd) considered in
Example 8.15. The tt-geometry of SH(Σd)borel is not well-understood. Nevertheless,
in order to compute the inclusions between Y and Supp(tY (1)), one does not always
need to have complete understanding of Spc(T̂ d). Indeed, in the d = 3, p = 2
example above, the left-hand inclusions between Y = L3 and Supp(tY (1)) = L2

can be completely determined by Tate support computations. In more detail, for

each h we may consider the truncated category T≤h = id(L
f
h−1) ⊗ T in the sense

of [ABHS24, Example 6.15], which is just the restriction T → T|U≤h to the open
subset

U≤h =
{
Pd([`], n)

∣∣ 1 ≤ ` ≤ d, 1 ≤ n ≤ h} ⊆ Spc(Td).

By Corollary 5.5(a), we have Supp(tY ∩U≤h(1)) = Supp(td(id(L
f
h−1))). As discussed

above, Supp(t3(i3(Lfh−1))) =
{
P3([2], n)

∣∣ 1 ≤ n ≤ h−1
}

. We leave it as an exercise
for the interested reader to see how these computations suffice to determine the in-
clusions between layer 3 and layer 2 above; the argument in [ABHS24, Lemma 11.15]
may be helpful. In summary, this provides a proof of concept where all the gluing
information between Y and Y C can be obtained by computing the supports of Tate
rings. A more general understanding of this phenomenon would be desirable.
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